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Abstract

We establish conditions under which Metropolis-Hastings (MH) algorithms with a position-

dependent proposal covariance matrix will or will not have the geometric rate of convergence.

Some of the diffusions based MH algorithms like the Metropolis adjusted Langevin algorithm

(MALA) and the pre-conditioned MALA (PCMALA) have a position-independent proposal

variance. Whereas, for other modern variants of MALA like the manifold MALA (MMALA)

that adapt to the geometry of the target distributions, the proposal covariance matrix changes in

every iteration. Thus, we provide conditions for geometric ergodicity of different variations of

the Langevin algorithms. These results have important practical implications as these provide

crucial justification for the use of asymptotically valid Monte Carlo standard errors for Markov

chain based estimates. The general conditions are verified in the context of conditional sim-

ulation from the two most popular generalized linear mixed models (GLMMs), namely the

binomial GLMM with the logit link and the Poisson GLMM with the log link. Empirical

comparison in the framework of some spatial GLMMs shows that the computationally less ex-

pensive PCMALA with an appropriately chosen pre-conditioning matrix may outperform the

MMALA.

Key words: Drift conditions; Geometric ergodicity; Langevin diffusion; Markov chain; Metropolis-

Hastings; Mixed models

1 Introduction

In physics, statistics, and several other disciplines one often deals with a complex probability

density f(x) on Rd that is available only up to a normalizing constant. Generally, the goal is to

estimate Ef [g] :=
∫
Rd g(x)f(x)dx for some real valued function g. Markov chain Monte Carlo
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(MCMC) is the most popular method for sampling from such a f and for providing a Monte Carlo

estimate of Ef [g] (Robert and Casella, 2004). In MCMC, a Markov chain {Xn}, which has f as

its stationary density, is run for a certain number of iterations, and Ef [g] is estimated by the sample

average ḡn :=
∑n

i=1 g(Xi)/n. Among the different MCMC algorithms, Metropolis-Hastings (MH)

algorithms (Metropolis et al., 1953; Hastings, 1970) are predominant. In MH algorithms, given the

current state x, a proposal y is drawn from a density q(x, y), which is then accepted with a certain

probability. The accept-reject step guarantees reversibility of the Markov chain with respect to

the target f , and, in turn, ensures stationarity. Besides, the acceptance probability generally does

not involve the unknown normalizing constant in f , making the implementation of MH algorithms

practically feasible.

A popular MH algorithm is the random walk Metropolis (RWM) where the proposal density is

N(x, hId), the normal density centered at the current state x and with the covariance matrix hId
for some h > 0. A nice feature of the RWM is that the acceptance probability can be adjusted by

choosing the step-size (proposal variance) h accordingly. Indeed, lower step-size results in a higher

acceptance probability but then the RWM chain takes longer to move around the space. Therefore,

in higher dimensions, that is when d is large, the Metropolis adjusted Langevin algorithm (MALA)

(Rossky et al., 1978; Besag, 1994; Roberts and Tweedie, 1996a), which employs the gradient of

log of the target distribution, is developed to achieve faster mixing. Since the mean of the proposal

density N(x + h∇ log f(x)/2, hId) of the MALA is governed by the gradient information, it is

likely to make moves in the directions in which f is increasing. Thus, large proposals can be

accepted with a higher probability, leading to high mixing of the Markov chain. On the other

hand, the proposal density in the RWM does not make use of the structure of the target density.

Superiority of the MALA over the RWM in terms of mixing time is demonstrated by Roberts and

Rosenthal (1998) (see also Christensen et al., 2005; Dwivedi et al., 2019; Chen et al., 2020; Lee

et al., 2020; Wu et al., 2021).

However, MALA may be inefficient when the coordinates of x are highly correlated, and have

largely differing marginal variances. In such situations, the step-size is compromised to accom-

modate the coordinates with the smallest variance. Such a situation arises when modeling spa-

tially correlated data. Spatial models take the correlation of different locations into consideration,

usually, the closer the two locations, the more similarity and the higher correlations they have.

The pre-conditioned MALA (PCMALA) (Stramer and Roberts, 2007) is introduced to circumvent

these issues by multiplying a covariance matrix to the gradient of log of the target density. The

proposal density of the PCMALA isN(x+hG∇ log f(x)/2, hG), while the selection of an appro-

priate covariance matrix requires further study. Without the Metropolis step, the MALA and the
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PCMALA degenerate to the unadjusted Langevin algorithm (ULA) (Parisi, 1981; Grenander and

Miller, 1994; Roberts and Tweedie, 1996a) and the pre-conditioned ULA (PCULA), respectively,

which although might converge to undesired distributions, require less computational time.

By taking into account the geometry of the target distribution in the selection of step-sizes, effi-

cient versions of MALA can be formed that adapt to the characteristics of the target. Indeed, using

ideas from both Riemannian and information geometry, Girolami and Calderhead (2011) propose a

generalization of MALA, called the manifold MALA (MMALA). MMALA is constructed taking

into account the natural geometry of the target density and considering a Langevin diffusion on

a Riemann manifold. In the MMALA, the covariance matrix G, unlike the PCMALA, changes

in every iteration. More recently, Xifara et al. (2014) propose the position-dependent MALA

(PMALA). There are other works in the literature (see e.g Haario et al., 2001; Roberts and Rosen-

thal, 2009), which consider RWM algorithms where the Gaussian proposal distribution is centered

at the current state and the covariance matrix depends on the current or a finite number of previous

states.

A Harris ergodic Markov chain will converge to the target distribution, and Ef [g] can be consis-

tently estimated by the sample mean ḡn (Meyn and Tweedie, 1993). On the other hand, in practice,

it is important to ascertain the errors associated with the estimate ḡn. Establishing geometric ergod-

icity of a Markov chain is the most standard method for guaranteeing a central limit theorem (CLT)

for ḡn and finding its standard errors. Thus, the geometric rate of convergence for Markov chains

is highly desired. Furthermore, a non-geometrically ergodic chain may sample heavily from the

tails instead of the center of the distribution, leading to instability of the Monte Carlo estimation

(Roberts and Tweedie, 1996b). The main contribution of this article is that it establishes condi-

tions under which geometric ergodicity will and will not hold for the position-dependent MALA.

Indeed, we provide these results for MH algorithms where the normal proposal density has a gen-

eral mean function c(x) and a covariance matrix G(x) depending on the current position x of

the Markov chain. As special cases, these results also hold for the MMALA, the PMALA, and

the PCMALA. We also provide conditions guaranteeing geometric ergodicity of the PCULA. Our

results will help practitioners implementing these MCMC algorithms to choose appropriate step-

sizes ensuring the geometric convergence rates. Previously, Roberts and Tweedie (1996b) derive

conditions under which the MALA and ULA chains are geometrically ergodic (GE). However, in

the literature, there is no results available on convergence analysis of position dependent MALA

chains. Recently, Livingstone (2021) considers ergodicity properties of the RWM algorithm with

a position-dependent proposal variance. Some of these previously mentioned results are valid only

for d = 1. It is known that the Hamiltonian Monte Carlo (HMC) algorithm with exactly one
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leapfrog step boils down to the MALA (Neal, 2011). Livingstone et al. (2019) establish geomet-

ric ergodicity of the HMC when the ‘mass matrix’ in the ‘kinetic energy’ is a fixed matrix. On

the other hand, in our geometric convergence results, the pre-conditioning covariance matrix is

allowed to vary with the current position of the Markov chains.

Generalized linear mixed models (GLMMs) are often used for analyzing correlated non-Gaussian

data. Spatial generalized linear mixed models (SGLMMs) are GLMMs where the correlated ran-

dom effects form the underlying Gaussian random fields. SGLMMs are useful for modeling spa-

tially correlated binomial and count data. Simulation from the random effects given the obser-

vations from a GLMM or a SGLMM is important for prediction and the Monte Carlo maximum

likelihood estimation (Diggle et al., 1998; Geyer, 1994). Langevin algorithms have been previ-

ously used for making inference in the SGLMMs (Christensen et al., 2001, 2005, 2006). Another

contribution of this paper is to verify our general conditions for geometric ergodicity of different

versions of the MALA and the ULA for conditional simulation in the GLMMs. In particular, using

our general sufficient conditions mentioned before, we establish the geometric rate of convergence

of different versions of the MALA with appropriately chosen step-sizes for the binomial GLMM.

On the other hand, our general necessary conditions are used to show that the PCMALA is not

geometrically ergodic for the Poisson GLMM. We also undertake empirical comparisons of the

before mentioned algorithms in the context of simulated data from high dimensional SGLMMs.

In the numerical examples we observe that the PCMALA compares favorably with the compu-

tationally expensive PMALA. Avoiding expensive computation of derivatives repeatedly in each

iteration, the PCMALA is computationally efficient. On the other hand, computational cost for the

MMALA and other MCMC algorithms with a position-dependent proposal variance may not scale

favorably with increasing dimensions as noted in Girolami and Calderhead (2011). Girolami and

Calderhead (2011) compare the MMALA with the ‘simplified MMALA’ where the metric tensor is

a locally constant in the context of several examples and they observe that, although the simplified

MMALA is ‘computationally much less expensive’, it is less efficient. Girolami and Calderhead

(2011) argue that ‘a global level of pre-conditioning may be inappropriate for differing transient

and stationary regimes’, however, we observe that for the SGLMM examples considered here, the

PCMALA with a well-chosen (suggested by Girolami and Calderhead (2011) themselves) pre-

conditioning matrix can outperform the PMALA and the MMALA for chains started either at the

center or away from the mode.

The rest of the paper is organized as follows. Section 2 contains a brief review of the MALA

and its different variants. After discussing some basic results on convergence of Markov chains

in Section 3, we provide our main results on MH algorithms with a position-dependent proposal
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variance in Section 4. Section 5 contains some convergence results for the PCULA. Our general

convergence results for variations of the MALA are demonstrated for GLMMs in Section 6. This

section also contains empirical comparisons between different variants of the Langevin algorithms

in the context of conditional simulation for the SGLMMs. Some concluding remarks appear in

Section 7. Finally, most of the proofs and some numerical results are given in the Supplement.

The sections in the supplement document are referenced here with the prefix ‘S’.

2 Metropolis adjusted Langevin algorithms

MALA is a discrete time MH Markov chain based on the Langevin diffusion Xt defined as

dXt = (1/2)∇ log f(Xt)dt+ dWt, (1)

where Wt is the d−dimensional standard Brownian motion. Although f is stationary for Xt in (1),

simple discretizations of it say, Xn = Xn−1 + h∇ log f(Xn−1)/2 +
√
hεn for a chosen step-size

h with εn
iid∼ N(0, Id) can fail to maintain the stationarity. This is why, in the MALA, an MH

accept-reject step is introduced where, in each iteration, the proposal Xn drawn from N(xn−1 +

h∇ log f(xn−1)/2, hId) is only accepted with probability

α(Xn−1, Xn) = 1 ∧ f(Xn)q(Xn, Xn−1)

f(Xn−1)q(Xn−1, Xn)
, (2)

where the proposal density q(x, y) is theN(x+h∇ log f(x)/2, hId) density evaluated at y. Several

extensions of the MALA have been proposed in the literature. These variants are based on different

stochastic differential equations dXt = b(Xt)dt+ σ(Xt)dWt with a certain drift vector b(x) and a

volatility matrix σ(x). The Fokker-Planck equation given by

∂

∂t
u(x, t) = −

∑
i

∂

∂xi
[bi(x)u(x, t)] +

∑
ij

∂2

∂xi∂xj
[Dij(x)u(x, t)] (3)

describes the evolution of the pdf u(x, t) of Xt. Here, D(x) = σ(x)σ(x)>/2 is the diffusion

coefficient. If u(x, t) = f(x) ∀t then the process {Xt}t≥0 is stationary with the invariant density

f . Setting u(x, t) = f(x), b(x) = ∇ log f(x)/2 and σ(x) = I , it can be seen that (3) holds for (1).

A generalization of (1) still satisfying (3) is the diffusion

dXt = (1/2)G∇ log f(Xt)dt+
√
GdWt, (4)
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for a positive definite matrix G. The corresponding discrete time MH chain with proposal density

N(x + hG∇ log f(x)/2, hG) is known as the pre-conditioned MALA (PCMALA) (Roberts and

Stramer, 2002). By choosing G appropriately, the PCMALA can be well suited to situations where

coordinates of the random vector following f are highly correlated, and have different marginal

variances. In Section 6, we discuss several choices of G.

In both (1) and (4) the volatility matrix is constant. Girolami and Calderhead (2011) and Xifara

et al. (2014) propose variants of (1) with a position-dependent volatility matrix. The MH proposal

of Xifara et al.’s (2014) position-dependent MALA (PMALA) is driven by

dXt = (1/2)G(Xt)∇ log f(Xt)dt+ (1/2)Γ(Xt)dt+
√
G(Xt)dWt, (5)

where Γi(Xt) =
∑

j ∂Gij(Xt)/∂Xt,j . Straightforward calculations show that (5) satisfies (3).

In practice, we often use G(Xt) = I−1(Xt) for some appropriate choice of I. In that case,

Γi(Xt) =
∑

j ∂I
−1
ij (Xt)/∂Xt,j . The proposal transition of Girolami and Calderhead’s (2011) man-

ifold MALA (MMALA) is driven by a diffusion on a Riemannian manifold given by

dXt = (1/2)I−1(Xt)∇ log f ∗(Xt)dt+ (1/2)Ω(Xt)dt+
√

I−1(Xt)dWt, (6)

with f(x) = f ∗(x)|I(x)|1/2 and Ωi =
∑

j ∂I
−1
ij /∂Xt,j + 0.5

∑
j I
−1
ij ∂ log |I|/∂Xt,j . Here, we have

accounted for a transcription error of Girolami and Calderhead (2011) as mentioned in Xifara

et al. (2014). From (6), it follows that the proposal density of the MMALA chain is N(x +

(h/2)I−1(x)∇ log f ∗(x) + (h/2)Ω(x), hI−1(x)). In this article, we study convergence properties

of MH algorithms with the candidate distribution N(c(x), hG(x)) for some general mean vector

c(x) and the covariance matrix hG(x). This will cover as special cases different variants of the

MALA discussed before.

3 Markov chain background

Let (X,B) denote a Borel space. Here, we consider X = Rd and let ‖·‖ denote the Euclidean norm.

Let F denote the target probability measure and P (x, dy) : X×B → [0, 1] be a Markov transition

function (Mtf). We will use f(x) to denote the pdf of F with respect to the Lebesgue measure.

Let {Xn}∞n=0 be a Markov chain driven by P . Let P n(·, ·) denotes the n−step Mtf. Now, P is φ-

irreducible if there exists a non-zero σ-finite measure φ on X such that for allA ∈ B with φ(A) > 0,

and for all x ∈ X, there exists a positive integer n = n(x,A) such that P n(x,A) > 0. If P is φ-

irreducible and F is invariant with respect to P , then {Xn}∞n=0 can be used to consistently estimate
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means with respect to f (Meyn and Tweedie, 1993, Chap 10). Indeed, under these conditions, if

g : X → R is integrable with respect to F , that is, if Ef [|g(x)|] :=
∫

X |g(x)|f(x)dx < ∞, then

gn :=
∑n−1

i=0 g(Xi)/n → Ef [g] almost surely, as n → ∞. On the other hand, Harris ergodicity of

P does not guarantee a CLT for gn. We say a CLT for gn exists if
√
n(gn − Ef [g])

d→ N(0, σ2
g) as

n→∞ for some σ2
g ∈ (0,∞). The most common method for ensuring a Markov chain CLT is to

establish that {Xn}∞n=0 (P ) is geometrically ergodic (GE), that is, to demonstrate the existence of

a function L : X→ [0,∞) and a constant ρ ∈ (0, 1), such that for all n = 0, 1, 2, . . . ,

‖P n(x, ·)− F (·)‖TV ≤ L(x)ρn, x ∈ X, (7)

where ‖ · ‖TV denotes the total variation norm. (7) guarantees a CLT for gn if Ef [g
2+δ] < ∞

for some δ > 0. (7) also implies that a valid standard error σ̂g/
√
n for gn can be calculated by

the batch means or the spectral variance methods, which, in turn, can be used to decide ‘when to

stop’ running the Markov chain (Vats et al., 2019; Roy, 2020). Furthermore, as mentioned in Roy

(2020), most of the MCMC convergence diagnostics used in practice, for example, the effective

sample size and the potential scale reduction factor used later in this paper, assume the existence

of a Markov chain CLT, emphasizing the importance of establishing (7).

If P is φ−irreducible and aperiodic, then from Meyn and Tweedie’s (1993) chap 15, we know

that (7) is equivalent to the existence of a Lyapunov function V : X → [1,∞] and constants

λ < 1, b <∞ with

PV (x) ≤ λV (x) + bIC(x), x ∈ X, (8)

where PV (x) =
∫

X V (y)P (x, dy) = E[V (X1)|X0 = x] and C ⊂ X is small, meaning that

∃ ε > 0, integer k, and a probability measure ν such that P k(x,A) ≥ εν(A) ∀x ∈ C, and A ∈ B.

In the presence of some topological properties, we can use the following result to establish

geometric ergodicity of a Markov chain. The function V : X → [0,∞] is said to be unbounded

off compact sets if for any a > 0, the level set {x ∈ X : V (x) ≤ a} is compact. The next

proposition, which directly follows from several results in Meyn and Tweedie (1993), has been

used for establishing geometric ergodicity of different MCMC algorithms (see e.g. Roy and Hobert,

2007; Wang and Roy, 2018).

Proposition 1 (Meyn and Tweedie). Let P be φ-irreducible, aperiodic and Feller, where φ has

nonempty interior. Suppose V : X→ [0,∞] is unbounded off compact sets such that

PV (x) ≤ λV (x) + b, (9)
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for all x and for some constants λ < 1, b <∞, then {Xn}∞n=0 is GE.

Proof of Proposition 1. Let V ′(x) = V (x) + 1. Then V ′ : X → [1,∞] is also unbounded off

compact sets and (9) holds for V ′ with b replaced by b + 1 − λ. By Meyn and Tweedie (1993,

Theorem 6.0.1) all compact sets of X are small. Then geometric ergodicity of P follows from

Meyn and Tweedie (1993, Lemma 15.2.8).

Next, we consider MH Markov chains. The Dirac point mass at x is denoted by δx(·). An Mtf

P is said to be MH type if

P (x, dy) = α(x, y)Q(x, dy) + r(x)δx(dy), (10)

where Q is an Mtf with density q(x, y), α is as given in (2) and

r(x) = 1−
∫

X
α(x, y)Q(x, dy). (11)

Since P in (10) is reversible with respect to f , f is its stationary distribution. If f(x) and q(x, y)

are positive and continuous for all x, y, then from Mengersen and Tweedie (1996, Lemma 1.2) we

know that the MH type Mtf (10) is aperiodic, and every nonempty compact set is small. A weaker

condition is given in Roberts and Tweedie (1996b) that assumes q is bounded away from zero in

some region around the origin. In particular, if f(x) is bounded away from 0 and∞ on compact

sets, and ∃ δq > 0, εq > 0 such that for all x, ‖x − y‖ ≤ δq ⇒ q(x, y) ≥ εq, then P given in (10)

is φ-irreducible, aperiodic and every nonempty compact set is small.

Let Bk(x) = {y : ‖y − x‖ < k} denote the open ball with center x and radius k. Following

Jarner and Tweedie (2003) an Mtf P is called random-walk-type if for any ε > 0, ∃ k > 0 such

that P (x,Bk(x)) > 1− ε. If P is of the form (10)

P (x,Bk(x)) =

∫
Bk(x)

α(x, y)Q(x, dy) +

∫
X
(1− α(x, y))Q(x, dy) ≥

∫
Bk(x)

Q(x, dy),

then it is enough to verify Q(x,Bk(x)) > 1 − ε for P to be random-walk-type. We now provide

some conditions for P in (10) to be GE.

Proposition 2. Suppose P is of the form (10) and it is φ-irreducible, aperiodic, and every nonempty

compact set is small. If there exists a function V : X→ [1,∞], which is bounded on compact sets

with

lim sup
‖x‖→∞

PV (x)

V (x)
< 1 (12)
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and
PV (x)

V (x)
is bounded on compact sets, (13)

then (8) holds for a small set C. Conversely, if P is random-walk-type and (8) holds, then V

satisfies (12) and (13).

The proof of this result can be gleaned from Jarner and Hansen (2000). However, we provide

a proof here for completeness. Among other conditions, Jarner and Hansen’s (2000) Lemma 3.5

assumes that PV (x)/V (x) is bounded which is often violated as in the examples considered here.

Proof of Proposition 2. Note that, under (12), (8) holds for all x outside C = {x : ‖x‖ ≤ k} for k

sufficiently large. Since (13) holds, and V is bounded on compact sets, we have

sup
‖x‖≤k

PV (x) ≤ sup
‖x‖≤k

PV (x)

V (x)
sup
‖x‖≤k

V (x) <∞.

From the conditions, we know that C is small. Thus, (8) holds. For the converse, by Lemma 2.2

of Jarner and Hansen (2000) we know that every small set is bounded. Since (8) holds

PV (x)

V (x)
≤ λ+

bIC(x)

V (x)
,

implying (12) as C is bounded and (13) as bIC(x)/V (x) ≤ b.

Note that PV (x)/V (x) =
∫

X[V (y)/V (x)]α(x, y)Q(x, dy) + r(x). As shown in Roberts and

Tweedie (1996b) if ess sup r(x) = 1, then P is not GE. Necessary conditions for geometric

ergodicity can also be established by the following result of Jarner and Tweedie (2003).

Proposition 3 (Jarner and Tweedie). If P is random-walk-type with stationary density f , and if it

is GE, then ∃ s > 0 such that Ef (exp[s‖X‖]) <∞.

4 Geometric ergodicity of the general MALA

In this section, we study geometric convergence rates for the MH algorithms with candidate distri-

bution N(c(x), hG(x)). Thus, the proposal density is given by

q(x, y) =
1

(2hπ)d/2|G(x)|1/2
exp{−(y − c(x))>G(x)−1(y − c(x))/2h}. (14)

As explained in Section 2, distinct forms of the mean function c(x) and the covariance matrix

hG(x) result in the MALA and its different variants. LetA(x) denote the acceptance region, where
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the proposed positions are always accepted, that is, A(x) = {y : f(x)q(x, y) ≤ f(y)q(y, x)}. If

y ∈ A(x), then α(x, y) defined in (2) is always one. Let R(x) = A(x)c be the potential rejection

region. We now define the following conditions.

A1 There exist positive definite matrices G1 and G2 such that G1 ≤ G(x) ≤ G2 ∀x.

A2 The mean function c(x) is bounded on bounded sets.

A3 C1 := lim sup‖x‖→∞
∫
R(x)

q(x, y)(1− α(x, y))dy < 1.

A4 There exists s > 0 such that

η := lim inf
‖x‖→∞

(
‖G−1/2

2 x‖ − ‖G−1/2
2 c(x)‖

)
>

logC2(s)− log(1− C1)

s
, (15)

where

C2(s) = h−d/2(π/2)(d−2)/2(|G2|/|G1|)1/2 exp{hs2/2}
∫ ∞

0

exp{−(r − hs)2/(2h)}rd−1dr.

(16)

Here, for two square matricesG1 andG2 having the same dimensions,G1 ≤ G2 means thatG2−G1

is a positive semi-definite matrix. That is, G1 ≤ G2 is the usual Loewner order on matrices. Let

ζi+ and ζ+
i be the smallest and the largest eigenvalue of Gi, respectively for i = 1, 2.

Remark 1. Since ‖x‖/
√
ζ+

2 ≤ ‖G
−1/2
2 x‖ ≤ ‖x‖/

√
ζ2+, a sufficient condition for A4 that may be

easier to check is lim inf‖x‖→∞(‖x‖/
√
ζ+

2 − ‖c(x)‖/
√
ζ2+) > [logC2(s)− log(1− C1)]/s.

We now state sufficient conditions for geometric ergodicity of the MH chains with a position-

dependent covariance matrix.

Theorem 1. Suppose the conditions A1–A4 hold. If f(x) is bounded away from 0 and ∞ on

compact sets, the MH chain with proposal density (14) is GE.

Remark 2. The proof of Theorem 1 given in S1 uses a Lyapunov drift function Vs(x) = exp{s‖G−1/2
2 x‖},

with s > 0. By considering a different drift function V ′s (x) = exp{s‖x‖}, s > 0, and following

the steps in that proof and using the fact that G2 ≤ ζ+
2 Id, another alternative for A4 can be ob-

tained. Indeed, the condition A4 in Theorem 1 can be replaced by the existence of s > 0 with

lim inf‖x‖→∞
(
‖x‖ − ‖c(x)‖

)
> [logC ′2(s)− log(1− C1)]/s, where

C ′2(s) = h−d/2(π/2)(d−2)/2(exp{hζ+
2 s

2}/|G1|)1/2

∫ ∞
0

exp{−(r − hsζ+
2 )2/(2hζ+

2 )}rd−1dr.
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Remark 3. As mentioned in the Introduction, Roberts and Tweedie (1996b) derived conditions

under which the MALA chain is GE. One of their conditions is ‘A(·) converges inwards in q’ which

means lim‖x‖→∞
∫
A(x)∆In(x)

q(x, y)dy = 0, where In(x) = {y : ‖y‖ ≤ ‖x‖} and A(x)∆In(x) =

(A(x) \ In(x)) ∪ (In(x) \ A(x)). Recently, Livingstone et al. (2019) assume a slightly weaker

condition lim‖x‖→∞
∫
R(x)∩In(x)

q(x, y)dy = 0 for establishing geometric ergodicity of Hamiltonian

Monte Carlo Markov chains. Below we show that if A1 holds and ‖c(x)‖ < M for all x, then

lim‖x‖→∞
∫
R(x)∩In(x)

q(x, y)dy = 0 implies that C1 = 0, that is, in that case, A3 automatically

holds.

Proof of Remark 3. Since ‖c(x)‖ < M , by Cauchy-Schwartz inequality,

c(x)>G−1
2 y ≤

√
y>G−1

2 y

√
c(x)>G−1

2 c(x) ≤ (M/
√
ζ2+)

√
y>G−1

2 y.

Thus, from (14), we have q(x, y) ≤ a exp{−(‖G−1/2
2 y‖ − M/

√
ζ2+)2/2h} for some constant

a > 0. Then C1 = 0 follows since

C1 ≤ lim sup
‖x‖→∞

∫
R(x)∩In(x)

q(x, y)dy + lim sup
‖x‖→∞

∫
R(x)∩In(x)c

q(x, y)dy,

and by DCT, the second term of the right side is zero.

Remark 4. For analyzing HMC algorithms, Mangoubi and Smith (2021) assume that there exist

0 < m2,M2 < ∞ such that m2Id ≤ −∇2 log f(x) ≤ M2Id for all x ∈ Rd. A smooth target

density f(x) ∝ exp(−U(x)) satisfies this condition if and only if U is m2 strongly convex and

has M2-Lipschitz gradient. Strong convexity and the existence of a Lipschitz gradient of U are

also assumed for the analysis of Langevin algorithms in Durmus and Moulines (2019) (see also

Dwivedi et al., 2019). Thus, in the special case of G(x) = (−∇2 log f(x))−1, which is often used

in practice for implementing the MMALA (Girolami and Calderhead, 2011), A1 is same as the

assumption of Mangoubi and Smith (2021) mentioned above.

Remark 5. As discussed in Girolami and Calderhead (2011), for implementing the MMALA and

the PMALA in Section 6, we use G = I −1, the expected Fisher information matrix plus the

negative Hessian of the logarithm of the prior density. For such a G, we show that A1 holds for the

popular binomial-logit link GLMM, and Theorem 1 is used to establish a CLT for these Markov

chains. On the other hand, for establishing consistency of ḡn for the adaptive Metropolis algorithm,

Haario et al. (2001) assume that the proposal covariance matrix Gn satisfies A1 even for the target

density that is bounded from above and has bounded support.
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Remark 6. If c(x) is a continuous function of x, then A2 holds. For example, for the MALA or

the PCMALA if∇ log f(x) is continuous, then A2 holds.

Remark 7. From (16), C2(s) = h−d/2(π/2)(d−2)/2(|G2|/|G1|)1/2
∫∞

0
exp{−r2/(2h) + rs}rd−1dr.

Thus, C2(s) is increasing in s. Roberts and Tweedie (1996b) considered the MALA chain. When

d = 1, for the MALA chains, G1 = 1 = G2 and C2(s) = (hπ/2)−1/2
∫∞

0
exp{−r2/(2h) +

rs}dr. So lims→0C2(s) = 1. From Remark 3, we know that under Roberts and Tweedie’s (1996b)

‘A(·) converges inwards in q’ condition, we have C1 = 0, so the condition (15) is equivalent

to exp(sη) > C2(s). On the other hand, Roberts and Tweedie’s (1996b) other condition for the

MALA chain to be GE is η > 0.

In the proof of Theorem 1 we have worked with the drift function Vs(x) = exp{s‖G−1/2
2 x‖},

with s > 0. Using a different drift function we establish the following theorem providing a slightly

different condition for geometric ergodicity. Let us define another condition:

A5 lim sup‖x‖→∞(‖c(x)‖2/‖x‖2) < (1− C1)(|G1|/|G2|)1/2.

Theorem 2. Suppose the conditions A1–A3 and A5 hold. If f(x) is bounded away from 0 and∞
on compact sets, the MH chain with proposal density (14) is GE.

Remark 8. If the growth rate of ‖c(x)‖ is smaller than that of ‖x‖, then A4 and A5 hold (see e.g.

the binomial SGLMM example in Section 6). In this case, C1 does not need to be explicitly found

to be used within A4 or A5. On the other hand, if η can be derived, then a grid search for s can be

done to verify A4.

Remark 9. Although a Gaussian proposal density (14) is assumed in Theorems 1 and 2, following

the proofs of these results, one may try to establish conditions for geometric ergodicity for other

proposal densities as long as upper bounds to the means of the drift functions with respect to these

densities can be derived.

We now provide some general conditions under which an MH algorithm with proposal density

(14) does not produce a GE Markov chain. Recall that for the MALA chain and its variants, the

mean function c(x) is of the form x + he(x) for some function e(x) and step-size h. For the rest

of this section, we assume c(x) = x+ he(x).

Theorem 3. If A1 holds and ‖e(x)‖ < M for all x and for someM > 0, then a necessary condition

for geometric ergodicity of the MH chain with proposal density (14) is Ef (exp[s‖X‖]) < ∞ for

some s > 0.
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The following theorem provides another necessary condition for geometric ergodicity of the

MH chain with proposal density (14).

Theorem 4. If f(·) is bounded, A1 holds and

lim inf
‖x‖→∞

‖e(x)‖
‖x‖

>
2

h
, (17)

then the MH chain with proposal density (14) is not GE.

5 Geometric ergodicity of the PCULA

Based on the Langevin diffusion (1), Roberts and Tweedie (1996b) considered the discrete time

Markov chain {Xn}n≥0 given by

Xn|Xn−1 ∼ N(Xn−1 + (h/2)∇ log f(Xn−1), hId), (18)

where f(·) is the target density. (18) is referred to as the unadjusted Langevin algorithm (ULA).

For molecular dynamics applications, the algorithm was considered before (see e.g. Ermak, 1975).

However, as mentioned before, when the coordinates are highly correlated, the same step-size

for all directions may not be efficient. Therefore, we consider the pre-conditioned unadjusted

Langevin algorithm (PCULA) by replacing the identity matrix in (18) with G that takes the corre-

lation of different coordinates into consideration:

Xn|Xn−1 ∼ N(Xn−1 + (h/2)G∇ log f(Xn−1), hG). (19)

Geometric convergence of the ULA chain (18) in the special case when d = 1 is considered

in Roberts and Tweedie (1996b). Recently, Durmus and Moulines (2019) provide some non-

asymptotic results for the ULA with non-constant step-sizes in the higher dimensions (see also

Durmus and Moulines, 2017; Vempala and Wibisono, 2019). Durmus and Moulines (2019) also

compare the performance of the PCULA chains with the PCMALA chains in the context of a

Bayesian logistic model for binary data. From Section 4 we can derive conditions for geometric

ergodicity of the Markov chain driven by Xn|Xn−1 = x ∼ N(c(x), hG). Note that, in the absence

of an accept-reject step, C1 = 0 for the PCULA chain. Although PCULA avoids the accept-reject

step, it is important to note that its equilibrium distribution is no longer f .

Proposition 4. Let c(x) be a continuous function of x. If A4 or A5 holds with C1 = 0 and

G1 = G = G2, then the Markov chain {Xn}n≥0 given by Xn|Xn−1 = x ∼ N(c(x), hG) is GE.
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If f is Gaussian with f(x) ∝ exp{−x>W−1x/2}, then ∇ log f(x) = −W−1x. In this case,

the PCULA Markov chain (19) is given by:

Xn = Xn−1 − (h/2)GW−1Xn−1 +
√
hG1/2εn = AXn−1 +

√
hG1/2εn,

where A = I − (h/2)GW−1 and εn
iid∼ N(0, Id). We can further extend it by considering more

general forms of∇ log f(x). In particular, we consider the Markov Chain:

Xn = AXn−1 + e(Xn−1) +
√
hG1/2εn (20)

where e(x) is a continuous function.

Corollary 1. If

lim sup
‖x‖→∞

‖e(x)‖2 + 2x>e(x)

‖x‖2
< 1− λ+, (21)

where λ+ is the largest eigenvalue of A>A, then the Markov chain given in (20) is GE.

Proof of Corollary 1. Since

‖Ax+ e(x)‖2

‖x‖2
≤ λ+ +

e(x)>e(x) + 2x>e(x)

‖x‖2
,

the proof follows from Proposition 4 as A5 holds.

Remark 10. If λ+ < 1, and ‖e(x)‖ = o(‖x‖), then (21) holds.

Note that, λ+ < 1 is equivalent to that the singular values of A are strictly less that one. On

the other hand, if GW−1 = W−1G then if ρ ∈ (0, 4/h), where ρ is any eigenvalue of GW−1, then

λ+ < 1.

Remark 11. For the ULA chain (18), A = I and e(x) = (h/2)∇ log f(x). Thus when d = 1, (21)

becomes

lim sup
|x|→∞

(h∇ log f(x)/2)2 + hx∇ log f(x)

x2
< 0.

On the other hand, a sufficient condition given in Roberts and Tweedie (1996b, Theorem 3.1 ) is

that lim|x|→∞ h∇ log f(x)/[2x] < 0 and (1+limx→∞ h∇ log f(x)/[2x])(1−limx→−∞ h∇ log f(x)/[2|x|]) <
1.
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6 Generalized linear mixed models

GLMMs are popular for analyzing different types of correlated observations. Using unobserved

Gaussian random effects, GLMMs permit additional sources of variability in the data. Conditional

on the random effect x = (x(1), . . . , x(m)), the response/observation variables {Z1, . . . , Zm} are

assumed to be independent with Zi|x(i) ind∼ a(zi;µi), where the conditional mean µi = E(Zi|x(i))

is related to x(i) through some link functions. Since Z1, . . . , Zm are conditionally independent,

the joint density of z = (z1, . . . , zm) is a(z;µ) =
∏m

i=1 a(zi;µi). Here, we consider the two most

popular GLMMs, namely the binomial GLMM with the logit link and the Poisson GLMM with

the log link. For the binomial-logit link model, a(zi;µi) =
(
`i
zi

)
(µi/`i)

zi(1 − µi/`i)
`i−zi , zi =

0, 1, . . . , `i, with log(µi/[`i − µi]) = x(i). Whereas, for the Poisson-log link model, a(zi;µi) =

exp(−µi)µzii /zi!, zi = 0, 1, . . . , with log(µi) = x(i).

The likelihood functions of GLMMs are not available in closed form, but only as a high dimen-

sional integral, that is, L(z) =
∫
Rm a(z;µ)p(x)dx where p(x) is the multivariate Gaussian density

for x with mean Dβ and covariance matrix Σ. Here β and D are the fixed effects and the fixed

effects design matrix, respectively. In this section, we assume that (β,Σ) are known, and consider

exploring the target density

f(x) ≡ f(x|z) =

[
m∏
i=1

a(zi;µi)p(x)

]/
L(z), (22)

using the different variants of the MALA and the ULA discussed in Sections 2 and 5.

As mentioned in Remark 5, for the MMALA we use G(x) = I −1(x) where I = −∇2 log f .

Thus, we begin with differentiating log f for the binomial-logit link model. Note that, in this case,

log f(x) (up to a constant) is

−m log(2π) + log |Σ|
2

+
m∑
i=1

[
log

(
`i
zi

)
+zix

(i)−`i log(1+exp(x(i)))
]
−(x−Dβ)>Σ−1(x−Dβ)

2
.

Letting ` = (`1, . . . , `m), we have

∂ log(f(x))

∂x
= z−`· ex

1 + ex
−Σ−1(x−Dβ),

∂2 log(f(x))

∂x2
= diag

(
−`·
{

ex

1 + ex
−
[

ex

1 + ex

]2})
−Σ−1,

(23)

and
∂3 log(f(x))

∂x3
= diag

(
− ` ·

{
ex

1 + ex
− 3

[
ex

1 + ex

]2

+ 2

[
ex

1 + ex

]3})
. (24)
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In the above diag (z) denotes the m × m diagonal matrix with diagonal elements z. Since

∇3 log f(x) in (24) is a diagonal matrix, from the proposition in Xifara et al. (2014), it follows

that the PMALA with G(x) = I −1(x) is the same as the MMALA in this case. Indeed, in this

case, in (5),

Γi(x) =
∑
j

∂I −1
ij (x)/∂x(j) = −

∑
j

I −1
ij (x)(∂Ijj(x)/∂x(j))I −1

jj (x). (25)

For the PCMALA, the covariance matrix G does not depend on the current position x. In Sec-

tion 6.1 we consider several choices of G.

Theorem 5. For the binomial GLMM with the logit link, for appropriate values (given in the proof

of this result) of h, the PCMALA, the MMALA and the PCULA Markov chains are GE.

Remark 12. When G = I , Christensen et al. (2001) established that if h ∈ (0, 2) then a ‘trun-

cated’ MALA chain for the binomial-logit link model is GE. On the other hand, using Theorem 5,

geometric ergodicity of this chain can be shown to hold when h ∈ (0, 4).

Next, we derive log f for the Poisson GLMMs with the log link. In this case,

log f(x) = a constant +
m∑
i=1

(zix
(i) − exp{x(i)})− (x−Dβ)>Σ−1(x−Dβ)/2, (26)

∇ log f(x) = z − exp{x} − Σ−1(x−Dβ), ∇2 log f(x) = −diag(exp{x})− Σ−1, (27)

and ∇3 log f(x) = −diag(exp{x}).

Proposition 5. For the Poisson GLMM with the log link, the PCMALA chain is not GE for any

h ∈ (0,∞) and any pre-conditioning matrix G.

A proof of Proposition 5 for the MALA chain can be found in Christensen et al. (2001).

6.1 Numerical examples of SGLMMs

Spatial generalized linear mixed models (SGLMMs), introduced by Diggle et al. (1998), are often

used for analyzing non-Gaussian spatial data that are observed in a continuous region (see e.g.

Zhang, 2002; Roy et al., 2016; Evangelou and Roy, 2019). SGLMMs are GLMMs where the ran-

dom effects consist of a spatial process. Conditional on the spatial process, the response variables

are assumed to follow a distribution which only depends on the site-specific conditional means. As
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in the GLMMs, a link function relates the means of the response variable to the underlying spatial

process.

Let {X(s), s ∈ S} be a Gaussian random field with mean function E(X(s)) and the covariance

function Cov(X(s), X(s′)) = σ2ρθ(‖s− s′‖). Here, the parameter σ2 is called the partial sill, and

some examples of the parametric correlation functions ρθ are the exponential, the Matérn, and the

spherical families. The mean E(X(s)) is generally a function of some regression parameters β, and

the known location dependent covariates. Conditional on the realized value of the Gaussian random

field, {x(s), s ∈ S}, and for any s1, . . . , sm ∈ S, the response variables {Z(s1), . . . , Z(sm)}
are assumed to be independent with Z(si)|x(si)

ind∼ a(zi;µi), where µi = E(Zi|x(si)) is the

conditional mean related to x(si) through some link function. Denoting z(si) (x(si)) simply by

zi(x
(i)) we arrive at the SGLMM target density f(x) as given in (22).

In this section, we perform simulation studies to assess the performance of the PCMALA, the

PMALA (MMALA) and the PCULA with different choices of the pre-conditioning matrix G in

the context of conditional simulation in SGLMMs. We also compare the performance of these

algorithms with the random walk Metropolis (RWM) algorithms. The domain for the simulations

is fixed to S = [0, 1]2, and the Gaussian random field x is considered at an 21 × 21 square grid

covering S. A realization of the data z consists of observations from the binomial spatial model at

m = 350 randomly chosen sites with number of trials `i = 50 for all i = 1, . . . , 350. The mean of

the random field is set to 1.7 for the left half of the domain and to −1.7 for the right half, while its

covariance is chosen from the exponential family Cov(x(s), x(s′)) = σ2 exp{−‖l − l′‖/φ}, with

σ2 = 1 and range φ = 0.5. We also consider simulated data from the Poisson-log SGLMM and

other setup as above.

For the PCMALA and the PCULA we consider four choices ofG: i)G = I , which corresponds

to simply the MALA and the ULA, respectively, ii) G = Σ, the covariance matrix of the (prior)

distribution of x, iii) G = diag(Î −1), the diagonal matrix with diagonal elements from Î −1

where Î = −∇2 log f |x=x̂, with x̂ = argmaxx∈Rm log f(x), and finally iv) G = Î −1. Note

that for the RWM, the candidate proposed position is y = x +
√
hG1/2ε with ε ∼ N(0, Im). For

the RWM algorithms, we also consider the before mentioned four choices of the G matrix. The

step-size h is selected using pilot runs of the chains, ensuring the acceptance rate for the different

algorithms falls in (60%, 70%). Thus, together we consider nine MH algorithms–four RWM chains

denoted as RWM1, RWM2, RWM3 and RWM4 corresponding to the four choices of the G matrix

in the before mentioned order, four PCMALA chains PCMALA1, PCMALA2, PCMALA3 and

PCMALA4 with the aboveGmatrices, respectively and the PMALA chain. Similarly, we consider

four PCULA chains denoted by PCULA1, PCULA2, PCULA3 and PCULA4 corresponding to the
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four G matrices in the before mentioned order.

The empirical performance of the different MCMC algorithms is compared using several mea-

sures (See Roy (2020) for a simple introduction to some of these convergence diagnostic mea-

sures.). In particular, the MCMC samplers are compared using lag k autocorrelation function

(ACF) values, the effective sample size (ESS) and the multivariate ESS (mESS), ESS (mESS) per

unit time, the mean squared jump distance (MSJD), and the multivariate potential scale reduction

factor (MPSRF). As mentioned in Roy (2020), for fast-mixing Markov chains, lag k ACF val-

ues drop down to (practically) zero quickly as k increases, whereas high lag k ACF values for

larger k indicate slow mixing of the Markov chain. In one dimensional setting, ESS is defined as

ESS = nλ̂2
g/σ̂

2
g , where n is the length of the chain, σ̂2

g is the estimated variance in the CLT as men-

tioned in Section 3 and λ̂2
g is the sample variance. When g is a Rp valued function for some p > 1,

Vats et al. (2019) define mESS as mESS = n(|Λ̂g|/|Σ̂g|)1/p, where Λ̂g is the sample covariance

matrix and Σ̂g is the estimated covariance matrix from the CLT. From the definition of the ESS and

the mESS, we see that larger values of these measures imply higher efficiency of the Markov chain.

The ESS and mESS are calculated using the R package mcmcse. The MSJD based on n iterations

of a Markov chain {Xn} is defined as MSJD :=
∑n−1

i=1 ‖Xi+1 − Xi‖2/(n − 1). MSJD compares

how much the chains move around the space, and larger values indicate higher amount of mixing.

As mentioned in Brooks and Gelman (1998), starting at overdispersed initial points, if the MPSRF

R̂p is sufficiently close to one, then the simulation can be stopped. Thus, Markov chains for which

R̂p reaches close to one faster are preferred. We use the R package coda for computing R̂p. As

mentioned in Roy (2020), for using most of the above mentioned numerical measures including

ESS, mESS, and MPSRF, existence of a Markov chain CLT is assumed emphasizing the impor-

tance of establishing the geometric ergodicity properties of the paper. While for the binomial-logit

link SGLMM we have established a CLT for the PCMALA and MMALA chains, for the Pois-

son model we are naively going to use the before mentioned numerical measures to compare the

different algorithms.

6.2 Comparison of the adjusted Langevin algorithms

We ran each of the nine MH chains started at xtrue, the ‘true’ value of x used to simulate the data

z, for 150,000 iterations. For the binomial SGLMM, Table 1 provides the ESS values for the three

marginal chains corresponding to (x(1), x(175), x(350)), the first, the 175th and the 350th element of

the 350 dimensional x vector at the randomly chosen sites mentioned before. The locations for

these three points in the 21×21 square grid covering S are (0,0), (0.1, 0.5), and (1, 1), respectively.

Table 1 also includes the mESS values for the multivariate 350 dimensional Markov chains. From
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Table 1, we see that the choice of the covariance matrix G does not change the performance of

the RWM algorithms much, whereas efficiency of the PCMALA can vary greatly with G. Indeed,

when G = Î −1, there are huge gains in efficiency for the PCMALA resulting in much higher

ESS, mESS values compared to the other choices of G. We see that even with the ideal choice of

G, that is, G = I −1, the PMALA has much smaller ESS and mESS values than the PCMALA

with G = Î −1 but it is better than the PCMALA with non-optimal choices of G, such as G = I ,

G = Σ or G = diag(Î −1). On the other hand, for the PMALA, unlike the PCMALA, the

covariance matrix G needs to be recomputed in every iteration, leading to higher computational

burden. This is why, the improvement of the PMALA over the PCMALA with G = I , G = Σ or

G = diag(Î −1) in terms of time-normalized efficiency (ESS per minute) reduces. The PCMALA

withG = Î −1 results in much higher values of ESS, mESS and ESS/min than the other algorithms

considered here. Indeed, the PCMALA with G = Î −1 results in more than 20 times equivalent

independent samples than the PMALA for the same amount of running time.

Table 2 provides the MSJD values for the nine chains. Again, for the RWM, the MSJD values

remain similar regardless of the choice of G. The PMALA has higher MSJD values than the

PCMALA withG = I ,G = Σ orG = diag(Î −1) implying better mixing, whereas withG = Î −1

PCMALA dominates the PMALA and the RWM algorithms. Figure 1 shows the ACF plots for

the first 50 lags for the nine MH algorithms for each of the three marginal chains. The ACF plots

corroborate faster mixing for the PCMALA chains with G = Î −1 than all other eight chains and

MMALA than the other Markov chains except PCMALA with G = Î −1. Indeed, only for the

PCMALA chain with G = Î −1, the lag k autocorrelation becomes negligible by k = 50.

Next, for each of the nine MH algorithms, we compute the MPSRF R̂p from five parallel chains

started from xtrue, −xtrue, 0 (a vector of zeros) and xtrue ± 1, respectively. The R̂p plots are given in

Figure 2. From these plots we see that for the PCMALA chain with G = Î −1, R̂p reaches below

1.1 (a cutoff widely used by MCMC practitioners) before 5,000 iterations, whereas for several

other algorithms, including the PMALA, R̂p is still larger than 1.1 even after 80,000 iterations.

Thus, as for the other diagnostics, R̂p also indicates superior performance of the PCMALA chain

with G = Î −1 than the other MH algorithms considered here and MMALA is the second best.

The performance of the nine MCMC algorithms for the Poisson-log link SGLMM, as observed

from the tables and figures given in S2, is similar to the binomial-logit link SGLMM discussed

here.

We considered other values of m as well. For smaller m (less than 50), we observe that the

same or similar step-size h can be used for both PCMALA withG = Î −1 and MMALA to achieve

similar acceptance rates and in these lower dimensions, PCMALA with G = Î −1 has slightly
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better or similar performance as the MMALA. On the other hand, in the higher dimensions as we

present here, MMALA needs much smaller h to attain a similar acceptance rate as the PCMALA

with G = Î −1. The small step-size, in turn, leads to more correlated samples and smaller ESS

values for the MMALA in the higher dimensions.

Table 1: ESS values for the MH chains for the binomial SGLMM with the logit link

Algorithm G matrix ESS(1, 175, 350) ESS/min mESS

RWM

I ( 44,35,48 ) ( 0.20,0.16,0.22 ) 1,064
Σ ( 40,21,14 ) ( 0.17,0.09,0.06 ) 1,074

diag Î−1 ( 28,30,28 ) ( 0.12,0.13,0.12 ) 1,070
Î−1 ( 37,42,68 ) ( 0.15,0.18,0.28 ) 1,055

PCMALA

I ( 8,10,6 ) ( 0.04,0.05,0.03 ) 1,051
Σ ( 9,7,6 ) ( 0.05,0.04,0.03 ) 1,039

diag Î−1 ( 204,245,198 ) ( 1.08,1.29,1.05 ) 1,274
Î−1 ( 9,249,8,282,9,066 ) ( 48.95,43.83,47.98 ) 12,422

PMALA ( 664,792,834 ) ( 2.12,2.52,2.66 ) 2,623

Table 2: MSJD values for the MH chains for the binomial SGLMM with the logit link

RWM1 RWM2 RWM3 RWM4 PCMALA1 PCMALA2 PCMALA3 PCMALA4 PMALA
0.024 0.027 0.017 0.018 2.19e-06 2.28e-09 0.15 5.16 0.496
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PCMALA(I)

PCMALA(Σ)
RWM(diag Ĝ)
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Figure 1: ACF plots for x(1) (left panel), x(175) (center panel), and x(350) (right panel) for the MH
chains for the binomial SGLMM with the logit link. In the legend, G refers to I −1 and Ĝ refers
to Î −1.
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Figure 2: Gelman and Rubin’s R̂p plot from the five parallel MH chains for the binomial SGLMM
with the logit link. The red horizontal line on the third plot from the left has unit height. In the
legend, G refers to I −1 and Ĝ refers to Î −1.

6.3 Comparison of the pre-conditioned unadjusted Langevin algorithms

In this section, we compare the four PCULA chains mentioned before in the context of simulated

data from the binomial and Poisson SGLMMs. Since the unique stationary density of each of these

PCULA is different, we do not use ESS for comparing these chains. As in Section 6.2, we ran each

of the PCULA chains for 150,000 iterations starting at xtrue. Table S3 provides the MSJD values

for the PCULA chains for the binomial and the Poisson SGLMMs. As for the PCMALA, we see

that when the pre-conditioning matrix G is Î −1, the PCULA chain results in higher mixing than

the other PCULA chains. Figures S3 and S4 provide the ACF values for the first 50 lags. For the

binomial model, we see that except when G = Σ, for the other PCULA chains, the ACF values

drop down quickly. Also, for the binomial SGLMM, for smaller lags, PCULA4 has slightly higher

ACF values than PCULA1 (G = I). Recall that, if G = I , the PCULA boils down to the ULA.

For the Poisson SGLMM, for PCULA4, the ACF values (practically) drop down to zero before five

lags, whereas, the ACF values for the other three PCULA are quite large even after 50 lags. Thus,

as for the adjusted Langevin algorithms, the pre-conditioning matrix Î −1 results in better PCULA

than the other choices of G considered here. Finally, Figure S5 provides the R̂p plots based on the

five Markov chains started at the same five points xtrue, −xtrue, 0 and xtrue ± 1 as in Section 6.2, for

each of the four PCULA chains. For both binomial and Poisson SGLMMs, the R̂p reaches below

1.1 before 5,000 iterations of the PCULA4 chain. The PCULA3 algorithm (G = diag(Î −1)) is

the second best performer in terms of R̂p.
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7 Discussions

In this paper, we establish conditions for geometric convergence of general MH algorithms with

normal proposal density involving a position-dependent covariance matrix. If the mean of the

proposal distribution is of the form x + he(x), where x denotes the current state, the users im-

plementing these MCMC algorithms should make sure that ‖e(x)‖ does not grow too fast with

‖x‖. Similarly, if ‖e(x)‖ shrinks, then the tails of f(x) need to die down rapidly. As special cases,

our results apply to the MMALA and other modern variants of the MALA. For the MMALA and

other MALA chains, first and higher-order derivatives of the log target density are required. Here,

in our GLMM examples, the derivatives are available in closed form. Girolami and Calderhead

(2011) discuss several alternatives of the expected Fisher information matrix when it is not an-

alytically available (see also Section 4.4 of Livingstone and Girolami, 2014). In the numerical

examples involving binomial and Poisson SGLMMs, we observe that the PCMALA with an ap-

propriate pre-conditioning matrix performs favorably than the advanced MMALA. Thus, in prac-

tice, it is worthwhile to construct suitable PCMALA chains that may have superior performance

than the modern computationally expensive versions of MALA like the MMALA chain. On the

other hand, MMALA may dominate the PCMALA with the pre-conditioning matrices used here

for heavy-tailed distributions or targets with a fast changing Hessian, for example, the perturbed

Gaussian density of Chewi et al. (2021) or the Example 4 of Gorham et al. (2019) (see also Taylor,

2015; Latuszynski et al., 2011).

Here, we have not considered a quantitative bound for the total variation norm (7), although

with some modification of our results such bounds can be obtained. For example, Rosenthal (1995)

use the method of coupling along with the drift and minorization technique to construct such quan-

titative bounds. On the other hand, these bounds are often too conservative to be used in practice

(Qin and Hobert, 2021). Recently, Durmus and Moulines (2015) and Durmus and Moulines (2019)

build some quantitative bounds for certain MALA and ULA chains. We believe that our results

are a useful pre-cursor to constructing sharper quantitative bounds for position dependent MALA

chains.

As mentioned before, Livingstone et al. (2019) establish geometric ergodicity of the HMC

when the ‘mass matrix’ in the ‘kinetic energy’ is fixed (see also Mangoubi and Smith, 2021). On

the other hand, Girolami and Calderhead (2011) argue that a position-dependent mass matrix in the

HMC may be preferred, and they develop the Riemann manifold HMC (RMHMC). The techniques

of this paper can be extended to establish convergence results of the RMHMC algorithms and we

plan to undertake this as a future study. Finally, Langevin methods have been applied to several

Bayesian models (see e.g. Møller et al., 1998; Girolami and Calderhead, 2011; Neal, 2012). It
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would be interesting to compare the performance of the PMALA and the PCMALA in the context

of these examples.
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Supplement to
“Convergence of position-dependent MALA with application to conditional

simulation in GLMMs”
Vivekananda Roy and Lijin Zhang

S1 Proofs of results

Proof of Theorem 1. From the form of (14), and by A2, we know that P is φ-irreducible and

aperiodic. Let C be a nonempty compact set. Since f is bounded away from 0 and∞ on compact

sets and A1 and A2 are in force, we have ε = infx,y∈C q(x, y) > 0 and u = supx∈C f(x) <∞. Let

B ⊆ C. Then for any x ∈ C

P (x,B) ≥
∫
A(x)∩B

q(x, y)α(x, y)dy +

∫
R(x)∩B

q(x, y)α(x, y)dy

=

∫
A(x)∩B

q(x, y)dy +

∫
R(x)∩B

f(y)

f(x)
q(y, x)dy

≥ ε

∫
A(x)∩B

f(y)

u
dy +

ε

u

∫
R(x)∩B

f(y)dy =
ε

u
F (B).

Thus, C is small. Let Vs(x) = exp{s‖G−1/2
2 x‖}, with s > 0. We will show that with this drift

function, Proposition 2 holds, implying geometric ergodicity of the MH chain. From (10) and (11),

we have

PVs(x) =

∫
Rd

q(x, y)α(x, y)Vs(y)dy + Vs(x)

∫
R(x)

q(x, y)(1− α(x, y))dy,

implying
PVs(x)

Vs(x)
≤
∫
Rd

q(x, y)
Vs(y)

Vs(x)
dy +

∫
R(x)

q(x, y)(1− α(x, y))dy. (S1)

Since Vs(x) = exp{s‖G−1/2
2 x‖}, by A1, the first term in the right side of (S1) is as large as

(2πh)−d/2|G1|−1/2

∫
Rd

exp
{
− 1

2h
(y−c(x))>G−1

2 (y−c(x))+s(‖G−1/2
2 y‖−‖G−1/2

2 x‖)
}
dy. (S2)
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Since ‖G−1/2
2 y‖ ≤ ‖G−1/2

2 (y − c(x))‖+ ‖G−1/2
2 c(x)‖, letting z = G

−1/2
2 (y − c(x)), from (S2), it

follows that the first term in the right side of (S1) is as large as

exp{−s(‖G−1/2
2 x‖ − ‖G−1/2

2 c(x)‖ − sh/2)}
(2πh)d/2|G1|1/2|G2|−1/2

∫
Rd

exp
{
− [‖z‖2− 2sh‖z‖+ s2h2]/2h

}
dz. (S3)

Now, we consider the polar transformation (z1, . . . , zd) → (r, θ1, θ2, . . . , θd−1) such that z1 =

r cos θ1, z2 = r sin θ1 cos θ2, . . . , zd−1 = r sin θ1 . . . sin θd−2 cos θd−1, zd = r sin θ1 . . . sin θd−2 sin θd−1.

Here, r > 0, 0 < θd−1 < 2π, 0 < θi < π, i = 1, . . . , d−2, and the Jacobian is rd−1
∏d−2

i=1 sind−1−i θi.

Thus,

∫
Rd

exp

{
− ‖z‖

2 − 2sh‖z‖+ s2h2

2h

}
dz ≤

∫ 2π

0

∫ π

0

· · ·
∫ π

0

∫ ∞
0

exp

{
−(r − hs)2

2h

}
rd−1drdθ1 . . . dθd−2dθd−1

= 2πd−1

∫ ∞
0

exp{−(r − hs)2/(2h)}rd−1dr. (S4)

Using (S3) and (S4), from (S1) we have

lim sup
‖x‖→∞

PVs(x)

Vs(x)
≤ C2(s) exp(−sη) + C1. (S5)

Thus under A4, (12) holds. Also, from (S1)–(S4) by A2 we have

sup
‖x‖≤k

PVs(x)

Vs(x)
≤ 1 + C2(s) sup

‖x‖≤k
exp{s(‖G−1/2

2 c(x)‖ − ‖G−1/2
2 x‖)} <∞.

Hence, the proof follows from Proposition 2.

Proof of Theorem 2. As in the proof of Theorem 1, we know that P is φ-irreducible, aperiodic,

and nonempty compact sets are small. Let V (x) = x>x. Then,∫
Rd

V (y)

V (x)
q(x, y)dy ≤ 1

x>x
(2πh)−d/2|G1|−1/2

∫
Rd

[
y>y

]
exp

{
− 1

2h
(y − c(x))>G−1

2 (y − c(x))
}
dy

=
c(x)>c(x) + tr(hG2)

x>x
(|G2|/|G1|)1/2. (S6)

Thus, from (S1) and (S6) we have

lim sup
‖x‖→∞

PV (x)

V (x)
≤
( |G2|
|G1|

)1/2

lim sup
‖x‖→∞

‖c(x)‖2

‖x‖2
+ C1. (S7)
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Also, note that by A2 we have

sup
‖x‖≤k

PV (x) ≤ k2 + (|G2|/|G1|)1/2 sup
‖x‖≤k

[
c(x)>c(x) + tr(hG2)

]
<∞.

Hence, the proof follows by (S7) and applying Proposition 2 on the function V (x) + 1 as A5 is in

force.

Proof of Theorem 3. Since c(x) = x+ he(x), from (14) we have

Q(x,Bk(x)) ≥ (2πh)−d/2|G2|−1/2

∫
‖z‖<k

exp
{
− 1

2h
(z − he(x))>G−1

1 (z − he(x))
}
dz. (S8)

Then, by ‖e(x)‖ < M it follows that for given ε > 0, there exists k such that Q(x,Bk(x)) > 1−ε.
Thus, the result follows from Proposition 3.

Proof of Theorem 4. Choose T > 2/h, such that when S1 is large enough,

inf
‖x‖>S1

‖e(x)‖
‖x‖

> T.

Define B2
k(x) = {y : ‖y − c(x)‖ ≤ k}. By A1, for given ε > 0, there exists kε, such that∫

Rd/B2
kε

(x)
q(x, y)dy < ε/2. To simplify notations, for the rest of this proof, we denote B2

kε
(x) by

B2
ε (x). When y ∈ B2

ε (x), q(x, y) is bounded away from 0, as

q(x, y) ≥ (2πhζ+
2 )−d/2 exp{−k2

ε/[2hζ1+]}. (S9)

Note that, the proposed y is generated as y = x + he(x) +
√
hG(x)ε, which is either accepted or

rejected with the chain staying at the current position x. Here ε ∼ N(0, Id). Since,

‖y‖ = ‖x+ he(x) +
√
hG(x)ε‖ ≥ h‖e(x)‖ − ‖x‖ −

√
h‖
√
G(x)ε‖,

we have
‖y‖
‖x‖
≥ h
‖e(x)‖
‖x‖

− 1−
√
h
‖
√
G(x)ε‖
‖x‖

.

Hence, by (17), ∃ S2 such that when ‖x‖ > S2 and y ∈ B2
ε (x), we have ‖y‖ > ‖x‖. Let S = max

(S1, S2). Thus, when y ∈ Bε(x), and ‖x‖ > S,

‖he(y)‖ > hT‖y‖ > 2‖y‖ > ‖x‖+ ‖y‖ > ‖x− y‖,

3



and hence,

‖x− y − he(y)‖ ≥ ‖he(y)‖ − ‖x− y‖ ≥ hT‖y‖ − 2‖y‖.

So, for y ∈ Bε(x), and ‖x‖ > S, we have

q(y, x) ≤ (2πhζ1+)−d/2 exp
{
− 1

2hζ+
2

‖x− y − he(y)‖2
}

≤ (2πhζ1+)−d/2 exp{−(hT − 2)2‖y‖2/[2hζ+
2 ]},

and, thus when ‖x‖ → ∞,

sup
y∈B2

ε (x)

q(y, x) ≤ (2πhζ1+)−d/2 exp{−(hT − 2)2‖x‖2/[2hζ+
2 ]} → 0. (S10)

From (S9) and (S10) we have

sup
y∈B2

ε (x)

q(y, x)

q(x, y)
≤

supy∈B2
ε (x) q(y, x)

infy∈B2
ε (x) q(x, y)

→ 0 as ‖x‖ → ∞. (S11)

Starting with ‖x0‖ > S and f(x0) > 0, define xn = arg sup{f(y); y ∈ B2
ε (xn−1)}. Note that

‖xn‖ → ∞ when n → ∞. Assume that the MH chain is GE, then, from Section 3 there exists

ε > 0, such that ess sup r(x) < 1− ε. Now,

ess sup r(xn) = ess sup
{

1−
∫
Rd

α(xn, y)q(xn, y)dy
}

≥ 1− ess sup
{∫

Rd

α(xn, y)q(xn, y)dy
}
.

Thus,

1− ess sup r(xn) ≤ sup

∫
Rd

α(xn, y)q(xn, y)dy,

and with the fact that
∫
Rd/B2

ε (xn)
q(xn, y)dy ≤ ε/2, we have

1− ess sup r(xn) ≤ sup

∫
Rd/B2

ε (xn)

{
1 ∧ f(y)

f(xn)

q(y, xn)

q(xn, y)

}
q(xn, y)dy

+ sup

∫
B2

ε (xn)

{
1 ∧ f(y)

f(xn)

q(y, xn)

q(xn, y)

}
q(xn, y)dy

≤ sup

∫
Rd/B2

ε (xn)

q(xn, y)µ(dy) + sup

∫
B2

ε (xn)

{
1 ∧ f(y)

f(xn)

q(y, xn)

q(xn, y)

}
q(xn, y)dy
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≤ ε

2
+ sup

∫
B2

ε (xn)

1 ∧ f(y)

f(xn)

q(y, xn)

q(xn, y)
q(xn, y)dy.

Thus,

ε <1− ess sup r(xn) ≤ ε

2
+ sup

∫
B2

ε (xn)

{
1 ∧ f(y)

f(xn)

q(y, xn)

q(xn, y)

}
q(xn, y)dy

⇒ sup

∫
B2

ε (xn)

{
1 ∧ f(y)

f(xn)

q(y, xn)

q(xn, y)

}
q(xn, y)µ(dy) >

ε

2
. (S12)

From (S11), when n > N and N is large enough, we have supy∈B2
ε (xn)[q(y, xn)/q(xn, y)] < ε/4.

Thus from (S12) we have

ε

2
≤ sup

∫
B2

ε (xn)

{
1 ∧ ε

4

f(xn+1)

f(xn)

}
q(xn, y)dy ≤ ε

4

f(xn+1)

f(xn)
,

implying f(xn+1) > 2f(xn), which contradicts that f is bounded. Therefore, the MH chain is not

geometric ergodic.

Proof of Proposition 4. Since c(x) is continuous, by Fatou’s lemma for a fixed open set A ∈ Rd,

lim inf
xn→x

Q(xn, A) = lim inf
xn→x

|G|−1/2

(2πh)d/2

∫
A

exp
{
− 1

2h
(y − c(xn))>G−1(y − c(xn))

}
dy ≥ Q(x,A).

Thus, {Xn}n≥0 is a Feller chain. From the proof of Theorem 1, we have

lim sup
‖x‖→∞

QVs(x)

Vs(x)
< 1,

and as Vs is unbounded off compact sets, by Proposition 1, {Xn}n≥0 is GE when A4 holds. Simi-

larly, the proof for A5 follows by Proposition 1, and using the drift function V from Theorem 2.

Proof of Theorem 5. For the PCMALA chain A1 holds automatically. Recall that the proposal

density for PCMALA is N(x+hG∇ log f(x)/2, hG). Thus, from (23) it follows that the proposal

density for the PCMALA is (14) with G(x) = G and

c(x) = x+ (h/2)G(−Σ−1x+ b(x)), (S13)

where b(x) = z − ` · (ex/[1 + ex]) + Σ−1Dβ is bounded. Thus, A2 holds for the PCMALA chain.

We now show that A3 holds for the PCMALA chain. For a given 0 < ε < 1, set B3
ε (x) = {y :

‖G−1/2(y − c(x))‖ < kε}, and kε > 0, such that
∫
Rm\B3

ε (x)
q(x, y)dy < ε.
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From (22) the acceptance probability α(x, y) in (2) becomes

1 ∧ exp{− log q(x, y) + log q(y, x) + log p(y)− log p(x) +
m∑
i=1

log a(zi, µi(y))−
m∑
i=1

log a(zi, µi(x))}.

We will show that the proposal y ∈ B3
ε (x) is always accepted when ‖x‖ → ∞. From (14) and

(S13) for the PCMALA we have

− log q(x, y)−m log(2hπ)/2− log |G|/2

=
1

2h

(
y − x− h

2
G(−Σ−1x+ b(x))

)>
G−1

(
y − x− h

2
G(−Σ−1x+ b(x))

)
=

1

2h
y>G−1y +

1

2h
x>G−1x+

h

8
x>Σ−1GΣ−1x+

h

8
b(x)>Gb(x)

− 1

h
y>G−1x+

1

2
y>Σ−1x− 1

2
y>b(x)− 1

2
x>Σ−1x+

1

2
x>b(x)− h

4
x>Σ−1Gb(x).

Let

L1 =
h

8
(x>Σ−1GΣ−1x− y>Σ−1GΣ−1y),

L2 =
h

8
(b(x)>Gb(x)− b(y)>Gb(y)),

L3 =
1

2
x>(I − hΣ−1G/2)b(x)− 1

2
y>(I − hΣ−1G/2)b(y) +

1

2
x>b(y)− 1

2
y>b(x), and

L4 = log p(y)− log p(x) +
m∑
i=1

log a(zi, µi(y))−
m∑
i=1

log a(zi, µi(x))− 1

2
x>Σ−1x+

1

2
y>Σ−1y.

(S14)

Note that α(x, y) = 1∧ exp{L1 +L2 +L3 +L4}. If L1 +L2 +L3 +L4 ≥ 0, then the proposed y

would always be accepted. Again, from (S13), for y ∈ B3
ε (x), we have

y>Σ−1GΣ−1y =
((
I − h

2
GΣ−1

)
x+O(1)

)>
Σ−1GΣ−1

((
I − h

2
GΣ−1

)
x+O(1)

)
= x>Σ−1GΣ−1x+

h2

4
x>Σ−1GΣ−1GΣ−1GΣ−1x+O(1)>Σ−1GΣ−1O(1)

− hx>Σ−1GΣ−1GΣ−1x+ 2x>Σ−1GΣ−1O(1)− hx>Σ−1GΣ−1GΣ−1O(1).

(S15)

Let ψ+(ζ+) and ψ+(ζ+) be the smallest and the largest eigenvalue of Σ−1(G), respectively. Note

that, x>Σ−1GΣ−1x/‖x‖2 ∈ [ψ2
+ζ+, ψ

+2ζ+]. Similarly x>Σ−1GΣ−1GΣ−1x/‖x‖2 ∈ [ψ3
+ζ

2
+, ψ

+3ζ+2],

6



and x>Σ−1GΣ−1GΣ−1GΣ−1x/‖x‖2 ∈ [ψ4
+ζ

3
+, ψ

+4ζ+3]. Thus, from (S14) and (S15) we have

L1 =
h

8

(
− h2

4
x>Σ−1GΣ−1GΣ−1x−O(1)>Σ−1O(1) + hx>Σ−1GΣ−1x− 2x>Σ−1O(1)

+ hx>Σ−1GΣ−1O(1)
)

≥− h3

32
ψ+3ζ+2‖x‖2 +

h2

8
ψ2

+ζ+‖x‖2 + o(‖x‖2).

So, if h ∈ (0, 4ψ2
+ζ+/[ψ

+3ζ+2]),when ‖x‖ → ∞, L1 →∞. Also, note that for such h, L1 ∼ ‖x‖2,

L2 is bounded and L3 = o(L1). Here, i(x) ∼ j(x) means i(x)/j(x)→ c for some constant c > 0.

Since limt→−∞ log(1 + exp [t])/t2 = 0 and by L’Hospital’s rule, limt→∞ log(1 + exp [t])/t2 = 0,

we have

L4 = log p(y)− log p(x) +
m∑
i=1

log a(zi, µi(y))−
m∑
i=1

log a(zi, µi(x))− 1

2
x>Σ−1x+

1

2
y>Σ−1y

=− 1

2
(y −Dβ)>Σ−1(y −Dβ) +

m∑
i=1

{ziy(i) − `i log(1 + exp(y(i)))}+

1

2
(x−Dβ)>Σ−1(x−Dβ)−

m∑
i=1

{zix(i) − `i log(1 + exp(x(i)))} − 1

2
x>Σ−1x+

1

2
y>Σ−1y

=o(‖x‖2).

Therefore, for large ‖x‖, B3
ε (x) ⊆ A(x). Recall that, A(x) = {y : f(x)q(x, y) ≤ f(y)q(y, x)} =

R(x)c. Thus,

lim inf
‖x‖→∞

∫
A(x)

q(x, y)dy ≥ lim inf
‖x‖→∞

∫
B3

ε (x)

q(x, y)dy > 1− ε > 0.

Hence,

C1 = lim sup
‖x‖→∞

∫
R(x)

q(x, y)(1− α(x, y))dy ≤ lim sup
‖x‖→∞

∫
R(x)

q(x, y)dy

≤ 1− lim inf
‖x‖→∞

∫
A(x)

q(x, y)dy < 1.

Thus, A3 holds for the PCMALA chain. Next, we verify A4. From (S13), note that

‖x‖ − ‖c(x)‖ = ‖x‖ − ‖(I − (h/2)GΣ−1)x+ (h/2)Gb(x)‖

≥ ‖x‖ − ‖(I − (h/2)GΣ−1)x‖ − ‖(h/2)Gb(x)‖. (S16)

7



Now, if 1−hψ+ζ++h2ψ+2ζ+2/4 < 1⇔ h < 4ψ+ζ+/ψ
+2ζ+2, then ‖(I−(h/2)GΣ−1)x‖2/x>x <

1. Since b(x) is bounded, and ψ+/ψ
+ < 1, if h ∈ (0, 4ψ2

+ζ+/(ψ
+3ζ+2)), from (S16), we have

lim inf‖x‖→∞
(
‖x‖−‖c(x)‖

)
=∞. Thus, by Remark 2, it follows that A4 holds for the PCMALA

chain. Thus for h ∈ (0, 4ψ2
+ζ+/(ψ

+3ζ+2)) geometric ergodicity of the PCMALA chain follows

from Theorem 1.

Next, we verify A1–A4 for the MMALA chain. Since

G1 ≡ (0.25diag(`) + Σ−1)−1 ≤ I −1(x) ≤ Σ ≡ G2, (S17)

A1 holds for the MMALA. The mean of the proposal distribution for the MMALA is c(x) =

x+ (h/2)I −1(x)∇ log f(x) + (h/2)Γ(x) where Γ(x) is given in (25). Thus,

c(x) = x+ (h/2)I −1(x)(−Σ−1x+ κ(x)), (S18)

where κ(x) = b(x) + I (x)Γ(x). From (24) it follows that (∂Ijj(x)/∂xj) is bounded. By (S17)

we have I −1
jj (x) is bounded for all j, and then, an application of the Cauchy-Schwartz inequality

shows that I −1
ij (x) is bounded. Thus, from (25) it follows that κ(x) is bounded, and A2 holds for

the MMALA chain.

Note that,

− log q(x, y)−m log(2hπ)/2 + log |I (x)|/2

=
1

2h

(
y − x− h

2

{
I −1(x)(−Σ−1x+ κ(x))

})>
I (x)

(
y − x− h

2

{
I −1(x)(−Σ−1x+ κ(x))

})
=

1

2h
y>I (x)y +

1

2h
x>I (x)x+

h

8
x>Σ−1I −1(x)Σ−1x+

h

8
κ(x)>I −1(x)κ(x)− 1

h
y>I (x)x

+
1

2
y>Σ−1x− 1

2
y>κ(x)− 1

2
x>Σ−1x+

1

2
x>κ(x)− h

4
x>Σ−1I −1(x)κ(x).

Let

L′1 = h(x>Σ−1I −1(x)Σ−1x− y>Σ−1I −1(y)Σ−1y)/8,

L′2 = h(κ(x)>I −1(x)κ(x)− κ(y)>I −1(y)κ(y))/8 + log(|I (y)|/|I (x)|)/2,

L′3 =
1

2
x>(I − (h/2)Σ−1I −1(x))κ(x)− 1

2
y>(I − (h/2)Σ−1I −1(y))κ(y) +

1

2
x>κ(y)− 1

2
y>κ(x),

L′5 = ([{x>I (x)x− x>I (y)x}+ {y>I (x)y − y>I (y)y}]/2− [x>I (x)y − x>I (y)y])/h.

Note that α(x, y) = 1 ∧ exp{L′1 + L′2 + L′3 + L4 + L′5}. Define, B4
k(x) ≡ {y : ‖y − c(x)‖ ≤

8



k &
∏m

i=1 x
(i)(x(i) − y(i)) > 0}. We can find ε > 0 and kε such that

∫
Rm/B4

kε
(x)
q(x, y)dy < ε.

Thus, from (S17) and (S18), for y ∈ B4
ε (x), we have

y>Σ−1I −1(y)Σ−1y (S19)

=
((
I − (h/2)I −1(x)Σ−1

)
x+O(1)

)>
Σ−1I −1(y)Σ−1

((
I − (h/2)I −1(x)Σ−1

)
x+O(1)

)
=x>Σ−1I −1(y)Σ−1x+ (h2/4)x>Σ−1I −1(x)Σ−1I −1(y)Σ−1I −1(x)Σ−1x

− hx>Σ−1I −1(y)Σ−1I −1(x)Σ−1x+ o(‖x‖2). (S20)

Let ι(x(i)) = ex
(i)
/(1 + ex

(i)
), ω(x(i)) = {ι(x(i))− ι2(x(i))}, and E(x) = diag(`1ω(x(1)), . . . ,

`mω(x(m))). Note that ω′(t) = ι(t) − 3ι2(t) + 2ι3(t) = ι(t)(1 − ι(t))(1 − 2ι(t)) R 0 ⇐⇒
t Q 0. That is, ω(t) is decreasing (increasing) on the positive (negative) half line. So, for y ∈
B4
ε (x), E(y) ≥ E(x), implying I −1(x) = (E(x) + Σ−1)−1 ≥ (E(y) + Σ−1)−1 = I −1(y). So,

x>Σ−1I −1(x)Σ−1x− x>Σ−1I −1(y)Σ−1x ≥ 0. Thus, from (S19) we have

L′1 ≥
h

8
(−h2x>Σ−1I −1(x)Σ−1I −1(y)Σ−1I −1(x)Σ−1x/4 + hx>Σ−1I −1(y)Σ−1I −1(x)Σ−1x) + o(‖x‖2)

≥h
8

(hψ3
+ζ

2
1+‖x‖2 − h2ψ+4ζ+3

2 ‖x‖2/4) + o(‖x‖2).

Recall that, ζi+ and ζ+
i are the smallest and the largest eigenvalue of Gi, respectively for i = 1, 2.

So, if h ∈ (0, 4ψ3
+ζ

2
1+/[ψ

+4ζ+3
2 ]), when ‖x‖ → ∞, L′1 → ∞. Also, L′2 is bounded, and L′3 =

o(L′1). Next, we consider L′5. Note that Iij(x)−Iij(y) = 0 for i 6= j. Thus,

x>I (x)x− x>I (y)x =
m∑
i=1

(Iii(x)−Iii(y))x(i)2 =
m∑
i=1

`i[ω(x(i))− ω(y(i))]x(i)2,

and

L′5 =
m∑
i=1

`i[ω(x(i))− ω(y(i))](x(i) − y(i))2/2.

By (S17) and (S18), as y ∈ B4
ε (x), for small h we have

∑m
i=1(x(i) − y(i))2 = O(1). Since

ι(t) ∈ (0, 1), for y ∈ B4
ε (x) we have L′5 = O(1). Then, using similar arguments as in the proof of

geometric ergodicity for the PCMALA chain, we can show that A3 holds for the MMALA chain.

Finally, for the MMALA

‖x‖ − ‖c(x)‖ ≥ ‖x‖ − ‖(I − (h/2)I −1(x)Σ−1)x‖ − ‖(h/2)I −1(x)κ(x)‖.

If h < 4ψ+ζ1+/ψ
+2ζ+2

2 , then ‖(I − (h/2)I −1(x)Σ−1)x‖2/x>x < 1. Since ζ1+/ζ
+
2 < 1, if

9



h ∈ (0, 4ψ3
+ζ

2
1+/[ψ

+4ζ+3
2 ]), then A4 holds for the MMALA chain. Thus geometric ergodicity of

the MMALA follows from Theorem 1.

Next, we consider the PCULA chain. From (S13) we know that the PCULA chain is given by

Xn = (I − (h/2)GΣ−1)Xn−1 + b(Xn−1) +
√
hG1/2ε,

where b(x) = z − ` · (ex/[1 + ex]) + Σ−1Dβ. So, if h is chosen such that the singular values of

(I − (h/2)GΣ−1) are less than one, then geometric ergodicity of the PCULA follows from (20)

and Remark 10.

Proof of Proposition 5. Since lim‖x‖→∞
∏m

i=1 exp{zix(i)} exp{− exp{x(i)}} = 0, if zi > 0 ∀i,
and otherwise is bounded, it follows that the target density f(x) is bounded. From (27) we have

‖∇ log f(x)‖ = ‖z − exp{x} − Σ−1(x−Dβ)‖ ≥ ‖ exp{x}‖ − ‖z‖ − ‖Σ−1(x−Dβ)‖. (S21)

Next, for x(i) > 0, i = 1, . . . ,m, from (S21) we have

lim inf
‖x‖→∞

‖G∇ log f(x)‖/‖x‖ ≥ lim inf
‖x‖→∞

ζ+{1− (‖z‖+ ‖Σ−1(x−Dβ)‖)/‖ exp{x}‖}‖ exp{x}‖/‖x‖

=∞.

Hence, the result follows from Theorem 4.
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Figure S1: ACF plots for x(1) (left panel), x(175) (center panel), and x(350) (right panel) for the MH
chains for the Poisson SGLMM with the log link. In the legend, G refers to I −1 and Ĝ refers to
Î −1.

S2 Additional numerical results for the SGLMMs

In this section, we include some tables and figures from the analysis of simulated data from the

SGLMMs.

Table S1: ESS values for the MH chains for the Poisson SGLMM with the log link

Algorithm G matrix ESS(1, 175, 350) ESS/min mESS

RWM

I ( 8,19,36 ) ( 0.03,0.07,0.13 ) 1,052
Σ ( 12,13,20 ) ( 0.05,0.05,0.08 ) 1,052

diag Î−1 ( 16,25,20 ) ( 0.06,0.10,0.08 ) 1,045
Î−1 ( 14,19,9 ) ( 0.06,0.08,0.04 ) 1,053

PCMALA

I ( 6,6,8 ) ( 0.02,0.03,0.03 ) 1,026
Σ ( 7,6,8 ) ( 0.03,0.03,0.03 ) 1,034

diag Î−1 ( 37,37,25 ) ( 0.17,0.17,0.12 ) 1,055
Î−1 ( 7,764,8,667,8,138 ) ( 36.95,41.25,38.73 ) 12,535

PMALA ( 132,226,160 ) ( 0.46,0.78,0.55 ) 1,168

Table S2: MSJD values for the MH chains for the Poisson SGLMM with the log link

RWM1 RWM2 RWM3 RWM4 PCMALA1 PCMALA2 PCMALA3 PCMALA4 PMALA
0.018 0.023 0.032 0.013 4.52e-05 5.18e-09 0.049 11.70 0.222
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Table S3: MSJD values for the PCULA chains for the binomial and Poisson SGLMMs

binomial Poisson
G matrix I Σ diag (Î −1) Î −1 I Σ diag (Î −1) Î −1

4.18 0.07 7.42 7.41 0.05 0.05 0.05 126.74
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Figure S2: Gelman and Rubin’s R̂p plot from the five parallel MH chains for the Poisson SGLMM
with the log link. In the legend, G refers to I −1 and Ĝ refers to Î −1.
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PCULA chains for the binomial SGLMM with the logit link. In the legend, Ĝ refers to Î −1.
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