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Abstract

Bayesian inference for Continuous-Time Markov Chains (CTMCs) on
countably infinite spaces is notoriously difficult because evaluating the
likelihood exactly is intractable. One way to address this challenge is
to first build a non-negative and unbiased estimate of the likelihood—
involving the matrix exponential of finite truncations of the true rate
matrix—and then to use the estimates in a pseudo-marginal inference
method. In this work, we show that we can dramatically increase the
efficiency of this approach by avoiding the computation of exact ma-
trix exponentials. In particular, we develop a general methodology for
constructing an unbiased, non-negative estimate of the likelihood using
doubly-monotone matrix exponential approximations. We further develop
a novel approximation in this family—the skeletoid—as well as theory re-
garding its approximation error and how that relates to the variance of the
estimates used in pseudo-marginal inference. Experimental results show
that our approach yields more efficient posterior inference for a wide va-
riety of CTMCs.

1 Introduction

Continuous-Time Markov Chains (CTMCs) (Anderson, 1991) are a class of
stochastic processes with piecewise constant paths, taking values in a count-
able set 2", and switching between states at random real-valued times. Notable
examples are the Stochastic Susceptible-Infectious-Recovered (SSIR) model in
epidemiology (Keeling and Ross, 2008) and the Stochastic Lotka-Volterra (SLV)
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predator-prey model in ecology (Spencer and Tanner, 2008), but they have also
been applied in a wide range of other fields such as population genetics (Beeren-
winkel and Sullivant, 2009), engineering (Yin et al., 2003; Lipsky, 2008), bio-
chemistry (Schaeffer et al., 2015) and phylogenetics (Maddison et al., 2007). As
an example, consider the SSIR model in its simplest form. At any time ¢ > 0,
the system is described by a triplet of integers (S(¢),I(¢), R(t)), denoting the
number S(¢) of healthy people susceptible of being infected, the number I(¢)
of people infected, and the number R(t) of recovered people who have become
immune. The system switches states at random times whenever a susceptible
individual becomes infected, when an infected person recovers, or when a new
susceptible individual enters the population.

Our interest lies in using observations to perform Bayesian statistical infer-
ence for the unknown parameters of the CTMC model. In particular, we aim to
infer the rate matriz @ that governs the dynamics of the process. For any pair
of states ¢ # j, QQ;; is related to the probability of the system jumping from
7 to j in an “infinitesimally small” interval of time. Evaluating the likelihood
for any particular @ involves computing the matriz exponential of @), denoted
€'Q; in particular, the matrix exponential lets us move from “infinitesimal time
intervals” to transition functions for time intervals of any length ¢t > 0 without
approximation error. However, we can only compute e!? exactly when the sys-
tem takes at most a finite number of different states. And even in this case, the
computation is feasible only when the size of 2 is relatively small due to the
O(|Z|?) complexity of the matrix exponential (Moler and Van Loan, 2003). In
many applications the set 2~ where the CTMC takes values is infinite, which
in turn implies that @ is infinite-dimensional too.

One way to address this issue is to use the pseudo-marginal method for exact
Bayesian inference (Andrieu and Roberts, 2009), where one is allowed to replace
exact evaluation of the likelihood by a noisy estimate of the likelihood that is
non-negative (i.e., guaranteed to be at least 0) and unbiased (i.e., with mean
equal to the true likelihood). Georgoulas et al. (2017) applied this strategy
to a subclass of CTMCs called Reaction Networks, of which the SSIR model
is a particular example. The idea is to define a growing, infinite sequence of
finite sets 27, 25, Z3, etc., that eventually covers the entirety of 2 . Then, a
corresponding sequence of finite rate matrices @, is obtained, so that each %~
can be computed exactly. Finally, an unbiased estimate is obtained through a
randomization-based debiasing method (McLeish, 2011; Rhee and Glynn, 2015;
Lyne et al., 2015) that preserves non-negativity.

The method described above can be recast as exploiting monotone approx-
imations to the transition probabilities of an infinite CTMC. Indeed, Geor-
goulas et al. (2017) constructs a monotone approximation by computing ma-
trix exponentials for rate matrices arising from increasing truncations of the
state-space 2. However, we argue that exactly computing (expensive) ma-
trix exponentials is wasteful. We show that this can be avoided by building
a monotone approximation that simultaneously increases the truncation of the
underlying state-space as well as the accuracy of an approximation to the fi-
nite matrix exponential. By preserving monotonicity, this new sequence fits



into the pseudo-marginal framework described earlier; and because it involves
only approximate matrix exponentials, it improves computational efficiency. We
demonstrate that these monotone approximations can substantially improve the
efficiency of pseudo-marginal methods for CTMCs.

Crucial to this new approach is the use of doubly-monotone approxima-
tions to the finite rate matrix exponential—i.e., those that are monotone non-
decreasing in both state-space truncation size and approximation iteration—
because they enable the construction of the monotone approximations to the
transition probability required by the pseudo-marginal method. Past approxi-
mations applicable to this setting, such as the well-known uniformization method
(Jensen, 1953), are not doubly-monotone except in some limited circumstances.
Therefore we propose the Skeletoid, a novel matrix exponential approximation.
We demonstrate that the skeletoid is doubly-monotone, and provide bounds
on its approximation error as a function of the number of iterations. Em-
pirical results show that our pseudo-marginal method based on approximate
matrix exponentials—using Skeletoid or uniformization—gives substantial effi-
ciency improvements.

The remainder of the paper is organized as follows. Section 2 introduces
the transition function for a CTMC, a description of Reaction Networks, and
the general pseudo-marginal Markov chain Monte Carlo (MCMC) method. Sec-
tions 3.1 and 3.2 introduce the strategy to construct pseudo-marginal samplers
using monotone transition function approximations together with a debiasing
scheme. Section 3.3 shows how to improve the efficiency of this approach using
doubly-monotone matrix exponential approximations. Section 3.4 introduces
the Skeletoid approximation, provides an analysis of its error, and compares it
with uniformization. Finally, Section 5 provides a comparison of our proposed
method and alternative approaches. We conclude with a discussion of avenues
of improvement and generalizations to other classes of stochastic processes.

2 Background

We begin this section by defining transition functions in the context of CTMCs,
and providing conditions under which the inference problem is well-posed. Then,
we define the subclass of CTMCs known as reaction networks. Finally, we give
a general description of the pseudo-marginal approach to Bayesian inference.

2.1 CTMCs, rate matrices, and transition functions

Let {X(¢)}+>0 denote a continuous time Markov chain (CTMC) on a countable
space £ (Cinlar, 2013, Ch. 8). The set of equations

My (t) :=P(X(t) = y|X(0) = z), zye2,t>0, (1)

define the transition function of the process { X (t)}1>0. In applications, the usual
input available to produce M () is the rate matriz Q = (¢y,,) such that g, , > 0



Algorithm 1: Gillespie’s algorithm for sampling a path of a CTMC

input : zg,Q,tenqa > 0.

T+ x93t 0 > initialize starting point
X + {(z,t)} > initialize path storage
loop
T~ Exp(—¢z.2); tjump <t + 7 > sample next jump time
if tjump > tena then break > reached the end
x < Categorical ({ (_q“’ } ) > sample next state
9z,x) y#x
T < tjump > advance time
X+ XU{(z,t)} > append new jump to path
end

output: Path X.

for z # y. When | 2| < 0o, and Q is conservative, i.e. gz o = — ZWEI z.y, then
M(t) is given by the matriz exponential of @,

o0
_ .\ WQ)"

M) =e .7;:0 S >0,
One can use this relationship to compute the exact likelihood of observations.
For countably infinite state-spaces | 2| = oo, there is no such closed-form ex-
pression relating M (¢) and @ (they are generally related via Kolmogorov’s equa-
tions (Anderson, 1991, Thm. 2.2.2)). Therefore, specialized inference methods
are required. Note that the rate matrix @ is still the inferential target in this
setting, as it still determines the dynamics of the CTMC: given a conserva-
tive and non-explosive rate matrix @ (Cinlar, 2013, Def. 8.3.22), Algorithm 1
produces realizations of the CTMC that are distributed according to Eq. (1)
(Gillespie, 1977).

2.2 Reaction networks

Reaction networks are a class of CTMCs that admit a structured parametriza-
tion of their rate matrices. The state space 2 of a reaction network is a subset
of the integer lattice Z"s, where ng is the number of species in the network. In
most cases, the state spaces of reaction networks can be described by (possibly
infinite) rectangular sets

Z ={z el B <z <B!Vie{l,. .. ng}

where B!, B* € Z U {—00, 00} define the lower and upper bounds on the counts
of each species.

At any x € 2, the process can only evolve by moving in a finite set of
directions in the lattice, specified by an integer valued update matriz U of size
n, X ng, where n,. is the number of reactions. Each row in U corresponds to



an update vector, such that the next state is any one of {x + U, .}.=,. The
rate of jumps towards these states is characterized by the propensity functions
{f§ 1y, where f§ : & — [0,00) and 6 € O is a parameter vector governing the
system, on which we aim to do inference. The z-th row of @ is then given by

fo (@) if y =+ U, for some r,
0 otherwise.

Note that this definition imposes a high level of sparsity on @), as its rows contain
at most n, + 1 nonzero elements.

As mentioned earlier, the running SSIR model example is a reaction network
with 2" = Z3%; i.e., with B' = (0,0,0) and B* = (00, 00,00). It is represented
by the following diagram

S+1 22 or (infection)
1 LI & (recovery)
0 g (arrival of susceptible)

where 0 := (61,05, 05) are the model’s parameters, and the formulae above the
arrows correspond to the propensity functions. The update matrix induced by
the diagram is

1 10
v=| 0 -1 1]. 2)
1 00

Most of the theory in this paper is applicable to general CTMCs, the only
exception being Section 3.2. However, we will focus our applications and ex-
periments on reaction networks because of their broad applicability in scientific
practice and the convenient structure they exhibit.

2.3 Pseudo-marginal approach to inference

Consider a general statistical problem where one has collected a dataset D with
the intention of performing inference for an unknown parameter # € ©. The
likelihood function is given by L(6), and we put a prior distribution on 6 with
density m(0). The posterior density over 6 is given by

r(O)LO) _  w(O)L()
p(D)  Jom(0)L(@)d0"

7(0|D) :=

When 7(0) and L(6) can be evaluated point-wise, standard tools such as Markov
Chain Monte Carlo (MCMC) can be used to carry out Bayesian inference with-
out the need to calculate p(D). However, in many situations the likelihood L(6)
cannot be evaluated, either because it does not admit a closed form expression,
or because using such an expression requires infinite computational resources.
The pseudo-marginal approach (Andrieu and Roberts, 2009) is a useful tool
to approach cases where L(6) is intractable. Suppose that we have access to a



non-negative estimator of the likelihood INJ(G7 U) > 0, where U is an auxiliary U-

valued independent random variable with density m(u), such that E[L(6,U)] =
L(0). Define the augmented posterior distribution

L(6,u)
L(0)

7(0,u|D) := 7w (0|D)m(u) 7(0)m(u)L(6,u) =: v(6,u). (3)

We can check that this augmented density has the correct marginal for 8, since

_AOD) [ g TOD)
/MW(G,U\D)duf 50 /ML(Q, ymlwdu = =7 GEBIL0,0)] = 7(0]D).

Moreover, v(0,u) can be evaluated point-wise because it does not explicitly
depend on L(#). Therefore, we can perform inference for 6 by employing any
suitable MCMC algorithm targeting ~.

3 Inference in countably infinite state spaces

Nd

Suppose that we observe a CTMC at a finite set of times {t;};¢, with states
{z;}4,. Denote this data by D = {z;,t;}¢,. We aim to perform inference for
the parameters 6 € © that define the rate matrix @ = Q(0). The likelihood has
the form

ng
L) = [[ Mt — ti 13000, 10
i=1
where M (§;6),,, is the transition probability from state x to y after a time inter-
val of length § for the CTMC governed by the rate matrix Q(0) (we write M (t)
instead of M (t;6) to simplify notation). As we have previously discussed, for
countably infinite spaces there is no general exact method to compute M (u; 6)
in finite time. In this section we describe a novel approach that uses the pseudo-
marginal method to address this problem.

3.1 Non-negative unbiased estimators of the likelihood

To construct an unbiased estimator of the likelihood L(6), we design a debi-
asing scheme (Kahn, 1954; McLeish, 2011; Rhee and Glynn, 2015; Lyne et al.,
2015; Jacob et al., 2015) that exploits the monotonicity of increasing sequences
converging to a quantity of interest (all proofs in Appendix B).

Proposition 1. Let {a,}necz, be a monotone increasing sequence with a, T
a<oo. FizweZy and let N € Zy be an independent random variable with
probability mass function p(n) satisfying

Vn € Zy : p(n) =0, Qtnt+1 = Qutn- (4)
Define the random variable

Au4+N+1 — A+ N (5)

Z = ay, +
p(IN)



Then Z > a,, almost surely, E[Z] = «, and

(aw+n+1 - aw+n)2 2
Var(Z) = Z — (. —ay)”. (6)
n:p(n)>0 p(n)
Furthermore, if Var(Z) < oo for a fixzed w € Z, then Var(Z) — 0 as w — co.

We refer to the above method as the Offset Single Term Estimator (OSTE)
because it builds on the single-term estimator of Rhee and Glynn (2015) by
incorporating the offset w as a tuning parameter. OSTE has two advantages
over other debiasing schemes. First, it requires computing at most 3 (random)
elements of the sequence {a,}nez,, and only 2 with probability P(N = 0).
This provides a large reduction in computation in situations—as in the present
work—where a, can be evaluated directly without needing to first evaluate
ai,...,a,_1. Second, the offset allows us to control a trade-off between compu-
tation cost and variance separate from the design of the distribution p.

In the context of pseudo-marginal inference, it is important to control the
variance of the estimate, as it directly influences the convergence rate of the
sampler. Aside from the offset, Eq. (6) suggests that the variance of the OSTE
is determined by the relative values of the difference sequence a,4+1 — a, and
the probability mass function p(n). The faster a,, converges, the lighter-tailed
p(n) can be; in situations where a,, becomes more expensive to compute as n
increases—as in the present work—it is desirable to use a light-tailed p(n) that
rarely returns large values of N. In particular, a case of special interest to the
present work is when the sequence {a, },ecz, converges exponentially fast to its
limit. Proposition 2 shows that in this case, we can use a geometric distribution
p while still guaranteeing that Var(Z) < oo.

Proposition 2. Suppose there exist constants ¢, p > 0 such that
Vn € Zy, py1 — ap < ce”"P. (7)
Then if N ~ Geom (1 — e‘ﬁ) for 0 < B < 2p,

CQe—pr

(1 —eB)(1—ef20)

Var(Z) <

In this work we follow this general strategy of creating monotone sequences
that converge at least exponentially quickly to their limit. In practice, the
constants ¢, p above are typically unknown; in Appendix A.5 we describe a
procedure to automatically tune OSTE that is suitable for the present work.

It remains to design an appropriate monotone sequence that converges to
L(0). A first step in this direction is given by the following result due to Ander-
son (1991), which shows that any increasing sequence of state spaces induces an
increasing sequence of transition functions.



Proposition 3 (Anderson (1991, Prop. 2.2.14)). Let {2, }rez, be an increasing
sequence of sets such that | J,~, Zr = Z . Define a corresponding sequence of
rate matrices {Qy}rez, by

x ) %‘
(Qr):v,y — { Qo,y T,y €

0.w.

Then for all z,y € & andt >0, [e!9],, T M(t)s, as T — oo.

Proposition 3 tells us how to construct an increasing sequence of probabilities
which we can pass to OSTE to produce a non-negative and unbiased estimator
of the transition probability of a CTMC. Note that the truncated rate matrices
Q. are not guaranteed to be conservative, meaning that some of its rows may
fail to sum to a value larger than zero (due to the missing states). We refer to
these matrices as non-conservative. Nonetheless, Proposition 13 and its proof
shows that [etQT]m,y can be interpreted as a transition probability in an enlarged
space.

Let us assume that for each observation (x;_1,z;, At;) we have constructed
an increasing sequence of state-spaces {2, },cz,. Fix w; € Zy and let N;
be an independent random integer with probability mass function p;(n). Then
an estimator of L;(0) := M (At;)z,_, =, is given by applying the OSTE debiasing
scheme to the monotone sequence of transition probabilities { M, (At;)s, _, 2; }rez,
given by Proposition 3,

Mwi+Ni+1(Ati)mi—17mi B quz+N1: (Ati)fﬂi—lymi
pi(N:) '
IE stands for an estimator for Irregular time series based on Exact matrix expo-
nentials. When the increasing sequence of state-spaces is designed such that the
conditions of Proposition 1 are satisfied, L!¥(6, N;) is unbiased. Furthermore,

by the independence of {N;};?,, we can obtain an unbiased estimator of the
likelihood via

E%E(a Ni) = Mwi(Ati)ﬂth% +

ng
Lig(0,U) = H Li®(6,Ny),
=1

where U := (Nq,...,Np,).

As the emphasis on irregular time series suggests, there is another estimator
that is suitable only for regular time series; i.e., with At; = At for all i €
{1,...,nq4}. It is motivated by a potential efficiency gain associated with the fact
that in this case we can obtain all the transition probabilities {M (At)y, | z: by
from the same matrix exponential M (At). To exploit this property we begin
by collapsing the collection of sequences of state-spaces {2}, , into a unique
sequence {27 }rez,

X = [j 2L (8)
i=1

Since each sequence {2}z . is increasing to 27, the collapsed sequence also
satisfies this property. Then we proceed as before: fix w € Z and let N be a



random integer with probability mass function p(n). Define

nd

ESE(G) = H MT(At)zi—lyzi'
=1

Applying the OSTE debiasing scheme to the sequence {LEF(6)},.cz . yields a
new estimator of the likelihood

[ i LEE N 1(0) — LRy (0)
Lrp(0,N) := LI*(6) + =2l =as

RE now stands for “Regular time series with Exact matrix exponentials.” The
estimator ERE(G, N) is unbiased whenever the increasing state-space sequence
is designed such that the conditions of Proposition 1 hold.

The strategy presented in this section is not restricted in principle to CTMCs.
In other words, the problem of performing exact inference on stochastic pro-
cesses with intractable transition functions can be reduced to constructing mono-
tone approximations to this function. Then, passing this sequence through a
debiasing scheme such as OSTE produces a likelihood estimator which can be
readily used as the basis of a pseudo-marginal sampler targeting the correct
(augmented) posterior distribution.

3.2 Designing the state-space sequence

Up until this point, we have assumed the existence of a sequence of state spaces
increasing to Z°. In this section we describe a procedure to create such a
sequence that leverages the structure of reaction networks.

For every observation (z;_1,z;, At;), we set 2 to be a positive probability
path between z; ;1 and x;. Then, we form an increasing sequence of sets using a
simple iterative rule. Let D be any collection of vectors that span 2Z". To grow
the current space 2%, we get new points by “moving” all the elements of 2¢
one step along every direction in D, and then discarding points outside 2~

=2 U({s+d:se 2, deD}INZ).

In this work we set D to the canonical basis vectors of Z™+ and their negations
D := {#e;}}z,; this is the default choice in the literature (Georgoulas et al.,
2017; Sherlock and Golightly, 2019). Note that this choice implies that the
truncated state space 2, grows polynomially, i.e., |2;{| = O(r"). Another
possible choice of D, for example, is to use the rows of the update matrix U of
the CTMC (e.g., Eq. (2) for the SIR model).

The benefit of including a valid path between endpoints in 2 is that it

ensures that the transition probability My(At;)s, , «; estimated with the cor-

responding truncated rate matrix Q(()l) is positive. When this condition fails,
the performance of the pseudo-marginal sampler is impaired because proposals
with zero estimated likelihood are immediately rejected. In Appendix A.3 we
describe a simple heuristic based on linear programming to obtain 2. More



general-purpose pathfinding algorithms like A* (Hart et al., 1968) could also be
used. Regardless of the algorithm used, one only needs to build Z; once before
running the sampler.

We now investigate the convergence rate of the estimated transition prob-
ability sequence using this state-space truncation scheme. The goal is to show
that the error decays exponentially quickly, and hence that we may use a light-
tailed random truncation levels N; by Proposition 2. Let (z,y,t) represent a
generic observation, and let P, be the law of the CTMC initialized at X (0) = x.
As Proposition 13 shows, the r-th estimated transition probability M, (), can
be written as the probability of moving from x to y without ever leaving 2.,

M, (t)z,y = Po(X(t) =y and Vs € [0,t] : X(s) € Z7).

M(t)gy — Mp(t)z,y = Pu(X(t) = y) — Po(X(t) =y and Vs € [0,t], X(s) € Z7)
=P, (X(t)=yand Ju e [0,t] : X(u) ¢ Z)
<Py (Fu € 0,t] : X(u) ¢ Zr).

Reaching a point y € 2"\ Z; from a point € 2 involves at the very minimum
a trip from the boundary of 2y to the boundary of Z.. Since the directions D
span 2, there exists a constant v > 0 such that this trip requires at least yr
jumps. Therefore

M(t)gy — Mp(t)z,y <Py (N(0,t] > ~r),

where N(0,¢] is the number of jumps the process makes in (0, ¢]. To our knowl-
edge, there are no analytically tractable expressions for tail probabilities of
N(0,¢t] for general, non-explosive CTMCs in countably infinite state spaces.
Nevertheless, when the full rate matrix @ is uniformizable, i.e.,

g := inf > —00
q Iegf (Jz,x ?

it is possible to derive an upper bound. In particular, one can add self-transitions
to the CTMC—a process that is known as uniformization (Jensen, 1953)—so
that the enlarged set of jump events is given by a homogeneous Poisson process
N with intensity —g. Then, standard results for the Poisson distribution (see
e.g. Boucheron et al., 2013) yield

M (t)zy — Mo (t)ey <P(N(0,] > 1) <P(N(0,t] > yr) = O(e~ " 108(1m)),

Thus, under the assumption of uniformizability, the error in the truncation
sequence decreases superexponentially. This is desirable given our aim to use
the OSTE scheme, because it implies that Eq. (7) in Proposition 2 is satisfied.

Fig. 1 shows the error incurred versus the truncation index r for selected
observation pairs in two CTMCs. The top row corresponds to a simplified
model of a queue. It assumes jobs arrive at a rate A, and that there are ¢
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Figure 1: Error in estimated transition probabilities versus truncation index r
for selected transition pairs. Within each row, a column corresponds to an ob-
servation (z;, y;, At;). The error is computed here as M (At;) g, 4, — My (At) 2, 4, -
Top: M/M/c model. Bottom: Schlégl model.

servers available to process those jobs at a rate of p. This model—known as
an M/M/c queue (Lipsky, 2008)—satisfies the uniformization condition, since
G = —(A+cu) > —oo. The plots show that the decrease in error is slightly faster
than exponential, in agreement with the derivation above. The bottom row in
Fig. 1 corresponds to the Schlégl model, another CTMC which will be described
in detail in Section 5. In contrast to the M /M /c queue, the Schlgl model has a
rate matrix that is not uniformizable. Nevertheless, the observed decay in error
still seems superexponential, which suggests that fast convergence is robust to
violations of the uniformization assumption.

In practical application, the specific constants governing the rate of (su-
per)exponential error decay are not known. In Appendix A.5 we show how
to empirically estimate these rates as part of the process of tuning a pseudo-
marginal sampler.

3.3 Avoiding exact computation of matrix exponentials

The IE and RE estimators described in Section 3.1 require algorithms that
produce an exact evaluation of e’@ for each truncated rate matrix Q,. In
this section, we show how to construct new unbiased likelihood estimators that
take advantage of monotonic approximations of each e!?” to avoid the cost of
exact computation. In particular, suppose for each r € Z, we are given a
monotone approximation M,(-k)(t), k € Zy to M.(t), MT(-k)(t) T M,(t) entry-
wise as k — oo (we describe such algorithms in Section 3.4). We say that the

11



collection {Mﬁk) (t)}rkez, is doubly-monotone if it also satisfies
vrkeZy,  M® @) < M® ().

The following result shows that for a doubly-monotone collection {MT(k) () }rkezy
any sequence of matrices constructed from pairs of indices {(rn, kn)}nez, with
rn, T oo and k, 1 co converges monotonically to the correct limit.

Proposition 4. Consider a collection
A={a¥ :reZ keZ,}CR.

Suppose that for all v € Z, aﬁ,’“) T a. € R where a, T « € R, and that for all
keZ,, {a&k)}mh is monotone increasing. Let {(rp, kn)}nez, be any sequence
of pairs v,k € Zy such that r,, 1 0o and ky,, T oo. Then agz”) T a.

Applying Proposition 4 to the collection
A={MPt),,:reZ, keZ,}

for each matrix entry (z,y) ensures that we can pick any sequence of increasing
pairs {(ry, kn)}nez, and obtain a sequence Mr(fn)(t) that converges monotoni-
cally to the true transition probability. Therefore, we can construct a debiased
estimator using the result of Proposition 1 without ever having to evaluate the
exact matrix exponential M,(t) of any state-space truncation. In order to con-
trol the variance of the estimator via Proposition 2, we require further conditions
on the approximation sequence given by Proposition 5.

Proposition 5. In addition to the conditions in Proposition 4, suppose that
there exists c1,ca, p,k > 0 such that

Vr€Zyia—a, <cre ", and Vrke€Zy:a,— aﬂk) < ek, (9)
Then, setting r, = n and k, = [(p/r)n] gives for alln € Z

a&’fjﬂl) - agi") < 2max{cy,cote” "

The first assumption in Eq. (9) is discussed in Section 3.2. The second
condition is satisfied whenever the matrix exponential approximation admits an
upper bound on the error that is invertible (Section 3.4 gives such bounds for
the methods described therein). Finally, we again note that the constants in
Proposition 5 are unknown in practice, but nonetheless the sequences r,,, k,, can
still be tuned as we show in Appendix A.5.

We now proceed as in Section 3.1 to define a new estimator of the true tran-
sition probability M (At;)s, .., for the i-th observation. Suppose {Mﬁk)}nke@
is doubly-monotone, and let {r;(n), ki(n) }nez, be a sequence of increasing pairs.
Then

M(ki(NJrl))(At,) . M(ki(N))(At)
i)zio1,xs i)zio1,xs

y ki (0 ri(N+1 i (N
L0, N;) = ]‘47(’7:(0()))(Ati)ﬂ“*lv%ﬂr — pi(N;) .
(10)

12



is an unbiased estimator of M(At;),, , z,- In turn, these estimators can then
be composed into an unbiased estimator of the likelihood

ng
Lia(0,U) := H L6, Ny),
i=1
where U := (Ny, ..., N,,). We use the suffix A to denote the use of Approximate

solutions in the setting of Irregular time-series. Likewise, for regular time series
let

HM (At) s\, (11)

Applying Proposition 4 to A = {L(k)( 0):r €Zy,k € Zy} shows that
LRA0) = LG5 (0) 1 L) as n — oo.

Applying the OSTE scheme to the sequence {LEA(0)},cz, yields a new esti-
mator of the likelihood

LA (0) — LRA(9)
p(N)

Since the IE and RE estimators based on exact solutions are closely related
to the ones based on approximate solutions, the rest of the paper will focus on
the TA and RA estimators.

The relative efficiency of the TA and RA estimators is not obvious. On
the one hand, RA needs only one call to the matrix exponentiation algorithm
for each likelihood estimate, while TA needs ng. Also, a likelihood estimate
produced by RA involves a smaller number of states, since from Eq. (8) we see
that

Lra(0,N) := LEA(6) +

(12)

2 <312,
=1

On the other hand, IA allows for finer tuning since each observation gets its
own joint sequence. For example, transition probabilities for observations of the
form (x,z, At) in models with low rates of transition can be well approximated
by the probability of not moving—i.e., e%=2t—and therefore we can set both
of its offsets to a low value. In contrast, for RA we need to set its parameters
so that all transition probabilities are well approximated.

Due to these competing effects, the relative efficiency of TA and RA will
depend on the particulars of the problem at hand, as we shall see in experiments
later on. Nevertheless, a good rule of thumb is to use the RA approach whenever

1 2 ,
| Zo] < §ZI%ZI-

This rule selects RA whenever there is sufficient redundancy in the base state-
spaces so that it is more efficient to work with the union of them.
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3.4 Doubly-monotone approximations

In this section we describe doubly-monotone approximations that can be used
as the basis of the TA and RA unbiased likelihood estimators described in the
previous section. In particular, we begin with a simple approach based on
uniformization (Jensen, 1953), which is efficient for rate matrices that have low
norm. We present two variants which differ in their applicability to more general
classes of CTMCs, as well as in their fulfillment of the double monotonicity
property. Additionally, we develop a novel matrix exponential approximation—
the skeletoid—which is doubly monotonic and excels in the high rate regime.
Finally, we compare the efficiency of the two methods in practical application
to the exponentiation of rate matrices for a number of CTMCs.

3.4.1 TUniformization

The process of uniformization described in Section 3.2 can be used to pro-
duce a monotone sequence of approximations to el@. Suppose @ satisfies § =
infye 9 qpo > —00. Define P:=1+ Q/(—q), then

-~ e B _*t)n
]‘[ t) = tQ __ qt(IfP) _ § qt( q PTL
( ) € € nzoe n' )

and the elements of the sum on the right are all (entry-wise) non-negative. Using
this fact, we can obtain an increasing sequence of approximate solutions,

vaezy MO (e = 30 e I pr, (13)
n=0 :

such that M) (t) + M(t) as s — oo. Moreover, forr € Z, let P, := I[+Q,/(—q)
(with @, defined in Proposition 3). Define

S - —_t)n
Vr,s € Zy t>0: MO (t) = at (=0)" pn. 14
r,s + - r () ngoe n r ( )

Then, for any z,y € 2" and t > 0, the collection {]\Lgs)(1&):,0,7,,}“62+ is doubly
monotonic, as Proposition 6 shows.

Proposition 6. The collection in Eq. (14) is doubly monotone.

We now study the error incurred by uniformization. Let ||Alls be the £o
operator norm of the matrix A,

[Alloo := sup > [Aqyl-
ze%ye%

The £, error incurred by uniformization admits a simple bound.
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Proposition 7. Consider a possibly non-conservative rate matriz QQ with associ-

ated state space Z . Suppose there exist § € (—00,0) such that § < infiecz Gy z-

Let \ := (—q)t and F(n; \) be the cumulative distribution function of a Poisson(\)
distribution. Then,

1M (1) = MP (#)]loo < 1= F(s;0). (15)

Given any e > 0, we can invert Eq. (15) to find s € Z, such that the error
is less than e. Indeed, let

F=H(p;A) = inf{s € Zy :p < F(s; M)}
be the quantile function of a Poisson(\) distribution. Then, setting
S:F‘*l(l—é;)\)7 (16)

guarantees that the /., error is bounded by €. In particular, note that by im-
posing € = (k) = e~"* for any s > 0, the second requirement in Proposition 5
is satisfied.

For the purposes of pseudo-marginal inference for CTMCs (Section 3.3), the
uniformization approach presented so far—which we call global uniformization—
assumes that the rate matrix () for the infinite space 2" satisfies inf e 2 gy o >
—oo. Although appealing due to its double monotonicity, the global uniformiza-
tion assumption does not hold in many infinite state space CTMCs of interest—
like the ones included in our experiments (Section 5), and in particular in the
running example of the SSIR model.

Sequential uniformization is an alternative approach that is applicable to
CTMCs that are not uniformizable; i.e., models for which inf,e 2 gz » = —00.
Here, a decreasing sequence of lower bounds ¢, := inf;c 9, ¢z, is computed
for every truncated rate matrix @,.. The corresponding double sequence of
approximations becomes

~ gt (=0t)"
Vr,s € Ly : MSS) (t) := Z edrt nT' P,
n=0
where P, := I + Q,/(—¢G.). For every r € Z,, t > 0, and z,y € 2,
{MT(S) (t)e,y}sez, is increasing. However, the sequential approach is not doubly
monotonic. Consider the following counterexample. Let (z,x,1) be the obser-
vation of interest, so that the base state space is a singleton 2y = {x} (see
Section 3.2). Suppose further that the associated truncated rate matrix is the

one-by-one matrix Qo = (—1). This yields (Méo)(l))m = e~1. Now suppose
that %7 has an additional state, and that

-1 0
Ql:(o —10)'

Then, the base sequential uniformization approximation gives
—10
0 e 0
Ml( )= ( 0 610) .

15



Thus, (Ml(o)(l))l’l < (M(()O)(l))l,l, so sequential uniformization is not doubly
monotonic.

In practice, situations that break double monotonicity for the sequential
approach are rare. And, for observations (z;_1,x;, At;) that do exhibit this
phenomenon, we can always set the values of the sequence k;(n) high enough so
that—up to numerical accuracy—we effectively fall back to using the IE esti-
mator (which does not require double monotonicity). As we show in Section 5,
this implementation of sequential uniformization works well for models with
low g, values. As a consequence, we take uniformization to mean sequential
uniformization unless mentioned otherwise.

Besides the issue with double monotonicity, an important drawback of uni-
formization is that it is inefficient when A = —gt is large. In particular, for fixed
¢, the Poisson()\) quantile function behaves like F71(1 — ¢, \) = O(A\) (Giles,
2016) and so we must compute s = O(A) terms in Eq. (13) if we wish to have
l+ error below e. Therefore uniformization can be prohibitively slow in cases
with large A, such as the Schlégl model (described in Section 5).

Finally, we note that a naive implementation of Eq. (13) is prone to numerical
instability at high values of A. In our experiments we use the more robust
algorithm described in Sherlock (2018).

3.4.2 The skeletoid

In the following we describe a novel monotone approximation to the matrix

exponential—which we refer to as the skeletoid—that is doubly monotonic and

requires only O(log \) computation, therefore excelling in the large A setting.
For any § > 0, let S(J) be a matrix with entries z,y € 2" defined by

ede.w0 ifx =y,
(S((S))z’y = QI,yaeqz’zé if Qz,x = Qy,y» (17)

8 5
ey, y% _pdz,x .
s otherwise.

The skeletoid approximation to the transition function is given by
MO(t):= 827, seZ,.

Note that, once S(t27%) is computed, its 2°-th power can be evaluated using
only s matrix-matrix multiplications via repeated squaring. Indeed, for [ =
0,1,...,5s—1, set

S22 = [S(t2—5)21}2

Proposition 8 shows that S(t2~*)2" defines a novel monotone increasing sequence
of approximations to the transition function of a CTMC.

Proposition 8. If QQ is non-explosive, then for all x,y € Z andt > 0,

(S(t?‘s)Zs) T (M(t))s,y, ass— oo.

z,y
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The proof for Proposition 8 can be found in Appendix B. It is important
to highlight that the non-explosivity condition of Proposition 8 is qualitatively
less stringent than the assumption that inf, ¢, , > —oo, which is required by
the global uniformization approach.

Additionally, for r € Z, let S,(0) be the matrix constructed from Eq. (17)
using the truncated rate matrix Q,. Let

Vr,s € Zy,t > 0: MO (t) := S,.(t27%)% (18)

be the collection of approximations induced by the skeletoid method. Proposi-
tion 9 shows that this collection is doubly monotonic.

Proposition 9. The skeletoid double sequence in Eq. (18) is doubly monotone.

In order to find an s € Z, that achieves an £, error lower than any given
€ > 0, we require an error bound that admits a straightforward inverse. The
following proposition gives such a bound.

Proposition 10. If §:=inf; ¢, , > —o0, then for all s € Z,

HM(t) —S(27%) H < (G)227 D £ O((qt)327%). (19)

o0

Discarding the higher-order terms in Eq. (19) and solving for s yields the

s = o ()] -

Eq. (20) shows that the cost of achieving a given error is O(log A) (with X :=
(—q)t as before), which explains the differences in performance between the
skeletoid and uniformization methods in the large A setting. Also, and notwith-
standing the fact that Eq. (19) already implies exponential decay of the error
as 27°, we can achieve any other rate of decay x > 0 by setting € = ¢(k) = e~
in Eq. (20) (c.f. Proposition 5).

Finally, we note that the skeletoid approximation is related to the “scal-
ing and squaring” method, a common trick used as part of various algorithms
for computing the matrix exponential (Moler and Van Loan, 2003). Scaling
and squaring reduces the problem of computing e’ to that of obtaining the
transition function e°@ of the d-skeleton—with § := ¢t27°—by applying the
identity '@ = (e/?)?" (a consequence of Chapman-Kolmogorov). The key dif-
ference here is that S(d) is a specific computationally cheap approximation to
the d-skeleton solution e®?—hence the name “skeletoid.” This specific choice is
critical to establishing double monotonicity in a general non-explosive setting,
making the skeletoid approximation particularly suitable to pseudo-marginal
methods.

3.4.3 Performance comparisons

Fig. 2 shows the performance of uniformization and skeletoid in approximating
the exponential of random rate matrices () drawn at random from four qualita-
tively different classes of CTMCs. In the sparse class, for each row we sample
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Figure 2: FLOPs associated to matrix multiplications needed to compute ap-
proximate solutions to the transition function for random rate matrices of size
100, versus the ¢, error incurred. Rows represent increasing time exponents
(t in €*Q). Lines show mean error over 100 repetitions of a given combination,
while bands give a 95% coverage range. The mean rate of each random rate
matrix is normalized to 1.

a random integer giving the number of non-zero entries, and then sample the
positions of these elements in each row at random. In contrast, matrices in the
dense clase have only non-zero entries. In the absorbing state class we make the
first state absorbing, meaning that g;; = 0 for all j; then, we draw a random
dense rate sub-matrix for the remaining states, and finally complete the first col-
umn to satisfy the conservative property. Lastly, in the General Time Reversible
(GTR) class we simulate matrices satisfying detailed balance: pzqe .y = tyqy.»
for all x,y, for some probability vector u. In all these classes, the non-zero off-
diagonal elements of the matrices are drawn from Exp(1) distributions; then,
the diagonal is set to enforce the conservative property, and finally the matrix is
scaled to achieve a mean rate of one. Note that the skeletoid is much faster than
uniformization in the ¢ = 1000 setting, across all four CTMC classes, whereas in
the t = 1 setting, the ranking of the two methods depend on the computational
budget.

Fig. 3 shows the result of using Egs. (16) and (20) to produce approximations
with a given error bound. We see a high level of agreement between requested
and realized errors in most of the settings, with a bias towards more conservative
outcomes when disagreement occurs.

Notwithstanding the usefulness of Egs. (15) and (19) to provide bounds on
errors that can be evaluated before doing any computation, monotone increasing
approximations (not necessarily doubly monotone) to the matrix exponential of
rate matrices—Ilike skeletoid and uniformization—offer a simple way of obtaining
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Figure 3: Realized {, error versus requested error for the two algorithms when
applied to random rate matrices of size 100. Rows represent increasing time
exponents (¢ in e!?). Lines show mean error over 100 repetitions of a given
combination, while bands denote the range of the error. The dotted diagonal
line represents ideal behavior. The mean rate of each rate matrix is normalized
to 1.

the exact error of a given approximation, since

IM () =M ()] = sup > [M(£)ey =M (t)yy] <1 inf >~ MO (t),,,

weX
xe%yé% ¥ yeX

where the inequality arises from the possibility that @ is non-conservative. The
right-hand side is computable since the formula does not depend on M (¢). The
inequality becomes an equality in the case of a conservative (), and in this case
a stronger statement holds for all x € 2™

Z [M(t)z,y - M(S)(t)z,y] =1- Z M(s)(t):v’y'

yeX yex

Finally, we note that it is always possible to improve a collection of monotone
increasing approximations by computing all of them in parallel and returning
their element-wise maximum, which will again be monotone increasing. How-
ever, in our tests the overhead needed to parallelize the skeletoid and uniformiza-
tion methods was not compensated by the efficiency gains obtained. However,
it is possible that for models not considered in this study, an algorithm return-
ing the element-wise maximum of the uniformization, skeletoid, and potentially
other monotone approximations could be advantageous.

4 Related work

Georgoulas et al. (2017) were the first to describe a pseudo-marginal method
to perform exact inference for CTMCs on countably infinite spaces by debi-
asing a sequence of likelihood estimates arising from an increasing sequence
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of truncated state-spaces. They used the randomly-truncated series debiasing
scheme first introduced by McLeish (2011), which has the downside of requiring
an unbounded random number of calls to the matrix exponentiation algorithm.
In contrast, the OSTE scheme needs at most 3 calls to these routines. Addi-
tionally, Georgoulas et al. (2017) used a stopping time whose distribution has
super-exponential tails. This introduces the risk of obtaining likelihood esti-
mates with infinite variance, unless one is able to prove that the approximating
sequence converges faster. As discussed in Section 3.2, there is evidence that
the sequences converge at super-exponential speed, but the precise rate must
still be estimated on a case-by-case basis.

Building on Georgoulas et al. (2017), Sherlock and Golightly (2019) intro-
duced the MESA algorithm. This method expands the state space of the sampler
to include the random index r of the smallest truncated state space that contains
the full (unobserved) path of the process for all observation pairs. This strategy
is appealing because it dispenses with the need to design debiasing methods with
appropriate stopping times. The variant nMESA is also proposed, which has a
different index r; for each observation pair. In terms of computational cost, the
sampler used in MESA requires 3 calls to matrix exponentiation routines, which
are based on uniformization and scaling-and-squaring. On the other hand, be-
cause they are not pseudo-marginal samplers, neither MESA nor nMESA can
take advantage of the accuracy relaxation technique described in Section 3.4.
Thus, they require computing matrix exponentials up to numerical accuracy.

Previous work has explored the use of particle MCMC to design positive
unbiased estimators in the context of infinite state space CTMC. The most
straightforward way to use particle MCMC for infinite CTMC is to impute full
paths and set weights to zero when a particle does not match an observed end-
point (Saeedi and Bouchard-Coté, 2011; Golightly and Wilkinson, 2011). How-
ever this approach can suffer from severe weight degeneracy, including particle
population collapse where all weights are equal to zero. A more sophisticated
approach builds a martingale to guide particle paths toward the end-point (Ha-
jlaghayi et al., 2014), but this requires the construction of a problem-specific
potential function.

The literature on exact inference for CTMCs on finite state spaces is ex-
tensive (see e.g. Geweke et al., 1986; Fearnhead and Sherlock, 2006; Ferreira
and Suchard, 2008), but methods therein cannot be extended to the countably
infinite case in a straightforward manner. In particular, as we have previously
mentioned, uniformization cannot be applied to infinite state-space CTMCs
whose rate matrices do not admit a uniform bound on the diagonal. Another
line of work has built advanced extensions for the related but distinct problem
of end-point simulation (Rao and Teh, 2013; Zhang and Rao, 2020).
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Algorithm 2: Metropolis pseudo-marginal sampler with RA estimator

inI)Ut ¢ Nsamples 007 Zpropapv {r(n)a k(n)}nEZJr

C«+ {Zv} > construct and store 2y
70 > index of the largest state-space available
N ~ Geom(p)
Lewr < Lra (6o, N) > using Eq. (12) with {r(n), k(n)}rez,
for s =1,2,...,Ngamples — 1 do
epmpwsfl ~ N(Q, Zprop)
N ~ Geom(p)
if #(N +1) > 7 then > need to build larger state-spaces
C+—Cu{Z forallre{r+1,....,7(N+1)}
T+ r(N+1)
end

Lprop — ERA (epropv N)

7(Oprop) Lprop
A < 1 /\ 7‘—(04571)Lcur

U~ Ul0,1]
if U < A then > proposal accepted
05 < Oprop
Lcur — Lprop
else > proposal rejected
‘ 03 < 98—1
end

end

Nsamples — 1

output: {0},

5 Experiments

We evaluate our methods using experimental benchmarks introduced in Geor-
goulas et al. (2017)" and Sherlock and Golightly (2019).> We run a random walk
Metropolis sampler targeting the augmented posterior distribution 7 (6, U|D) of
Eq. (3). The proposal for 6 uses a multivariate normal with covariance matrix
Yprop = a Var(0|D), for some a > 0 and with Var(f|D) estimated in a trial
run. For the auxiliary variables U we take independent draws from the distri-
bution used by the OSTE scheme, which we set to Geom(p) distributions with
€ (0,1). Appendix A.5 contains detailed explanations on how to tune all the
parameters involved. An overview of the process to run the Metropolis sampler
using the RA estimator is shown in Algorithm 2. The process used for a sampler
using the TA estimator is similar but involves also looping over observations.
In order to fairly compare the efficiency of algorithms implemented in differ-
ent languages, we use the effective sample size per billion floating point opera-
tions (ESS/GFLOPs), when considering FLOPs used in matrix multiplications

1Code and data available at https://github.com/ageorgou/roulette/
2The authors kindly shared their code and data with us.
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Figure 4: Plots of the datasets considered in the experiments. Dashed lines are
used to emphasize that the path of the process is unknown between observations.
Top: datasets from Sherlock and Golightly (2019) for the Lotka—Volterra (3
reactions) and Schlogl models. Bottom: datasets from Georgoulas et al. (2017)
for the Lotka—Volterra (4 reactions) and SIR models

within matrix exponentiation algorithms. The reason to focus on these opera-
tions is that they account for most of the computational cost incurred by the
samplers. The ESS is measured using the method implemented in the R pack-
age memcse (Flegal et al., 2020) and described by Gong and Flegal (2016). Due
to the importance of correctly tuning samplers to obtain good results, we only
compare against other methods that have been previously tuned for and tested
in a given dataset by their respective authors.

5.1 Schlogl model
The Schlégl model is defined by four reactions

01X(X—1)/2

A+2X 3X
X 02X (X —1)(X—2)/6 29X 1 A
B L X
X faX B
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Figure 5: Trace plots for 10,000 samples taken using 3 parallel chains of the RA
pseudo-marginal sampler with Skeletoid targeting the posterior distribution of
the Schlégl model.

where the number of A and B molecules are kept constant, so that the only
species evolving in time is X. The model is known in the mathematical biology
literature as the canonical example of a chemical reaction system exhibiting
“bi-stability” (Vellela and Qian, 2009). This means that for some parameter
configurations, the system oscillates between two meta-states or regimes, one
with very low or zero counts of X, and one with high counts.

For the purpose of inference, it is simpler to work with the birth—death
version of the process, obtained by collapsing the reactions that increase X and
the ones that decrease it

Mg = 011{z > 2}x(z —1)/2+ 65
poe = 021{z > 3}z(x — 1)(x — 2)/6 + 1{z > 1}6,

forx € Zy.

To give a more detailed description of the performance of our pseudo-marginal
approach, we first focus on the results obtained for the Schlogl model, then
present summaries for several models. The dataset we use is taken from Sher-
lock and Golightly (2019), and is depicted in Fig. 4. Note that it exhibits the
bi-stability phenomenon described above. These data are taken every At = 4
from a path simulated with 0446 = (3,0.5,0.5,3). Sherlock and Golightly (2019)
use a Metropolis sampler on the log-transformed variables £ = log(6), and place
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Figure 6: Histograms of the samples obtained from the experiment described
in Fig. 5. Heatmaps show bi-variate views of the approximated posterior when
using the approximate likelihood L* (Eq. (11)) with high values of r, k. Vertical
lines in histograms and X’s in bi-variate plots show location of data-generating
parameter. Points in bi-variate plots show selected samples from every chain.

independent standard normal priors on . Since we work directly with 6, we
use i.i.d. standard log-normals. After following the tuning procedure outlined in
Appendix A.5, we run three parallel chains for 10,000 iterations each, initialized
at Oyue- Fig. 5 shows the trace-plots for an RA sampler using the skeletoid
method, evidencing good mixing in all parameters and chains. Fig. 6 summa-
rizes the approximated posterior. Note how there is almost perfect correlation
between #; and 0>, demonstrating that having a proposal with non-diagonal
covariance is useful.

The second panel in Fig. 7 shows the ESS/GFLOP achieved by the TA and
RA samplers with the skeletoid, compared to the results obtained for the MESA
and nMESA methods. Our RA sampler achieves an improvement of more than
450% over nMESA.
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Figure 7: Comparison of ESS/GFLOP between our proposed pseudo-marginal
samplers and competing methods. The intervals denote the range across 30
repetitions, while points and text correspond to the means.

5.2 Lotka—Volterra model

The Lotka—Volterra (LV) LV process has state-space 2~ = Z2; i.e., defined by
boundaries B! = (0,0) and B* = (00,00). We consider two versions of this
model with different numbers of reactions.

5.2.1 Three reactions

Sherlock and Golightly (2019) use a version of LV containing three distinct
reactions

R 2%, ¢ (death of predator)
R+Yy 2FY 9p (predator eats prey & reproduces)
Y G oy (birth of prey)

Here, R denotes the number of predators and Y the size of the prey popula-
tion. For our experiments, we focus on the LV20 dataset—shown in the top-left
panel of Fig. 4—containing 20 observations obtained at regular time intervals
At =1 of an LV path simulated with 6, = (0.3,0.4,0.01). Again, Sherlock
and Golightly (2019) use a Metropolis sampler on the log-transformed vari-
ables &, putting independent Gaussian priors with unit variance and means
(log(0.2),10g(0.2),10g(0.02)). To match these, we put independent log-normal
priors on # with the same parameters.

In the first panel of Fig. 7 we show that the IA sampler with uniformization
achieves more than a 20% average increase in ESS/GFLOP when compared
agains nMESA, although the ranges do not show a strong separation. These
results also show that the relative performance between IA and RA samplers
depends on the particulars of the model and data.
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5.2.2 Four reactions

Georgoulas et al. (2017) use a version of the LV model with four reactions

R HE, 0 (death of predator)
R+Yy 28 oty (birth of predator)
R+Yy 255 R (death of prey)

Y baY 2Y (birth of prey)

The data used by the authors is depicted in the bottom-left panel of Fig. 4. It
represents observations at regular intervals with At = 200 of a path simulated
using Orue = (1,5,5,1) - 1074

We compare our methods against the pseudo-marginal sampler proposed by
the authors, which builds a chain directly targeting the augmented posterior
for 0 using i.i.d. Gamma(4,10%) priors. As the third panel in Fig. 7 shows,
we achieve an improvement of 3 orders of magnitude using the IA sampler with
uniformization. AMH11 denotes the matrix exponentiation algorithm described
in Al-Mohy and Higham (2011).

5.3 SSIR model

The last CTMC we consider is the SSIR model, described in detail in Section 2.2.
The data—taken from Georgoulas et al. (2017) and shown in the bottom-right
panel of Fig. 4—are obtained from observations taken at irregular time steps
from a path simulated using 6, = (0.4,0.5,0.4). In our experiments, we match
the prior used by the authors, corresponding to i.i.d. Gamma(1.5,5). We can
see in the last panel of Fig. 7 that the IA sampler with uniformization achieves
an improvement of almost 4 orders of magnitude.

6 Conclusions

In this work we have proposed pseudo-marginal methods based on monotonic ap-
proximations to the likelihood of stochastic processes with intractable transition
functions. A monotonic approximation can be seen as one of two inputs—the
other being a debiasing scheme—of an almost automatic procedure for designing
pseudo-marginal samplers targeting the correct posterior distribution. To this
end, we have described the OSTE scheme which improves over other debiasing
methods by using a bounded number of calls to the approximating sequence,
and by offering a flexible way to balance the variance-cost trade-off. We have
also shown how to accelerate a recently proposed pseudo-marginal sampler for
countable state-space CTMCs by considering matrix exponentiation algorithms
that produce increasing approximations when applied to finite rate matrices.
Moreover, we have introduced the skeletoid as a novel probabilistic approach
for computing monotonic approximations to the exponential of rate matrices,
that excels in cases where the norm of these matrices is high. Finally, we have
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given experimental evidence that our proposed algorithms offer sizable efficiency
gains.

Note that the only component of the proposed algorithms that is tailored
to reaction networks is the design of the increasing sequence of state-spaces.
Therefore, extending our algorithms to CTMCs other than the ones considered
in this study should not be cumbersome. Some interesting areas of application
include CTMCs arising from the study of the secondary structure of nucleic acids
through elementary step kinetic models (Schaeffer et al., 2015; Zolaktaf et al.,
2019), as well as CTMCs underlying state-dependent speciation and extinction
models in phylogenetics (Maddison et al., 2007; Louca and Pennell, 2019).

More generally, we aim to extend the “monotone approximation plus debi-
asing” framework to other stochastic processes with intractable likelihoods. For
example, exact inference methods for diffusions exist only for a restricted class
of such processes (Beskos et al., 2006; Sermaidis et al., 2013). On the other
hand, there is a growing literature on asymptotic expansions to the transition
functions of diffusions (Ait-Sahalia et al., 2008; Li et al., 2013) which are valid
in more general settings. These expansions could potentially be modified to
produce monotone approximations, thus enabling the use of our framework for
exact inference. A different way to tackle this problem would be to rely on tech-
niques to approximate diffusions using CTMCs (Kushner, 1980; Di Masi and
Runggaldier, 1981). As long as the transition function of the latter converges
monotonically to the transition function of the diffusion, the methods in this
paper could be applied.
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Algorithm 3: Implicit matrix squaring
input : B:=A—-1,k
fori=1,2,...,kdo B <+ 2B+ B?
output: A% =1+ B.

A Implementation details

A.1 Numerically stable implementation of the skeletoid
method

When 6 = 2% is close to the machine’s precision, the straightforward compu-
tation of S(t?’k)zk produces rounding errors. The reason is that in these cases
S(6) ~ I. A simple way to bypass this issue is to rely on the identity

A2=T+A-I)?=1+2A-1)+(A-1)?
which holds for any square matrix A. Defining B := A— I, the identity becomes
A? =1+ B with B' =2B+ B?

An inductive argument then shows that we can compute A?" via the recursion
depicted in Algorithm 3.

To fully take advantage of Algorithm 3 we must implicitly compute S(§)—1I.
This is achieved by replacing the formula for the diagonal elements in Eq. (17)
by

[S(6)]i,i = expm1(gi,id)

where expm1 is the standard numerical routine for accurately computing e — 1
when z =~ 0.

A.2 Computing elements of the matrix exponential

When computing the likelihood function we are generally interested in only
a handful of entries of the transition function. This can be used to speed-
up computation, by only performing computation for the rows of the matrix
exponential that contain those entries.

Let @, be the rate matrix associated to Z,., and define b, := |.%Z,.|. Suppose
we are interested in the entries {(i,ji)};, of the s-th approximation to the
transition function M) (t), with m < b,.. Define the matrix L of size m x b,

I 1 ifv=j,,
“wU T 0 otherwise.

In the case of uniformization, recall that P := I — @,./q. Then

(M(S) (t))iz,jz = (LM(S) (t))hjz = Zeqt(_sif)n(lxpn)l,jz
n=0 ’
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Note that the matrix LP™ can be efficiently computed recursively setting LP° =
L and updating via LP™ = (LP"~')P. Suppose that P has n non-zero elements
per column on average. Then the update operation involves nb, FLOPs, so we
can obtain (M()(t)); ; using only snb, operations. Compare to snb? which
would be the cost of computing the full matrix exponential.

For the skeletoid method, we can apply a trick used for computing the ac-
tion of the matrix exponential obtained through scaling and squaring (Sherlock,
2018). Consider the squaring decomposition

SEP = 5@ - S0 =[50

2k2 times

for any ki, ks € Z4 such that k; + ko = k. Pre-multiplying by L

2k2 2k2 1
LS(5)" :LHS(W“ = (LS(5)2™) H S(6)2"

Now, in general S((S)zk1 is a dense matrix of size b, x b, (due to CTMCs being
irreducible in general), so we model its computational cost to k1b3 (ignoring sub-
cubic algorithms due to their higher associated constants for simplicity). Then

the product LS (5)2k1 costs mb?, and so does every subsequent multiplication
by S((?)zk1 on the right. Therefore, the total cost becomes

C(ky, ko) = Bl1b3 + mb22"2

where we have added the parameter 8 < 1 to account for the fact that n
vector-matrix multiplications with cost n? are slower than one matrix-matrix
multiplication with cost n3. We have found 8 = 0.1 gives consistent results.

We can easily optimize the function above if we work in R by setting x < ko,
and k1 = k — z. Indeed, let

C(z) = B(k — )b2 + mb22*.
Differentiating gives the condition

0= C'(z) = —Bb3 + log(2)mb22”.

¢ tog [P
v (log@)m)'

Constraining * to an integer in the correct interval gives

k3 =0V (kAargmin{C(y) : y € {[z"], [2"]}}).

Thus

Finally, setting k = k — k3 yields a strategy for computing LS (5)2k which is in
general faster than the naive approach requiring forming S (5)2k.
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A.3 Building the base state space

Here we present a heuristic for computing a “seed” path between pairs of obser-
vations that is specialized to reaction networks with 2~ = Z*. Fix an observed
change in the state of the system (x;_1, x;, At;), with At; := t;—¢;_1. Assuming
non-explosivity, there exists a finite sequence of states {sp};;o and a correspond-
ing sequence of reactions {rp};::l—with so = 2;—1 and sp = z;—such that for
allpe{l,...,P}
sp==58p-1+ U,

where U is the reaction matrix of the model of size n,. X ns. Unrolling the above
recursion yields

P
Aa:i =T — Ti—1 = Z UTp»' = UTU, (21)
p=1

where v € Z'}" is an integer vector denoting the number of times each reaction
is used to form the path.
The solution to Eq. (21), although not necessarily unique, can be computed

by expressing the problem as an Integer Program

min 15 v st. UTv=Az;, v>0.

vELr T
Since for the reaction networks considered in this paper, n,,ns < 10, the prob-
lem is computationally tractable. Moreover, since Ax; is an integer vector, when
U is Totally Unimodular—which is the case for all the reaction networks we ex-
periment with—the corresponding Linear Program relaxation yields an integer
solution (Hoffman and Kruskal, 1956). Finally, once v is obtained, we recover
the path {s,}7_|—with P := 1] v—using a simple heuristic search algorithm.

A.4 Numerically stable computation of the log-likelihood

The formula for computing Lga (6, U) in Eq. (12) is numerically unstable be-
cause it depends on the products in Eq. (11), which in most cases will be ~ 0.
However, we can use the following identities to directly compute log(Lra (6, U))
without explicitly computing products. The function expm1 is the standard nu-
merical routine for accurately computing e® — 1 when = ~ 0. Similarly, loglp
refers to standard numerical routines that accurately compute log(1l + z) for
|z| < 1.

Proposition 11. Let 0 < p; < ps < p3. Fiz o € (0,1] and let

Z::p1+p3—p2.

Define s; := log(p;) for each i € {1,2,3}. Then

—0 p3=0
log (=) = s3 — log(a) p3 > 0,p0 =0
& s2 + log(expml1(ss — s2)) — log(a) po>0,p1 =0

s1 + loglp (exp(se — s1 — log(a))expml(ss — s2)) otherwise.
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Proof. The first two cases follow directly. For the third case, note that

z= exp(s3) — exp(sa) _ exp(s2) (exp(ss —52) = 1) _ exp(s2)

« « (0%

expml(s3 — s2)

Hence
log(z) = s2 + log(expm1(s3 — s2)) — log(a).

The general case follows similarly

exp(s3) — exp(s2)

z = exp(s1) + -
o eplss) — exp(sa)
= exp(e) (1+ aexp(sy) )

expml(ss — s2)
aexp(s1)

— exp(s1) (1 + exp(sz — 1 — log(a))expmi(ss — 52)).

—expsn) 1+ exp(sa)

Taking log(-) at both sides gives the required expression

log(z) = s1 + loglp(exp(se — s1 — log(a))expml(ss — $2)).

A.5 Tuning the pseudo-marginal samplers

The approach we have presented depends crucially on correctly tuning the joint
truncation—accuracy sequences (see Section 3.4) and the probability mass func-
tion p(n) of the stopping times so that de-biasing behaves properly. As Fig. 8
shows, without proper tuning the sampler can give rise to chains that get stuck
for long stretches (in stark contrast to Fig. 5). The reason for this behavior is
to be found in Eq. (5). The ratio can give rise to arbitrarily high estimates of
the likelihood if the probability mass function p(n) is much smaller than the
observed decrease in error (i.e., the numerator). In this respect, the design of
p(n) bears similarity with the design of proposal distributions for importance
sampling, as we must ensure that the tails of p(n) match the decay of the first
differences ay4n4+1 — Gutn-

There is a growing literature concerned with optimally tuning pseudo-marginal
samplers to maximize some measure of efficiency (Pitt et al., 2012; Doucet et al.,
2015; Sherlock et al., 2015; Schmon et al., 2020). Recall the augmented target
density in Eq. (3), and define

C(0,U) :=log(L(0,U)) — log(L()).

Moreover, let 02(0) := Var(¢|¢). The recommendations suggest tuning the
sampler to achieve o¢(fnmap) = &, for some pre-specified target &, and with
Oniap a mode of w(0|D). The benefit of this approach is that it does not require
running the chains for long periods of time with different configurations, since
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Figure 8: Example of a poorly tuned pseudo-marginal sampler for the Schlogl
model. Each line depicts an independent parallel chain.

o¢(famap) can be estimated using simple Monte Carlo whenever we can sample
U~m.

On the other hand, depending on the particular assumptions of each study,
the recommended & ranges from 0.92 to 1.8. Given the ambiguity of these
different recommendations, we use o¢(f\ap) not as something to tune in itself,
but as a summary of the characteristics of different samplers. In short, we tune
our samplers following these steps:

1. Tune a sampler with a default value of ppin = 0.9 (as shown in the
next paragraphs) and do a preliminary run to find fyap and an estimate

Var(0|D) of Var(6|D).

2. Design an array of different samplers by running the tuning procedure
explained in the next paragraphs for all

Prin € {0,0.01,0.1,0.2,0.4,0.6,0.8,0.9}
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3. For each sampler, take {U;}1% = m and estimate o¢(fyap) using simple

Monte Carlo. Also, record the time needed to compute that estimate

4. For each ¢ € {0.1,1,1.5,2}, find the sampler giving o¢(fmapr) < & in the
shortest time.

5. For each sampler in this shortlist

(a) Optimize « in the variance of the proposal ¥ = a\//z;(ﬂD), aiming
to maximize ESS per compute time, using a grid search.

(b) Run the sampler with the tuned variance for a longer time and get
an estimate of ESS per compute time.

6. Select the sampler giving the highest ESS per compute time.

To implement the general outline described above, let us assume that for ev-
ery observation i € {1,...,n4} and every r € Z, the sequence {Mﬁk)(Azﬁi)g{;iil,m}kez+
satisfies a specific version of the second condition in Eq. (9) (Proposition 5),

namely
Mr(Ati)ri_hm - Mr(k)(Ati)rt_hzi < 107", (22)
Note that we can always satisfy Eq. (22) through the use of Eq. (16) or Eq. (20)
(depending on the algorithm). Moreover, since Eq. (22) works for £ € Ry
too, we re-index the collection of approximate transition probabilities with
{Mr(k) (Ati)e, .2, }rez, ker, - This allows us to have a finer control in the tuning
process.
In order to have a generic tuning procedure that works for both TA and RA
estimators, let agk) be either

e the estimated transition probability for the i-th observation M (At)a; 1 zis
if using method TA (see Eq. (10)), or

e the estimated likelihood for the full data Lgak)(t?) if using method RA (see
Eq. (11)).

Following the conclusions of Proposition 5, we parametrize the sequence of pairs
{(rn, kn) tnez, using a simple linear form

Vn€Zy iy = w4 n and kp = w® 4 on,

where w(™) € Z, is a truncation offset, w(®) € R an approximation quality
offset, and o > 0 a relative step-size. Indeed, in Proposition 5, the offsets are 0
and o = p/k if one allows for k, € R, as we do here. We shall see that having
non-zero offsets lets us control de variance of the estimators.

Let us begin by setting w(™,w®) to preliminary values. Define

al® = lim «® Vrez,
k—o0
al) = lim o® VEke Ry
r—00
o=
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Algorithm 4: Separate analysis of convergence of sequences

input :e= 10*8,7"6,(1310re =15

Set accuracy k. to achieve error e using Eq. (16) or Eq. (20)

> Step 1: analyze truncation r at fixed algorithm setting k = k.

DM ¢ > storage for truncation profile

aold < 0,A < 00,7+ 0

while 7 < 7 cxplore Or A > € do
Anew < ake > get estimate at (r, k¢) accuracy
D™« DM U{[r, anew]} > add to profile
A~ Gnew — Qold
Qold € Qnew

r—r+1
end
re—r—1 > truncation achieving A < e
a* ¢ Gpew > best guess of exact solution

> Step 2: analyze algorithm setting & at fixed truncation r = r..

D®) > storage for accuracy profile
A+ 1k« —10

while A > ¢ do

new afe > get estimate at (7, k) accuracy
D®) « DO U {[k, anew]} > add to profile
A+ a* — apew
k< Ek+1

end

ke k—1 > algorithm setting achieving A < e

output: D™ DO o* r k.

«a denotes the target quantity to be estimated; that is, either the transition
probability M (At;)z, , 4, if using the IA method, or the likelihood L(#) if using
the RA approach. Proposition 1 shows that we can arbitrarily reduce the vari-
ance of Z by increasing the offset w. On the other hand, the cost of computing
Z is at least the cost of computing a,,, which in our context increases to oo as
w — 00. It follows that there should be a sweet-spot maximizing the efficiency
of the sampler. Following this intuition, we would set

w™ = min {r €Zy:al™ > pmina}
w® = min {k; eR,: agé) > pmina}

for some ppin € (0,1) which would reflect a trade-off between guaranteed ac-
curacy and cost. In turn, pni, would be set by maximizing ESS per compute
time.

Implementing the above strategy has the obvious drawback that « is un-
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Figure 9: Visualization of the tuning process for an RA pseudo-marginal sam-
pler for the Schlogl model, with § = argmaxw(0|D). First row: output of
Algorithm 4. Second row: profiles of the first differences computed from that
output.

known. Moreover, we do not have a theoretical bound for the truncation error
that would tell us how high to set r to approximate . A similar thing happens
with the matrix exponential approximation error when we use the skeletoid
method, since its bound can be loose in some settings. We must therefore
begin by empirically inspecting the behavior of {a°},cz, and {a};o}keR+. Al-
gorithm 4 achieves this by first exploring the truncation sequence when the
matrix exponentiation algorithm is set to a fixed high precision setting, produc-
ing a truncation index 7. at which the difference between consecutive solutions
is less than a pre-specified threshold ¢ > 0. It also gives a best guess for the
true value a* =~ «. After this, it sets the truncation to r. and proceeds to check
the convergence in k by scanning affe at integer values of k, until it finds k. such
that a* — a’,?: < €. The algorithm returns all these values plus the complete
profiles DT, D),

The first row in Fig. 9 gives an example of the output for an RA sampler for
the Schlogl model. We see that truncating at » = 20 gives a good approximation,
while the skeletoid method gives a very accurate solution for k£ = 0, indicating
that the associated bound is indeed loose for this problem.

The output from Algorithm 4 allows us to proceed with tuning the offsets. As
mentioned in Section 5, we use stopping times with distribution N ~ Geom(p);
ie., p(n) = p(l —p)™ for all n € Z,. Note that this probability mass function
is exponentially decreasing with rate 8 := —log(1 — p). On the other hand, we
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Algorithm 5: Tune o

input :r, ke, W(S)a W(T)v Odefault = 0.1

eS| T .
0 4 Odefautt V | F=oy > initialize with Eq. (23)
(s) T . .
Aold = @) > initialize with solution at both offsets
n 07— w™; ke w® > initialize sequences

while » < r. and k < k. do

r— w40y ke w® +on

Anew < af > get estimate at (r, k) accuracy

while aq)q > apew and k < k. do > monotonicity fails
0+ 20 > double ¢ until monotonicity holds
k+—w® +on
Anew a’;' > update estimate

end

Qold € Onew

n<n+1

end

output: o

can verify that the distribution given by

Vn € Zy : p(n) := Gutntl = Gwn Auinil — Quin
QO — Qu4n
satisfies all the requirements in Proposition 1 and gives Var(Z) = 0. Aiming to
mimic this optimal distribution using a Geom(p) imposes the requirement that
the sequence of first differences Aay, 4+ := Quint1 — Gwrn be strictly decreasing.
This is in general not true for any offset, as the second row in Fig. 9 shows.
Indeed, one can observe peaks at rpeax = 15 and kpeak = —2 for truncation and
matrix exponential accuracy respectively. Thus, we impose that offsets be set
to at least the last peak observed for the corresponding {Aaytn }n>0 profiles

w® = Tpeak V min{r : (r,ak) € D™ and a > ppma*}
w® = kpeax V min{k : (k,afe) € D®) and afe > Dmina” }.

Having set preliminary values for w®), w(T) we proceed to set o. Following
the intuition from Proposition 5, we initialize this parameter with the rule

e o™
0 = Odefault V (ke—w(s)> . (23)

The ratio on the right-hand side corresponds to an “average relative velocity”
of the convergence of the matrix exponential accuracy sequence versus the trun-
cation sequence, while cgefauit > 0 corrects border cases. For doubly monotone
sequences, there is no additional tuning required. In other cases, we must set
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o high enough to ensure monotonicity holds. The process is summarized in
Algorithm 5. Whenever we encounter a failure in monotonicity a&n’gl) < agfb ),

we double o and recompute agnffll) until the condition is met.

Having set o we can adjust the offsets to match the behavior of the joint

sequence. Let npcax be the index of the rightmost peak in the sequence of

. kn kn
differences Aay,41 = ag«n ;;1) agn ). Define

R . (kn *
Noffset = mln{n > Npeak - CLS“” ) 2 Pmind }

and update the offsets to w(™ =7, and w® =k, .

Finally, to tune p, we fit a linear regression without intercept to
log(Aay) — log(Aag) = Byn + &,

where {¢;} S N(0,62). Then we set p; = pV (DA (1 — eB;))7 where [p, 7]
defines a pre-specified safe interval (we use p = 0.4 and p = 0.9).

B Proofs

Proof of Proposition 1. The fact that Z > a,, almost surely follows directly
from the definition of Z and the non-decreasing property of the sequence. Un-
biasedness follows by the monotone convergence theorem:

EZ] =a,+E Z 1{N =n} (Awtnt1 — Qwgn)

n:p(n)>0 p(n)
aw n — Qu+4n

mar 3 st
n:p(n)>0

= Qy + Z aw+n+1 - aw+n)
n:p(n)>0

=a, + Z aw+n+1 - aw+n) (Eq (4))
n>0

= lim a,

n— oo
= .

Let Y := Z — a,,, so that

_ (dwiN+1 — uiN) _ —n (Awtnt1 = Awin)
V=R T 2 MV =mpmEE e

n:p(n)>0
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Then

vi= | 3 1v=un (Gutn+1 — Quwn)
n:p(n)>0 p(n)
= Z 1{N = n} (aw+n+1 — aw+n)2 .
n:p(n)>0 p(n)2

Applying expectations on both sides and using the monotone convergence the-
orem,

E[YQ] =E Z 1{N =n} (wint1 — aw+n)2

2
n:p(n)>0 p(n)
_ 2
= Z p(N:n)(aw+n+1( )2%+n)
n
n:p(n)>0 p

_ Z (@it — aw+n)2.
n:p(n)>0 p(n)
Finally, the expression for Var(Z) follows from
Var(Z) = Var(Y)
=E[Y?] -E[Y]?

—(a —ay)?.

_ Z (aw+n+1—%+n)2

n:p(n)>0 p(n)

If the variance is finite, then the series above is finite; the fact that a,, 1 « yields
Var(Z) — 0 as w — oo. O

Proof of Proposition 2. Since p(n) > 0 for all n € Z,, by Proposition 1,

Var(Z) = Z (aw+n+;(n)aw+n) —(a— aw)z

n€EZy

(aw+n+1 - aw+n)2
<2 p(n)

n€Zy
—2(w+n)r

026
< -
<y e

The result follows from the geometric series formula. O
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Proof of Proposition /4. From the monotonicity assumptions, ar]fl") converges

to some limit 8 < a. Suppose for the purpose of contradiction that 8 < a.
From the definition of a, and the assumption 7, 1 co, we can pick ng €
Zy, e > 0 such that

ar,, > B+e. (24)

Then, for j € N, iteratively pick n; > n;_1 such that ky, > k,,_,. This is
possible using the assumption k,, T oco. Then,

(knj)
ar,,"" 1 - (25)

Since n; > ng, and 7, is increasing, Tn; = Tne, and hence

(knj) (knj)

7'71_,'. > a'r'no . (26)
Combining Eqs. (24) to (26) yields

ko, . kn
B = lim ag,L_’) > lim agnoj) =a,, >p+e,
j— j—o0 0
which is a contradiction. We conclude that g = «.
O

Proof of Proposition 5. Since 1, T co and k,, T 0o, Proposition 4 shows that

kn
a&n ) 1 a. Moreover,

ofiit? ol <ol
= (a—ar,) + (ar, —al¥))
< cre” P 4 cge R le/om]
< e+ g HP/Rn

< 2max{c, cofe™ "

Lemma 12. Let Q be a non-conservative rate matriz. Define

R:= (_221 %T) . (27)

Then R is conservative, with inf; Ry , = inf; Q », and for n € N,

0 0 o”
R —(in Qn).

‘R 0 o”
€ T 1-eRr eR)-
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Proof. The first property inf; R, , = inf; Q, . is clear from the definition of R
in Eq. (27), since only a 0 is added to the diagonal, whose elements are always
non-positive. For the second property, we proceed by induction. The case n = 2

gi‘es

Assuming the property holds for some n, then

n w0 0T 0o o\ 0 o”
R W L) B )

We conclude the result holds for all n € N. Next, note that
tR __ " n
=143 —R
n=1
4 ( 0 o’ )
=l @ X0, Q"
(Cizimen o)

- oL mer]1 e
B 1 o”
“\o[ee—11 e

1 o’
1—e@1 @)
O

Proposition 13. Forr € Z., let Q. be the non-conservative rate matriz given
by Proposition 3, with associated truncated state-space Z,.. Then for allt > 0
and z,y € Zr,

[€'9],, =P.(X(t) =y and Vs € [0,t] : X(s) € Z;),

where {X (t) }1>0 is the CTMC on Z driven by the full non-explosive rate matriz
Q and initialized at X (0) = x.

Proof. Let 2, = 2, U {A}, and consider expanding Q, to @, as in Lemma 12,
so that A becomes the absorbing state. Let {X(¢)};>0 be a CTMC defined on

f’%jr driven by @r and initialized at X(0) = z. By Lemma 12, we obtain that
for all x,y € Z,

€97,y = ['9"]0y = Po(X(t) = v)

Now, we can couple (X (t), X(t)) by sharing the random variables used in their
simulation (see Algorithm 1). Denote

TA = inf{t > 0: X(t) = A}
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the first hitting time of A. Then

Ve [0,7a): X(t) = X(t) € 2, and Vi>7a:X(t) = A.

Therefore,
[etQT]z,y = Pm(f(t) = y)
=P, (X(t) =y,7a > 1)
= PI(X(t) =Y, TA > t)
=P, (X(t) =y and Vs € [0,t] : X(s) € Z7).

O

Proof of Proposition 6. To show double monotonicity, we must prove that
forall,s € Zy,t >0, and z,y € Z,,

(M (1)) < (M (8)) 0,y

We first show by induction that for all r € Z,, z,y € Z;, and n € N,

(P;lJrl)z,y 2 (P;L)x,y

For n =1,

(Pr-i-l)w,y = 5w,y - q_l(QH—l)w,y = 5w,y - q_l(Qr)w,y = (Pr)ac,y-

Now suppose that the result holds for some n € N. Then

(P?J:l) = Z (P;L+1)m,Z(Pr+l)z,y
rEX i1
> Z r+1 T,z r+1)
zEXy

(Discard non-negative summands)

> 3 (P s(B)

2€Zr
(Induction and case n = 1)
= (P rn +1)w,y-
Thus, the result holds for all n € N. Finally,

—TL

qt
(Mr(il )y = Zeqt Pliley > Zeqt( z)f [Py = (M(S)(t))my'
n=0

O
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Proof of Proposition 7. Note that P = I —Q/q is sub-stochastic. Moreover,
for all n € Z, P™ is sub-stochastic too. Then,

0< 3 (MWy ~ IOWLy) = Y Y e E

yex yEX n=s+1

Z eqt(—@t)” Z [Pn]w’y

n!

n=s+1 ye&
= g (—=q)"
S n:zs+l ‘ TL' 1
=1—F(s; ).

The interchange of sums is justified by Tonelli’s theorem since the summands
are non-negative. Taking the supremum over ¢ gives the required result. O

Lemma 14. Let Ns be the number of jumps of the CTMC in (0,5]. Then, for
all z,y € &,

Py (X(6) =y, Ns < 1) = (5(0))ay
for S(0) defined in Eq. (17).

Proof. Case y = x is given by
P,(Ns = 0) = P, (first jump occurs after §) = edw:wd
For y # x,

4
:/ Po(X(8) =y, Ty € du, Ty > 6)
0

é
B / (_Qx,w)eqm‘muqxi,yeqy’y(aiu) du
0 (_Qz,z)

&
— qz’yefh;,yé/ e(‘]cc,w_Qy,y)U du
0

If ¢u o = qy,y We get Pp(X(0) =y, N5 < 1) = g, ,6e%=°. Otherwise
8
# e(ql',w*q’y,y)u
Qz,x — dy,y 0
6€(Qm,m_q1¢,y)§ —1

]P)E(X(é) =Y, N§ é ]-) - q:c,yeqy’y(S

= qz,yeqy’y
qr,x — dy,y
eqzm‘s — eqy,y‘s

=(qzy
Gz, — Qyy
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Lemma 15. Fiz k € Z, and § = t27F. Let
Ny, := number of jumps in (16, ({ +1)d], 1€{0,1,..., k=11,

Then for x,y € & and L € N,

L—-1
P, <{X(L5) =y} 0 () {N < 1}> = [S(6) ]a.y- (28)

=0

Proof. If @ is non-conservative, append additional entries corresponding to an
absorbing state A as in Eq. (27). Since A is absorbing, all transitions between
x,y € £ must necessarily avoid it. Let F; := 0(X(s),0 < s < t) be the natural
filtration of the process. We can derive the following recursion

P, ({X((L+ 1)6) =y} N ({Nix < 1})

=0

r L—-1
= S B, [1{X(L6) = 2} [] 1Nk < DXL+ 1)8) = g} 1{Np s < 1}]
2eX L =0

B L—1
= > By |[H{X(L5) = 2} [ [ H{Niw < DB, [I{X((L+1)8) = y}1{Np . < 1}FL5]]
zeX L =0

L-1

Y B 100028 — 2} T 1M < 1. (10X >—y}1{No,ks1H]
zeX L =0

(Markov property)

=> P <{X (L6) =z} N ﬂ{le<1}> = ({X(6) =y} N {Nox < 1})

2e€X =0
(Independence)
L—1
= Z P, ({X (Lo) =z} N ﬂ {Nix < 1}) [S(0)]=.y
2e€X =0
(Lemma 14)

Now proceed to prove Eq. (28) by induction. Using L = 1 in the recursion above
yields

Po(X(20) =y, Nok <1, N1 p <1) = > Po(X(8) = 2, N < 1)S(0)z,
zeX

= Z S((g)z,zs((s)%y

z2e€X
(Definition of S(4))

= [5(5)2]:5711'
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Assume Eq. (28) holds for all natural numbers up to L. Using L + 1 in the
recursion above yields

L
P, ({X((L +1)8) =y} 0 [N < 1})

=0

= Z P, ({X(Lé) =zIN lﬁl{Nl,k < 1}) S(0) 2y

zeX 1=0
=) [8(6)"]a.2[S(9)]=.y
zeX
(Induction)
= [S(8)F ],y
O
Lemma 16. Let
2k 1
Ay = m {Nip <1} (29)
1=0

be the event which prescribes that at most one jump occurs in each bin. If the
process is non-explosive, then for all i € &

P, | | 4| =1L

keZy

Proof. Let T denote the total number of jump events. For every n € Z., let
B, ={T <n}.

We first show that B, C UpA,. Suppose w € B,, and let ¢, denote the
smallest inter-arrival time for the jump events in w. Since w € B,,, the number
of jump events is finite, therefore €, > 0. Hence there exists a k,, namely

t
127 ke < € — ko, = [Iog2 <)—‘ ,
€w

such that for k¥ > k,,, w € Ay (to see why, note that the smallest inter-arrival
time in w is larger than the mesh size in Aj, hence there can be at most one
event in each block of Ay). It follows that w € U A.

Now, by non-explosivity, P,(UB,) = 1. Additionally, {B,}necz, is an in-
creasing family of sets. Hence,

P, (UkAk) =P, ([UkAk} N [Uan])
= lim P, ([UrAxr] N By) (continuity from below)
n— oo
= lim Py(B,) = P,(UB,) = 1.

n— oo
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Proof of Proposition 8. Note that {Ay}rez, —as defined in Lemma 16—is
an increasing sequence of sets because the k-th grid is strictly contained in the
(k + 1)-th grid, so that

t127F (20 + 1)27FHD U (#(20 + 1)27* D 11+ 1)27F] = @127k 11+ 1)27F).
Applying Lemma 15 with L = 2* yields
. k

Since Ay is increasing, {X (¢) = y} N Ay is also increasing. Therefore, by conti-
nuity from below

lim [S(t27%)%"],, = Jim Po({X (1) = y} N Ax)

<{X =y}n U Ak)

keN

U4

keN

)

=P, (X(t)=y) - P, ({X(t) =y}n

uAk

keN

) = 0 by Lemma 16)

O

Proof of Proposition 9. To show double monotonicity, we must prove that
forallt >0, r,s € Z,, and all z,y € 2.,

(S(t27) oy < (Sr41(27°)% )ay- (30)

By induction on s € Z,. The base case s = 0 follows from the definition of @,
since for all z,y € %,

(Qr):p,y = wa = (QrJrl)a:,y

Thus, for all t > 0 and z,y € 2,

[Sr Dy = [Sr41(B)]ay-
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Now, assume Eq. (30) holds for s € Z4. Then

o(s+1)

[Sppa(t27 D) [Spa(t27 D)8, 1y (t27(8+1))25]m,y

= Z [Sr+1 (t27(s+1))2s}m,l [Sr41 (t27(8+1))2s]l,y
leZrs1

> [Sepa (27T (S (127 D),
ez,

Ja.y

(drop non-negative terms for [ € 2,11\ Z;)

= Z [Sr41 (tlzis)?s]:c,l [Srt1 (tlzis)Zs]l,y
e

(t' :=1/2)

2 Z [Sr(tl27s)25]:c,l[Sr(t/275)2 ]l,y
e

(induction)

(s (s+1)
= [Sr(ﬂ ( +1))2 ]:L’y

Proof of Proposition 10. Note that
[M ()]~ [S(E27%)2 ],y = Pa(X (1) = y)—Pa(X (1) = y, Ax) = Po(X(t) =, A7),

where the event Ay is defined in Eq. (29). Summing over v,

STUMOay — [SE270)% 1oy) = Y Po(X(2) = y, AF) < Po(A5)

yexX yex

where the last inequality recognizes the possibility that (Q may be non-conservative.
Since ¢ > —oo, the process can be simulated via uniformization. Let

Nl,k g Poisson(—gt27%), 1€{0,1,...,28 — 1}
denote the number of uniformized events in each block of the partition. These
are independent and identically distributed by definition of uniformization.

Also, each of the uniformized events is either a self-transition or a jump. Hence,

Nhk <1l = Nl,k <1.
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Then,

Now, use the expansion

T\ x? x3
—e (1 f) —1-Z4o0(Z
c (+n 2n+ <n2)

with © = —gt and n = 2¥ to obtain

k
P, (A5) < 1— e (1—q27%)" = (qt)®27%1 + O((gt)*2~2*).

Since the bound on the right-hand side does not depend on x, we conclude that

1S(£27%)%" = M(#)]|oo < sup Po(A$) < (g8)%27%1 + O((qt)>27%).

rzeX
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