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Abstract

We demonstrate that the run time of implicitly parallel programs can be statically
predicted with considerable accuracy when expressed within the constraints of a skeletal,
shapely parallel programming language. Our work constitutes the first completely static
system to account for both computation and communication in such a context. We
present details of our language and its BSP implementation strategy together with an
account of the analysis mechanism. We examine the accuracy of our predictions against
the performance of real parallel programs.
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1 Introduction

Deducing interesting dynamic characteristics of programs (and in particular, run time) is well
known to be an intractable problem in the general case. In practice, programmers rely upon
a combination of common sense, intuition and profiling to make the important algorithmic
decisions which will affect performance. The situation is further complicated when parallelism
becomes an option. One approach to alleviating this problem is to place restrictions upon the
programs which can be expressed. Two research threads which have taken this route involve
the “skeletal” and “shapely” paradigms. In the extreme, these can produce a language for
which static analysis becomes tractable.

The skeletal approach to the design of parallel programming systems [3, 4, 12, 13] proposes
that the complexity of parallel programming be contained by restricting the mechanisms
through which parallelism can be introduced to a small number of architecture independent
control constructs, originally known as algorithmic skeletons. Each skeleton specification
captures the logical behaviour of a commonly occurring pattern of parallel computation (such
as “divide-and-conquer”, “farm” or “scan”), while pre-packaging and hiding the details of its
implementation using the explicit parallelism of lower level primitives provided by the target
system. A common theme has been the use of templates and their associated cost models to
guide implementation and semi-automated performance prediction.

The shapely programming methodology [8, 9, 10] proposes that through careful language
design the shape (loosely speaking, the size and structure) of data at any point during exe-
cution can be determined statically, even for programs in which shape is varied dynamically.
This property is independent of parallelism but information on shape is fundamental to the
computation of communication costs.



This paper investigates the use of both skeletal and shapely restrictions to produce a paral-
lel programming language for which static performance prediction is completely automatable.
Our source language is functional, since this is the most convenient paradigm within which to
express our constraints. Our analysis predicts the behaviour of these programs when compiled
for an SPMD model, choosing BSP [7, 15, 17] to introduce parallelism because of its explicit
support for dependably stable performance analysis across diverse architectures. Our work
extends previously reported results in the field [6, 11].

In common with other skeletal languages, our approach provides a structured conceptual
framework for message passing programming. Structured languages and methodologies pro-
mote an approach in which the key algorithmic decisions are taken early and at a high level,
enhancing both portability and maintainability [1, 5]. Our language and analysis could be
used either as a real programming framework in its own right, or as a testbed for algorith-
mic ideas which would subsequently be re-coded semi-automatically into a more conventional
form, for example following the BSP implementation templates of the skeletons.

In section 2 we present an overview of our approach’s structure and terminology, relating
the work presented here to earlier papers. Section 3 presents our language, its implementation
strategy and the definition of our analytic technique. This is completed in section 4 with the
detailed implementations and costings of the skeletons. Section 5 demonstrates our analysis
in action, comparing the performance of two algorithms for the same problem against each
other and against the run time of equivalent hand compiled BSP programs on a real machine.

2 Overview and Terminology

Static shape analysis to support compilation and cost prediction for parallel programs was
originally suggested by Jay [8] and first applied in detail to the cost analysis of VEC, a small
shapely functional language [11]. This work used the tightly synchronised, uniform access
cost, shared memory PRAM model as its target architecture. The PRAM is an abstract
model which takes no account of the communication and contention costs incurred on re-
alistic parallel machines (whether explicitly programmed or in support of a shared memory
abstraction). Preliminary work addressing this issue was presented by Hayashi and Cole in
[6], with BSP replacing the PRAM. This required a number of amendments to the analytic
framework and the assumed implementation mechanism (compiling VEC programs to BSP)
was kept deliberately simple in order to focus on these structural changes. In [10], Jay sketches
the application of skeletal and shapely techniques to the cost analysis of a parallel extension
of the FISh programming language.

In this paper, we further develop the model of [6] and in particular capture the behaviour
of an optimisation (concerning the re-distribution of intermediate data) which would be made
by any realistic compiler. This requires further refinement of the analysis. We also add new
operators (and their implementation skeletons) to VEC, in order to broaden applicability and
facilitate coding of our examples. We call the resulting language VEC-BSP to distinguish
it from its predecessors. Finally, for the first time in this research thread, we report on a
comparison of predicted and actual performance.

In essence, our approach is a form of abstract interpretation. The application of a VEC-
BSP program to real data is modelled by translating the VEC-BSP program into the closely
related language MSIZE, representing the data term by a simpler term storing only its shape,
then applying the former to the latter to produce a prediction of execution time. The trans-



lation strips out all data and data-oriented operations, replacing them with operations on
shapes and machinery to gather the communication overheads which would be incurred by
the real computation. We now outline the structure of this process.

Source Language

VEC-BSP is a shapely functional language which operates upon nested vectors of data. Shape-
liness means that the form and size of data structures can be deduced statically. Shape
constraints (which are analogous to type constraints) are used to ensure that all elements of
a vector have the same shape (so that information about large structures can be captured
and manipulated concisely). VEC-BSP terms use standard functional terminology and have
the expected semantics. A small number of built-in second order functions have parallel
implementations. Its terms and types are discussed in more detail in section 3.1.

Target Language

Msi1ZE is essentially a restriction of VEC-BSP in which types, terms and operators which
represent and manipulate real data have been removed, leaving only those which handle
shapes. It also includes a small number of new components, not present in VEC-BSP, to
allow manipulation of cost information. These are discussed in section 3.4.

Type Framework

Types of VEC-BSP terms are exactly those that would be expected for an equivalent con-
ventional functional program (primitive datum types, pairing and function types), with the
addition of a type constructor vec for vectors (instead of lists) and types sz and un. sz is used
to denote vector lengths, indices and other shape oriented quantities, while un denotes the
shape of a primitive datum.

Types available in MSIZE are similar to those of VEC-BSP, with the exceptions that
there are no primitive datum types (integer, boolean and so on) or structured types built
from these, and that there are two forms of pairing, used to distinguish between pairs which
are derived from pairs in the original VEC-BSP program and those which correspond to shape
information about vectors (consisting of a pair recording vector length and element shape).

Evaluation costs are modelled as functions from the standard BSP performance parameters
to time. Thus, for a given program and data set, our analysis returns a function which can
itself be evaluated with the characteristics of different real machines. We use T" to denote the
type of such time functions.

Translation Function

The core of our method is a translation function cost which accepts VEC-BSP terms and
returns MSIZE terms. The translation extends that which would be derived for a simple
shape analysis which for data terms would remove primitive data, leaving only a condensed
description of the structure, and for function terms would produce a function from the shape
of the argument type to the shape of the result type. For example, the shape of a vector
of vectors of integers would be a nested pair (m, (n,un)) where m is the length of the outer
vector and n the length of the inner vectors (which must all be the same, as discussed above).



Our translation augments the resulting terms with evaluation information. For data terms
this involves adding

e a measure of the quantity of data which would have to be communicated to describe
the term;

e an indication of the data distribution strategy required by the term’s implementation
(in order that communications between evaluation phases can be optimised);

e an evaluation cost function for the term, mapping from the BSP performance parameters
to time (so that evaluation time for the term can be computed, given the performance
characteristics of the specific target architecture).

Notice that this quite correctly means that two terms which reduce to the same value (and
hence have the same shape) can have different costs, depending upon the method by which
they are computed (e.g. which parallel operators are used, if any). Consider terms ¢; and to
which evaluate to the same vector of length n. Suppose t; computes its result in parallel, while
to is entirely sequential. The costs of the terms will take similar forms (((n,un),n), (¢,s)) and
(((n,un),n), (¢',s")) indicating that both results have the same shape (n,un) and data size
n. Meanwhile, the cost functions ¢ and ¢’ and distribution strategies s and s’ are distinct,
distinguishing the implementations.

For function terms we additionally annotate the translated term with an indication of the
parallel application structure involved. When the function is applied, this is propagated as
the data distribution strategy of the result.

At the heart of the translation lies the mechanism for costing application terms of the form
t t/, given the costings of the function ¢ and argument ¢'. The intricate details are captured
in our MsIZE function bspapp presented in section 3.4. Essentially, this must combine the
costs of computing ¢ and ¢’ with the cost of applying ¢ to t/, also deducing information on the
shape, data content and distribution information of the result. The function and arguments
to compute these are of course bound up in the cost information for ¢ and ¢’ themselves.

The type information involved in translation is presented in section 3.4 and the translation
itself is discussed in detail in section 3.5.

3 VEC-BSP Cost Analysis

3.1 VEC-BSP: A Shapely Skeletal Language

Our language is based on the small shapely functional language VEC defined in [11], with the
addition of new parallel skeletons. We summarise its features here. The types are

D ::=nat | bool |...
Tu=D|sz|un|7TXT|vecT

O:=1|0x6]0—10

where D can include other simple datum types, and the type hierarchy precludes vectors of
functions. The terminology of vectors (rather than lists) is used to emphasise the fact that
the lengths of such objects will be statically determinable as items of type sz. Although sz is



isomorphic to the natural numbers we will initially use the notation n to distinguish shape
sizes from ordinary numbers. Terms in VEC-BSP are given by

te=d|c|x|Axt|tt]|iftthentelset |ifstthent elset

where d ranges over simple constants (integers, arithmetic operations and so on) and ¢ ranges
over the combinators with non-trivial shapes (those whose behaviour impacts upon the shape
of terms) including our skeletons and a selection of conventional sequential functional opera-
tors (length, fst, snd and so on). A full list of constructors appears in section 3.5. VEC-BSP
has four skeletal combinators which introduce parallelism:

e map - applies some function f to each element of an argument vector.
mapf [xla Lo, -, xn] = [fxla fx27"'7fxn]
e fold - combines the elements of a vector using an associative binary operator .

fold @ [.’El, To, -, :I;n]:;cl Dz DD

e pair_map - applies a function to elementwise pairs drawn from a pair of vectors of the
same length.

pair—mapf([xth?'” 7:677,]7 [yhyQ:"' 7yn]) = [fxl Y1, fo Y2,y fl’n?/n]

e c_prod - applies a function to the all elements of the cross product of two vectors.

C_pI’Od f [xla T2y xm][yla Yz, yn] = [[fxl Y1, fo Yi, - 7fxmy1]7
[f'rl Y2, fx2y27"'7 fCUmZUQ]a
[fxl Yn, f-rQ Yny "y fxm ynH

As in the original work on VEC there are two forms of conditional: a data conditional if,
whose condition is given by a datum; and a shape conditional ifs, whose condition is a size
(with "0 interpreted as false, other sizes as true). The data conditional allows the condition
to be data-dependent, but ensures shapeliness by requiring that the branches have the same
shape, drawn from the shapes of terms in 7 above. This is enforced by statically checked
shape rules. By contrast, the branch taken by the shape conditional ifs is known by shape
analysis, so the branches may have arbitrary types and shapes. The iter combinator allows
bounded iteration, controlling repeated application of a function to data. The number of
repeats must be statically determined. We exclude unbounded iteration and recursion, since
our goal is full automation.

3.2 BSP

In the BSP model [15] a parallel computer consists of three components: a set of processors
each with a local memory, a communication network and a mechanism for globally synchro-
nising the processors. A BSP program consists of supersteps each of which contains three
phases: local computation, global communication and synchronisation. BSP has a cost model



which is attractive by virtue of its conceptual simplicity and pragmatic accuracy. Although
existing parallel computers have very different performance characteristics, these differences
are captured by three parameters, that is: p: the number of processors; g: the ratio of commu-
nication throughput to processor throughput; and /: the time required to barrier synchronise
all processors. The g and [ values for several typical parallel computers are reported in [15].
The effects of contention and congestion on communication are captured in parameter g.
When the communication pattern requires at most h words into or out of any processor, the
communication time is determined as h * g. The cost of a single superstep is determined by

cost of a superstep = max w; + max h; * g+ 1{
0<i<p 0<i<p
where w; = local processing time on processor i, h; = the number of words transmit-
ted /received by processor i. The Oxford BSPIlib [7] provides a BSP interface for the par-
allelisation of C programs.

3.3 A VEC-BSP Implementation Strategy

In our earlier paper we outlined a simple implementation strategy for VEC on the BSP
computation model [6]. We now review this and explain its efficiency problem.

Because BSP has no shared memory the main issue is to specify placement and movement
of data in the implementation while keeping things simple enough to predict cost automati-
cally. We address this by using processor 0 as a master processor in which the necessary data
is stored at the beginning of computation and the result is eventually stored at the end of the
computation.

A complete computation of a program tt' has a nested structure consisting of four parts:
an evaluation of the argument ¢’ which we call Ey; an evaluation of the function ¢ which we call
FE:; a communication C', in which the data of the results of both component evaluations are
redistributed for the next process followed by a barrier synchronisation; and A, an application,
in which the result of F; is applied to the result of Fy. Nesting arises because Fy and Ei
can themselves be application terms. The application phase A may be either sequential
or parallel. A sequential application is executed only in the master processor, so there is
no communication in C' because the necessary data already resides in the master processor.
A parallel application, dictated by the use of one of the parallel skeletons, requires that
any data component of the result of F; be broadcast to all processors. Note that we use a
parallel implementation template in which all processors perform the same operation. The
data describing the result of Fy is scattered to all processors evenly. Figure 1 illustrates the
scatter and broadcast — scatter communication patterns. In our execution diagrams time
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Figure 1: communication patterns

progresses from left to right with activities in a processor proceeding horizontally. Thus, in



the scatter diagram the master processor (at the top) scatters data between itself and three
other processors. Dotted lines indicate scatter and dashed lines indicate broadcast. The
narrow vertical box denotes machine wide synchronisation.

Combinators map and fold are typical examples of parallel application. The implementa-
tion template of map applies the function sequentially on the vector segments in each processor
then gathers the results to the master. The fold implementation template folds sub-vectors
sequentially on each processor. Results are transferred to the master processor which folds
them together sequentially to compute the overall result. Figure 2 illustrates the application
patterns, with solid lines indicating computation.

O———=0 O——=0- 70 O——=0- a@ O
O——=0O " O—=0O.
O——==0 O——=0O
O——=0O' O——=0
sequential map fold

Figure 2: application patterns

We now introduce our communications optimisation. In [6] we required the parallel im-
plementation templates to store data in the master processor at the end of A. Consequently,
the data of the results of E] and F; were also always stored in the master processor, since
these were either themselves nested parallel applications abiding by the same rule, or were al-
ready sequential. This rule simplified implementation by providing a common interface across
nested terms. However, it also causes an efficiency problem. For example, if a parallel appli-
cation process finishes by gathering results to the master, only for these to be subsequently
scattered as the inputs to an enclosing parallel function, then the gathering and scattering
are superfluous. The upper half of figure 3 illustrates the structure of such a computation,
for a term of the form map f (map g v). The first phase implements the map of g (with ¢
assumed to be primitive), the second phase computes f (sequentially in this example), the
third phase broadcasts data describing f and scatters the result of the first phase and the
final phase computes the outer map. The gathering and subsequent scattering of the result
of the inner map is clearly redundant.

There are several possible resolutions. We could define several versions of a skeleton, with
implementations differing only in data distribution and expect the programmer to choose
one of them to optimise each C'. This would make programming less abstract and more
difficult. Similarly, we could predefine combining skeletons following [16]. Instead, we choose
an automated route, demonstrating that our static analysis can be extended to analyse the
interface between communication patterns. The next subsection describes how our model
detects and resolves such inefficient cases. The lower half of figure 3 illustrates the resulting
structure.

3.4 The Cost Translation Framework

The cost calculus in [11] computes PRAM cost and so does not model communication effects.
In [6] we extended the analysis to detect inter-processor communication costs in terms of the
BSP cost model. In this section, we show how the analysis is further extended to include
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Figure 3: removal of unnecessary communication

information on communication patterns in order that these can be optimised.

As in earlier work, the translation is defined by a function cost which is now from VEC-
BSP to Msize. The translated program, when run, will compute the shape of the result and
the run-time cost of the corresponding compiled BSP program. For a VEC-BSP term ¢ : 0,
the corresponding MSIZE term has type

cost(t) : (tycostc(0) x sz) x (T X sz)

where tycostc(0) reflects the shape of ¢. The first sz reflects the size of the data which will
be transmitted to the following process when ¢ is involved in an application. T reflects the
BSP cost of term ¢t. The final sz reflects the data pattern, which we introduce in this paper
to analyse the interface between communication patterns of individual skeletons.

The type translation tycosto is defined as follows:

tycostc (D) = sz

Sz

tycostc(un)

(

(
tycostc (0 x 0') tycostc(0) x tycosto(0')

(

(

tycostc(vec 0) = sz xtycostc(0)

tycosto(sz) = sz

We assign "1 to the shape of D and un. The shape of a vector is a pair comprising its length
and the common shape of its elements. Unlike VEC-BSP, MsizE distinguishes between pairs
which represent the shape of VEC-BSP pairs, denoted by (, ) and those which represent the
shape of vectors, denoted ( , ), corresponding to tycostc(0) x tycostc(0') and sz X tycost(0)
respectively.

The shape of a function is defined by attaching an application cost and an application
pattern to the conventional shape, that is

tycostc (0 — 0') = tycostc(0) — C(tycostc ("))
where, CO =0 x (T X sz)



The shape types tycostc(0) and tycosto(0') reflect the change of shape, T captures the
application cost of the function and sz reflects the application pattern ( "0 for sequential,
"1 or 2 for parallel as discussed below). A term by term definition of cost is presented in the
next section.

The information on data size, application cost and application pattern is added to allow
calculation of communication costs. Communication occurs in two situations, firstly in C
when a parallel pattern is used, and secondly in A when a parallel template is involved. In
the first case, the communication cost is determined as a function of the number of words
transmitted by processor 0, that is

sx(p—1)*g

for broadcasting the s words of the result of F; to the worker processors, and

, p—1
s *
P

*g

for scattering the s’ words of the result of E} to the worker processors. To compute s and s’
from a shape expression we define an operator size:

size (x,y) = size x + size y
size (z,y) = size x * size y

size n="n

To optimise communication between component evaluation and A, the data distribution
of the result of Fy and data distribution required for A should be well matched. In order to
achieve this, we distinguish the parallel application pattern in which the result is obtained by
just gathering the local results on the worker processors at the end of the application process
like map, from the other parallel patterns like fold. We label the former pattern™1 and the
latter pattern "2. The sequential pattern is labelled "0 . The data pattern is added to the
MSIZE term to indicate which application pattern was used to generate ¢ (with~0 also denoting
the case that ¢ is primitive). The communication interface can then be optimised statically
by removing unnecessary communication, using the information on the data pattern of the
result of Fy and the application pattern of the function. The data pattern of the application
result is set to be equal to the application pattern used to create it.

The cost of the application process, including this optimisation, is captured in our trans-
lation by the MsIZE function bspapp.

cost(tt') = bspapp cost(t) cost(t')

To improve the readability of its definition we introduce some additional notation. If x is the
shape of a vector then the length of the vector and the shape of its elements are denoted t_len x
and t_eshp x instead of fst x and snd = respectively. Similarly, if f is the shape of a function
and z is the shape of an argument, then fz takes the form (shape of result, (application cost,
application pattern)). We use the shorthand t_shp(fz), t_apcost(fz), t_pattern(fx), t_size(fz)
(which is equivalent to size(t_shp(fx)) ) to represent the shape of the result, the application
cost, the application pattern and the size of the result of fx respectively. The definition of
bspapp is



bspapp ((f, s), (T, d)){(z, s') <T/v d,>>
= ((tshp (f =), (data_sz (t-apcost (f x)) ),
(T +T") 4+ Xp,(g,1)).((comm_cost (t_pattern (fx)) d' s s") + 1) + t_apcost (f z),

t_pattern (f x)))

where
dataszt = s+ ¢, if t="0
= tsize(f z), otherwise
comm_cost x1 2 x3 x4 =70, if 1 ="0
=@3x(p—1)—zd=((p—1)/p)xg—1, ifx2="1
=(@3*x(p—1)+zd4*x((p—1)/p)) * g, otherwise

in which data_sz captures the fact that if the result of an application is a function then
there is no application cost and the message size of ¢ ¢’ is just the sum of s and s’. When
the result is not a function the message size is t_size (f z). The time function for ¢ ¢’ has four
parts, namely the costs of the component evaluations T and 7", the communication cost, the
synchronisation cost [ and the application cost t-apcost (f ). Note that + indicates point wise
function addition in this context. The communication cost, captured by comm_cost, depends
on the application pattern t_pattern (f x) and the argument data pattern d’. If the application
pattern is not "0 and the data pattern is "1 (result of a map), then our optimisation applies,
allowing the communication cost for gathering the local results and the synchronisation at
the end of the evaluation of the argument to be removed and the communication cost for the
next scattering of the data to be omitted.

3.5 Detailed Cost Translation Rules

We now present the cost translation rules from VEC-BSP to MsIZE for basic term expressions
and functions. The application cost functions for our parallel combinators are too complex
to present in-line and so we give them names here (apcost_map and so on), presenting full
definitions in section 4. We now omit the notation ~ for size numerals to reduce clutter.
Semantically, the terms of the language have the obvious strict functional operational inter-
pretation with the exception of parallel skeletons like map and fold which are operationally
parallel, as indicated by the presence of the parallel patterns in their cost expressions.

cost(d) = ((1,1),(0,0)) where d is a datum constant
cost(d) = ((Az.(\y.(1, (binOpConst, 0)), (0,0)), 0), (0, 0))
where d is a binary datum operation
cost(x) = ((z,sizex),(0,0))
cost(Ax.t) = ((Az.(fst (fst (cost(t))), (fst (snd (cost(t))), 0)),0), (0, 0))
cost(tt") = bspapp cost(t) cost(t')
(

cost(if t then t' else ")
= add (mszmax cost(t') cost(t")) (fst(snd cost(t)))
where add {(z, s), (t,d))t' = ((x,s), {t + 1, d)))

10



cost(ifs t then t' else t")
= add (ifs (fst (fst ())) then cost(t') else cost(t"))(fst(snd cost(t)))

cost(length) = ((Az.(1,(lengthConst, 0)),0), (0, 0))

cost(entry) = ((Az.(\y.(t_eshp z, (entryConst, 0)), (0, 0)), 0}, (0,0))

cost(pair) = ((Az.(\y.{(z,y), (pairConst, 0)), (0,0)), 0), (0, 0))

cost(hd) = ((Az.(t_eshpz, (hdConst, 0)), 0), (0,0))

cost(tl) = ((Az.((fstx — 1,snd x), (tIConst, 0)), 0), (0,0))

cost(fst) = ((Az.(fstz, (fstConst,0)),0), (0,0))

cost(snd) = ((Az.(sndz, (sndConst, 0)),0), (0, 0))

cost(map) = ((AMf.(Az.((t_lenz,t_shp (f (t_eshpx))), (apcost_map f z, 1)),
(0,0)),0),0,0))

cost(fold) = ((A@. (\z.(t_shp(iter(preiter(®(t_shp(iter_rit))))(t-shp(iter_rit), (0,0))(p — 1)),
(ap-cost_fold & z,2)),(0,0)),0),(0,0))

where preiter f (x, (t,d)) = adds (f x) t
adda (s, (t,d))t' = (s, (t +t',d))
iter_rit = iter(preiter(®(t_shp(z))))(t-shp(x), (0,0))((t-len(z)/p) — 1)

cost(pair_map) = ((Af.(\x.((t-len (fstx),t_shp (f (t_eshp (fstx)) (t-eshp (snd x)))),
((ap_cost_pair_map f z, 1)), (0,0)),0), (0,0))

cost(c_prod) = ((M.(QAz.(\y.((t_lenz, (t_leny, t_shp(f (t_eshp x) (t_eshpy)))),
(ap_cost_c_prod f z y, 1)), (0,0)), (0,0)),0), (0,0))

cost(iter) = ((Af-(Az.(\y. iter (preiter f)(x, (iterConst, 0)) v, (0,0)), (0,0)),0), (0,0))

By way of elaboration, we now explain the expression for the cost of map. Working from the
right hand end of the expression in, the pair (0,0) indicates that it takes no time to evaluate
the term map itself and data pattern of the term map itself is 0. The next 0 indicates that it
carries no data (in other words that it can be compiled directly onto the processors which use
it). The pair (0,0) indicates that it similarly takes no time to apply map to a given function
and that the application pattern involved is sequential (pattern 0). The 1 indicates that the
application of map f to some data x uses the application pattern 1. The apcost_map computes
the cost of such an application as the sum of computation time and communication time as
given in the section 4. Finally, the (t_len (z),t_shp (f (t_eshpz))) captures the shape of the
resulting vector, which has the same length as = and an element shape reflecting the result
of an application of f to an element of x.

The term for fold is similarly structured with ¢ter_rlt denoting the result of the initial local
folding phase. Notice that in the term for iter, items f, x and y correspond to the function to
be iterated, the initial data and the number of iterations respectively, while preiter adds the
structure required to gather costs as iteration proceeds. Finally, in the translation of a data
conditional, mszmax gives the maximum of two MSIZE terms, taking point wise maximum for
functions and returning 2 for data pattern or application pattern terms.
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4 Implementation and Costing of the Parallel Combinators

We now introduce our BSP implementation skeletons for the parallel combinators of VEC-
BSP and deduce their cost functions to complete the definition of cost. In conventional BSP,
computing the size of messages would be a programmer’s task. Our cost analysis allows this
to be automated. We express our implementations in an SPMD pseudo-code, indicating calls
to the standard BSP operations bsp_put (copy to remote memory), bsp_get (copy from remote
memory ), bsp_sync (barrier synchronisation) and bsp_pid (find my process identifier)[7].

4.1 map

map has a simple parallel implementation in which the same operation is applied to each ele-
ment in the segment distributed to each processor. This corresponds to Darlington’s FARM
skeleton [4] and plays a central role in other paradigms. Its implementation strategy was
presented in section 3.3 and the corresponding SPMD pseudo-code is:

bsp_get(data describing f from PO);
bsp_get(local share of x from PO);
bsp_sync();
for each local item

apply f to this local element of x;
bsp_put (result to PO);
bsp_sync();

while the application cost is:

apcost_map f z (p, (g, 1))
= t.apcost(f(t_eshp(z)))  (t_len(x)/p)
+t_size(f(t_eshp(z))) * (t_len(x)/p) * (p — 1) x g + 1

Note that the application cost of map does not include the costs of the first two bsp_gets and
the first bsp_sync. These are counted by the bspapp operation as a communication cost of C'.

4.2 fold

Recall that fold combines the elements of a vector using an associative binary operator. The
combination of map and fold forms the important “map and reduce” paradigm in BMF [14].
Its implementation was presented in section 3.3. The corresponding SPMD pseudo-code is:

bsp-get(data describing f from PO);
bsp_get(local share of x from PO);
bsp_sync();
for each local item
combine this item into emerging local result;
bsp_put (local result to PO);
bsp_sync();
if (bsp_pid() == 0)
sequentially fold together collected sub results;

12



The application cost of fold is

ap_cost_fold @ x (p,(g,l)) = t.apcost(iter_rit) + t_size(iter_rit) x (p — 1) * g +1
+t_apcost(iter(preiter(@(t_shp(iter_rit))))(t_shp(iter_rit), (0,0))(p — 1))

where iter_rit = iter(preiter(®(t_shp(x))))(t-shp(zx), (0,0))((t-len(z)/p) — 1), corresponding to
the local folding on each processor. The iter combinator is required to model the repeated
application of the @ to allow for situations in which the resulting shape is not a simple mul-
tiple of the shape of the original elements.

4.3 pair_map

pair_map applies a function f to pairs of elements drawn from a pair of vectors of the same
length. The implementation of the pair_map skeleton broadcasts the data in f and scatters
the data in fst z and snd = (the two vectors) to all processors followed by synchronisation. f
is then applied to elementwise pairs drawn from the segments of fst x and snd = in each pro-
cessor. Finally local results are gathered to the master processor followed by synchronisation.
In SPMD pseudo-code this is:

bsp-get(data describing f from PO);
bsp_get(local share of fst x from PO);
bsp_get(local share of snd x from PO);
for each local item from x
apply f to (fst x) and corresponding local (snd y);
bsp_put (results to PO);
bsp_sync();

with an application cost of

ap_cost_pair_map f x (p, (g,1))
= t.apcost(f(t_eshp(fst x))(t_eshp(snd z))) * (t_len(fst x)/p)

+ t_size(f(t_eshp(fst z))(t_eshp(snd z))) * (p — 1) x g + 1

4.4 c_prod

c_prod applies a function to each member of the cross-product of the elements of two vectors
x and y. It is used for a class of algorithms in which each object interacts with every other
and corresponds to Brinch Hansen’s All-Pairs Paradigm [2] and Darlington’s RaMP (Reduce-
and-Map-over-Pairs) skeleton [4].

The implementation of c_prod proceeds by broadcasting the data in f and z and scatter-
ing the data in y to all processors followed by synchronisation. Next, in each processor, f
is applied to the all members of the cross product of £ and the local segment of y. Finally
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the local results are gathered to the master processor, followed by synchronisation. In SPMD
pseudo-code this is:

bsp-get(data describing f from PO);
bsp_get (copy of x from PO);
bsp_get(local share of y from PO);
bsp_sync();
for each local item y’ from y

for each item x’ from copy of x

apply f to x’ and y’;

bsp_put (results to PO);
bsp_sync();

with an application cost of

ap_cost_c_prod fxy (p,(g,1))
— t_apcost(f (t eshp(x))(t-eshp(y))) * (t_len(y)/p) * (t len())
(t_size(f (t-eshp(x))(t_eshp(y)))  (tlen(y)/p) * (tlen(z))  (p — 1)) + g +

5 Implementation and Experiments

In this section we describe our experimental framework for automatic cost prediction. We
consider two algorithms for matrix-vector multiplication and show that our method allows
detailed consideration of constant factors across a range of problem sizes which would be
difficult in a pencil-and-paper analysis. We then report on the results of experiments which
compare our predictions with the performance of real programs.

5.1 Automating the Cost Analysis

Our cost calculus has been implemented as a Haskell program based on that developed for
the PRAM by Jay’s group [11]. It consists of nearly one thousand lines of Haskell and takes
a few seconds to analyse the short examples presented here.

The natural use of our system would be as an aid during program development, allowing
the programmer to experiment with the behaviour of various equivalent program structures on
various data sets. Since the cornerstone of shapely programming is that behavioural structure
is independent of data content, it would be both unnecessary and time-consuming to require
the provision of real data sets during development (e.g. constructing an array of 1000 by 1000
values only for the cost calculator to immediately throw them away). Thus, for development
purposes we add a new constructor

dummyvec : (sz X 7) — vec T

which allows the programmer to directly specify the input shapes. This would be replaced by
calls to IO operations in the executable program. The cost function for dummyvec is simple,
as the programmer provides the shape directly, while the associated costs are all zero.

cost(dummyvec) = ((Az.(z,(0,0)),0),(0,0))
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5.2 Example Programs

In this section, we show how our tool can be used to compare the behaviours of different
algorithms for a simple problem using real BSP machine parameters. The example problem
is a matrix vector multiplication Mv, where M is m X n matrix and v is an n element vector.
We consider different two algorithms, contrasting the analysis of their efficiency by traditional,
intuitive methods with that achieved by our cost calculator. The communication optimisation
described in sections 3.3 and 3.4 is applicable in the second algorithm. Our target system
is an 8-processor Sun HPC 3500 UltraSPARC IT machine hosted by the Edinburgh Parallel
Computer Centre. BSP parameters obtained by running a benchmark program provided by
Oxford BSPIlib are p = 8, g = 1.6, | = 67150. The binary operator constant is set at 1 and
the total calculated cost in operations is converted into seconds by dividing by 13 million as
directed by s, the benchmark returned factor which normalises [ and ¢ to the single processor
computational speed. The first algorithm expressed in VEC-BSP is:

map (Ay. (Az.(fold + (pair-map * (pairy x)))) v) M (1)

where, v = dummyvec(n,1) and M = dummyvec(m,dummyvec(n, 1)) for analysis purposes.
The parallel structure of algorithm (1) is illustrated in figure 4.

Or =0 O >0[|O =050
wo  idollo =0
Yo o Hollo =0
o ollo =0’

Figure 4: Parallel structure of algorithm (1)

The function Az.(fold + (pair-map * (pairv x))) takes a vector and returns its inner product
with v. The data size of this function term is the size of v. The elements of v in the master
processor are broadcast to the p processors. M’s contents, consisting of mn integers in the
master processor, are scattered to the p processors in vector-block-wise manner followed by
synchronisation. Each processor computes the inner product of v and each distributed vector.
Finally, the local result on each processor is gathered to master processor.

An intuitive BSP cost analysis of (1) is made by counting the number of operations and
message size by hand. The resulting computation cost is mn/p for integer multiplications
and m(n — 1)/p for integer additions. The communication cost is n(p — 1)g to broadcast n
integer elements of v, mn((p —1)/p)g to scatter mn integer elements of M and (m/p)(p—1)g
to gather local results, so the overall communication cost is ((mn+m+np)(p—1)/p)g. There
are two synchronisations at a cost of 21.

The second algorithm is expressed in VEC-BSP as:

fold (Az y.(pair_map + (pair xy))) (pair-map (Az y.map (Az.(y * z)) x) (pair Lv)) (2)

where, L = M' = dummyvec(n,dummyvec(m, 1)) and v = dummyvec(n, 1) as before. The
implementation of this skeletal program has two parallel phases as illustrated in figure 5.

In the first, L and v are scattered to the p processors followed by synchronisation. The effect
of the application of pair_map (Az y.map (A\z.(y * 2))z) to (pair Lv) is that each element of i**
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Figure 5: Parallel structure of algorithm (2)

vector of L is multiplied by i*" element of v. The communications implied by the gather step
in this phase and the broadcast-scatter step in the next can be optimised away by our analysis,
leading directly to the computation step of the second phase, fold (Az y.(pair_map+ (pairz y))),
in other words element-wise addition of all local vectors, gathering of the local results to the
master processor, and then element-wise addition of the gathered vectors on the master
processor.

An intuitive BSP cost analysis of (2) reveals that the computation cost is mn/p integer
multiplications and m(n/p — 1) + m(p — 1) integer additions. The communication cost is
(m+ 1)n((p — 1)/p)g for scattering the elements of L and the elements of v, and m(p — 1)g
for gathering local results in the fold application, so the overall communication cost is ((mn -+
n)((p —1)/p) + m(p — 1))g. The synchronisation cost is 2[ as before.

We now apply our cost calculator to the two algorithms. As a concrete example we
investigate the case in which p = 8 and M is square (ie m = n), with m varying. Figure 6
shows the predicted result of varying m in increments of 200 up to 1200. We can see that the

0.2 : :
0.18 - estimated (1) -e—
0.16 | estimated (2) -x- -
0.14 -
0.12
time(s) 0.1
0.08
0.06
0.04
0.02

0
200 400 600 800 1000 1200

m=n

Figure 6: prediction when m=n, p=8

predicted BSP costs of the two programs are almost the same and that their time complexity
seems to be O(m?). This concurs with the intuitive BSP analysis above, which predicts that
both algorithms have BSP cost complexity O(m?) when p is fixed. In computation cost, (2)
needs m(p+ 1/p — 2) more additions than (1). These come from the use of parallel fold that
has a phase in which only one processor is working, while (1) uses sequential fold in parallel
map. Since the difference of the communication costs, (2)—(1) is ((m — n)(p — 1)?/p)g, the
communication costs are same when m = n. Therefore, while the BSP cost complexity of
both programs is O(m?), the actual difference in BSP cost of m(p+ 1/p — 2) has complexity
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of O(m). This means that the difference is not significant when m(= n) is large.

0.3 T B
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time(s) 0.15
0.1
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Figure 7: prediction when n=8, p=8

Now we consider the case in which n is fixed and m varies. Is there any significant difference
in efficiency between (1) and (2)7 Figure 7 shows the costs predicted by our calculator when

0.25 : :
estimated (1) -e—
| estimated (2) -x- -

0.2

0.15
time(s)
0.1

0.05

0 | | | |
20000 40000 60000 80000 100000 120000

n
Figure 8: prediction when m=8, p=8

n is fixed at 8 and m varies in increments of 20000 up to 120000. We can see that (1) is
more efficient than (2). According to the intuitive analysis both algorithms have BSP cost
complexity O(m). Since the difference of computation costs (2)—(1), m(p+ 1/p —2) and the
difference of communication costs (2)—(1), ((m —n)(p — 1)?/p)g have complexity O(m), the
overall difference of costs also has complexity O(m). This could be significant, and the results
from figure 7 predict that this is indeed the case.

Finally we consider the case when m is fixed and n is varied. Figure 8 shows the predicted
results when m is fixed at 8 and n varies in increments of 20000 up to 120000. Now (2) is
more efficient than (1). According to the intuitive analysis above, both algorithms have BSP
cost complexity O(n). The computation cost of (1) is less than that of (2) but the difference,
m(p+1/p—2), is only constant. In contrast, the communication cost of (1) is more than that
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of (2) and the difference, ((n —m)(p — 1)?/p)g, has complexity O(n). As before this could be
significant and the predications of figure 8 again show this to be the case.

Ad-hoc analysis is a hard task even for a simple algorithm. Our cost calculator can
automatically perform the analysis of arbitrarily complex programs for arbitrary specified
parameters, considering the effect of underlying message passing performance. This allows
us to make detailed comparisons of algorithms which have the same intuitive asymptotic
complexity.

5.3 Comparison with Real Programs

To test the accuracy of our static cost analysis against performance on a real machine we
hand compiled BSP programs in Oxford BSPlib for the two algorithms above and ran them
on an 8-processor Sun HPC 3500.
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0.18 1 real

(1)
(1) -
estimated (2) -x- -
0-16 1 real 52; A
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0.12

0.1
0.08
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0.04

time(s)

0 ! ! ! !
200 400 600 800 1000 1200

Figure 9: accuracy when m=n, p=8

Following the same sequence of experiments as for the predictions, figure 9 plots predicted
and real run times for both programs when m = n, figure 10 plots times when n is fixed and
m varies, and figure 11 plots times when m is fixed and n varies. In five out of six cases, real
and predicted curves are very close.

Accuracy is inferior in the case of algorithm (2) when n is fixed (the upper two curves
in figure 10). We note that when m is large in (2), the final sequential folding process
performed by the master processor is dominant. Qur calculator seems to underestimate that
cost, suggesting that our modelling of sequential computation rather than parallel interaction
is less successful.

Overall, the accuracy of our prediction is encouraging. In general, our accuracy also de-
pends on how the g and [ values experienced by the computation patterns and communication
patterns used in an application program are matched by those in the benchmark program used
to determine the BSP parameters (in other words how robust the BSP framework is itself).
Although we used the benchmark program provided with BSPlib, developing a benchmark
program more suitable for the computation and communication patterns used in our more
restricted computational model should further improve accuracy.
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Figure 10: accuracy when n=8, p=8
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Figure 11: accuracy when m=8, p=8

6 Future Work

We have demonstrated the first completely automated, communication sensitive analysis of
a skeletal parallel programming language. A number of opportunities for further develop-
ment now present themselves. Firstly, there is scope for incremental improvement of our cost
calculator. This could involve the addition of new skeletal combinators, increased sophistica-
tion of the modelled implementation mechanisms and consideration of further optimisations.
Secondly, the VEC-BSP to C/MPI translation could be automated with a source-to-source
compiler. Finally, we hope that our analysis technique will prove useful in the application
of transformational program development methodologies. Tools already exist to support the
validation of transformation steps. Integration with automatic cost modelling would provide
the programmer with immediate feedback on the performance implications of transformation
decisions and could also assist with automated or semi-automated heuristic driven searches
through the transformation space.
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