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Abstract. This paper describes a method that allows the speed up of parallel processes

in distributed arbitration schemes as used in Futurebus+. It is based on special arbitration

codes that decrease the maximal arbitration time to a specified value. Such codes can be

applied with few, if any, minor changes of the hardware. The general structure of these

codes is given.

Introduction. One important component of every multiprocessor bus is the arbitration

system. Many modern multiprocessor buses use arbitration systems principally based on

the same distributed parallel arbitration scheme [1]. In this scheme, the time for acquiring

bus mastership depends on the maximal arbitration time required. This time is determined

by the set of arbitration priorities available [2-4]. Such a set will be called an arbitration

code or simply a code below. The maximal arbitration time is reduced, e.g., by using

binomial codes as discussed in [4] where these codes were introduced. From the discus-

sion it follows that the achievable speed-up depends on the number of arbitration priori-

ties in the binomial code, i.e., on its capacity. However, it has not been considered

whether the binomial codes have the maximal possible capacity, i.e., whether there are

other codes with equal or greater capacity that can reduce the maximal arbitration time to

the same or a lower limit.

In the present paper we derive the general structure of the codes of maximal capacity

that we will call extremal codes. It will be shown that there exist different extremal codes

with binomial codes as one example only.

Arbitration process. We consider a distributed parallel arbitration process for a single-

bus multiprocessor system. To each processor a unique arbitration priority is assigned

that is a m-bit binary word. It will be called an arbitration word or simply a word below.

If one or more processors request bus mastership, an arbitration process is started. At
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1150/8-1 and 436-WER-113-1-0 (438 113/117/0).
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this time each processor decides whether it participates in the arbitration process or not.

The objective of the arbitration process is to find the processor of highest priority among

all participating ones.

Arbitration is done in a decentralized way. Each processor has its own local

arbitration circuit which is connected to m common arbitration lines. On these lines the

logical OR function is formed of the corresponding outputs of the local arbitration

circuits. In Fig. 1 this circuit is shown with outputs in positive logic corresponding to

expressions (1). In a real implementation negative logic would be used, i.e., the outputs

would be inverted so that the OR function could be realized as a wired-OR on open-

collector lines. It is important to distinguish between the state of an arbitration line and the

state of the corresponding output of an arbitration circuit. Such an output can be changed

by a single processor by assertions or withdrawals of bits of its arbitration word. This

may or may not influence the state of the arbitration line.

Usually the arbitration circuits are realized as combinatorial logic and the OR func-

tions are computed as a wired-OR using open-collector drivers. The output signals

depend on the word assigned to the processor and on the signals currently formed on the

arbitration lines.

Any change of the output signals of a processor - assertions as well as with-

drawals - will be called a switch of the processor. If a processor is not participating in the

process it does not assert its output signals, i.e., keeps them in the "zero" state. When the

arbitration process starts, all participating processors assert all bits of their words onto the

arbitration lines. Simultaneously they compare their own bit values with the current state

of the corresponding lines. If a line is set to a logic "one" and the corresponding bit of the

processor´s word is zero, the processor switches. This means it determines the most

significant bit that is not equal to the state of the corresponding arbitration line and

withdraws this and all its less significant bits from the lines. If the condition is no longer

true the processor switches back to the previous state.

Let all processors have the same speed. Then the arbitration process for the j-th

participating processor can be described by the following expressions1.

b1,j(t+τ)=s(t)a1,j,

b2,j(t+τ)=s(t)a2,j(a1,j∨ ¬Β1(t)),

b3,j(t+τ)=s(t)a3,j(a1,j∨ ¬Β1(t))(a2,j∨ ¬Β2(t)),

1 If the local arbitration circuits of the processors taking part in the arbitration process have different
delays τ for switching their signals on the arbitartion lines it is necessary to take into account results
from [6] to minimize the maximal arbitration time.
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... (1)

bm,j(t+τ)=s(t)am,j∏r=1,...,m-1(ar,j∨ ¬Βr(t)),

Bi(t)=Vj∈ P bi,j(t), i=1,...,m,

where j∈ P,

P is the set of processors participating in the process,

t is the current time (-∞<t<∞),

ai,j is bit i of the word which is assigned to processor j, (ai,j∈ {0,1},

a1,j is the most significant bit),

bi,j(t) is the output signal asserted by processor j onto arbitration line i,

Bi(t) is the signal formed on arbitration line i,

τ is the delay introduced by any processor j, (0<τ<∞), to assert its

signals onto the arbitration lines or to withdraw them from there,

s(t) is the start signal (s(t)=0 if t<0, and s(t)=1 otherwise),

m is the number of bits in the arbitration words, i.e., their width.

The first m equalities in (1) express the individual output signals of all processors.

The last one describes the current state of the open collector arbitration lines which form

the logic OR function of the signals asserted.

Duration of the arbitration process. The arbitration process is a sequence of

switches. From expressions (1) it follows that every processor can execute at most m

switches in one arbitration process. The following example shows that m switches can

indeed occur. Let m=4, let three processors participate in the process, and let them have

the words ‹1010›, ‹1001›, and ‹0111›. The processors need a first switch to assert these

numbers onto the arbitration lines. After the first switch, the lines are in the state ‹1111›.

The second switch is needed to withdraw the third bit of word ‹1010›, the forth bit of

word ‹1001›, and the last three bits of word ‹0111›. The arbitration lines will therefore be

in the state ‹1000› after the second switch. Now the first and the second processors assert

their last three bits again. Thus, after the third switch, the arbitration lines will be in the

state ‹1011›. Finally, the withdrawal of the last bit by the second processor represents the

fourth switch. The word ‹1010› will appear on the arbitration lines and will be stable. By

comparing this word with its own arbitration word each processor decides now if it has

the maximal priority.

The duration of the arbitration process is proportional to the number of switches

executed. Since we consider a situation such as Futurebus+, neither the delays of other

modules nor the modules participating in the process nor their arbitration words are

known. Because the duration of the process cannot be determined dynamically as a
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function of the participants and their delays, every module has always to assume that the

maximal number of switches will occur and that they will be executed by the slowest

modules, i.e., the worst case. We, therefore, can assume without loss of generality that

the delays are identical. Thus to get a correct result of the process for any combination of

m-bit arbitration words, the participating processors have to wait the time m·τ before they

make their decision. However, the maximal number of switches can be considerably

smaller than m as shown below.

Denote by |K| the number of words in code K, i.e., its capacity.

1. If a code of width m has a capacity |K|<2m, it is possible to reduce the maximal

number of switches that can occur if any combination of words from K will participate

in the process. Consider, e.g., a code of width 4 and of capacity 15. If the words

‹1010› and ‹1001› are included in the code K and both participate in the process, in

the worst case it will require four switches as shown above. However, if we exclude

from K either ‹1010› (the only word possibly requiring four switches) or ‹1001› (the

only word creating this kind of conflict with ‹1010›), then the arbitration process will

require at most three switches for all combinations of the 15 remaining 4-bit arbitration

words. In this case a speed-up of 25% is obtained.

2. If a code of width m has the capacity |K|=2m, then we cannot leave out any word

because all of them are in use. However, such a possibility exists, if we use an

additional arbitration line, i.e., a (m+1)-bit code instead of a m-bit code. Now we can

turn to the first case and - by appropriate selection of the words - reduce the maximal

number of switches by a factor of approximately 2 as shown in [4].

Therefore, the following problem arises. If the width of a code and its capacity are

given, how to select its words from the set of all possible m-bit binary words so that the

maximal number of switches is minimized.

Extremal codes. To compare the number of switches in different arbitration codes we

introduce the following notations.

a*b is the word that is the concatenation of words a and b,

a(i) is the word that is the concatenation of i words a,

{a*K} is the code formed by the left concatenation of word a with every word from

code K, {a*∅ }={∅ *a}={a},

X(m) is the code consisting of all possible words of width m.

For example, 0(3)=‹000›, X(2)={11,10,01,00}; and if a=‹10›, b=‹11›, K={111,110}

then a*b=‹1011›, a(2)=‹1010›, a*K={10111,10110}.

Definition 1. We define the depth d(K) of an arbitration code K as the maximal

number of switches that can occur if any subset Z of K will take part in an arbitration

process.
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Definition 2. We define a code of width m and depth n as the extremal code Exnm if

there is no code of the same width and depth, and greater capacity.

Using a code of smaller depth results in a faster arbitration process. According to

expressions (1) the depth can vary from 1 to m. Therefore, our task is to find for every

depth the code K of maximal capacity.

Let us first focus on the special classes of extremal codes of depth n=0,1,m. The

structures of these codes are defined in the following Lemmas.

Lemma 1. The code Ex0m has the capacity 1 and consists of the single zero word

Ex0m={0(m)}. (2)

The process starts at t=0. For t<0 the arbitration lines are set to zero. Thus, the arbitration

process of the single word 0(m) does not require any switches. Any other word generates

at least one switch during which its non-zero bit values are asserted onto the arbitration

lines.

Lemma 2. The code Ex1m has the capacity (m+1) and is constructed by any bit permu-

tation applied to all words of

∪ i=0,...,m‹0(m-i)*1(i)›. (3)

Proof. Let a1=‹a1,1...am,1›, a2=‹a1,2...am,2›, with a1>a2, be two words of a code Ex1m.

If ai,1=0 (i∈ [1,m]) then ai,2=0 also has to be true. Otherwise, the arbitration process of

{a1,a2} could require two switches, the assertion of a1 and a2 and at least the withdrawal

of the bit ai,2=1. This is impossible for a code of a depth equal to 1. Therefore, wa1>wa2

if wa1 and wa2 are the number of non-zero bits in the words a1 and a2. Let us arrange all

words of the code in increasing order and prove that their number s is equal to m+1. If wj

is the number of non-zero bits in the word aj, then the expression

0≤wa1<wa2<...<was≤m is valid. Obviously, the number of non-zero bits in the word aj

is (j-1) and the maximal possible value of s is m+1.

These conditions are only satisfied for the codes Ex1m defined in Lemma 2. For

them the signals Bi(t) are settled after the first assertion of the maximal word, i.e., after

the first switch. Fig. 2 shows examples of codes Ex14 with the corresponding permuta-

tion of the words defined by (3).

Lemma 3. The code Exmm has the capacity 2m and consists of all possible m-bit words

Exmm=X(m). (4)
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The code X(m) has the maximal possible capacity according to its definition and can

cause a sequence of m switches but not more, as it was shown in [3,4].

Theorem. The capacity of any extremal code Exnm is given by the equation

|Exnm|=Σi=0,...,n Cim,  m≥1, m≥n≥0 (5)

where Cim are the binomial coefficients.

Proof. Equality (5) is obviously true for the cases n=0,1,m that have been considered in

the previous Lemmas.

We will prove (5) for m>n>1 by a double induction with parameters n and m. The

hypothesis is that (5) is true for the codes Exnm-1 and Exn-2n-1, Exn-2n,..., Exn-2m-2.

From this we will derive that equation (5) holds true for the code Exnm. This induction

starts from the cases n=0,1,m confirmed by the Lemmas, and proves the Theorem up to

any given m and n in the progression

Ex22,Ex0m → Ex23 → Ex24 →...→ Ex2m;

Ex33,Ex1m → Ex34 → Ex35 →...→ Ex3m;

...
Exnn,Exn-2m → Exnn+1 → Exnn+2 →...→ Exnm.

Basis. Assume that the following equations are true.

|Exnm-1|=Σi=0,...,n Cim-1, (6)

|Exn-2k-1|=Σi=0,...,n-2 Cik-1, k=n,(n+1),...,(m-1). (7)

Induction. We intend to prove (5) for the code Exnm for m>n>1 assuming the truth of the

basis. First we construct a certain code Rnm and consider its depth and capacity. The

code

Rnm=∪ j=n-1,...,mEj (8)

is the union of the following subcodes (Fig. 3a)

En-1={1(m-n+1)*X(n-1)},

Ek={1(m-k)*0*Exn-2k-1}, k=n,(n+1),...,(m-1),

Em={0*Exnm-1}.
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Obviously Ep∩Eq=∅  for any pair of subcodes (p,q∈ [n-1,m]). Thus, the capacity of the

code Rnm is the sum of the capacities of all subcodes

|Rnm|=|En-1|+|En|+|En+1|+…+|Em-1|+|Em|=

=|X(n-1)|+|Exn-2n-1|+|Exn-2n|+…+|Exn-2m-2|+|Exnm-1|.

Taking into account the expressions (6) and (7), assumed to be true as the basis, we

can derive (see Appendix)

|Rnm|=2n-1+Σi=0,...,n Cim-1+Σk=n,...,m-1Σi=0,...,n-2 Cik-1=Σi=0,...,n Cim.   (9)

 Below it will be shown that the depth of Rnm is n. All words of En-1, Ek, and Em

consist of two parts, an identical leading part, and a trailing part which is different for

every word (Fig. 3a). Thus if only words of one of the subcodes En-1, Ek, or Em partici-

pate in the arbitration, switches happen only in the second part. Therefore, the process

takes no more than n-1, n-2, or n switches correspondingly.

Below we show that if words from different subcodes participate in the process then

it cannot have more than n switches. Consider the case when words from Em and Em-1

are participating in an arbitration process simultaneously. The words from Em-1 are

headed by the bits ‹1›, and the words of Em are headed by ‹0›. Thus, after the first

switch the logical OR of the words of Em and Em-1 appears on the bus. After the second

switch all words of Em will be withdrawn and only the words of Em-1 are left. In the

worst case additional n-2 switches are required to determine the maximum word among

them. The same argument applies to any other combination of subcodes from Rnm which

proves that the depth of Rnm is n.

The code Rnm has depth n, width m, and the capacity defined by (5). Let us show

that there exists no other code of the same depth and width which has a capacity greater

than |Rnm|, i.e., Rnm is the extremal code.

Assume the contrary, i.e., that a code Snm of m-bit words with d(Snm)=n and

|Snm|>|Rnm| exists. In order to construct the code Snm in a form similar to Rnm let us

introduce the following masks

Ln-1={1(m-n+1)*X(n-1)},

Lk={1(m-k)*0*X(k-1)}, k=n,(n+1),...,(m-1),

Lm={0*X(m-1)}.

The union of these masks is the code consisting of all m-bit binary words X(m). So

the code Snm is a union of subcodes (Fig. 3b):
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Snm=∪ j=n-1,...,mTj

where

Tn-1=Ln-1∩Snm={1(m-n+1)*T´n-1}

Tk=Lk∩Snm={1(m-k)*0*T´k-1}, k=n,(n+1),...,(m-1)

Tm=Lm∩Snm={0*T´m-1}.

As before Tp∩Tq=∅;  p,q∈ [n-1,m]; for any pair of subcodes and therefore

|Snm|=|Tn-1|+|Tn|+|Tn+1|+...+|Tm-1|+|Tm|.

To estimate |Snm|, consider the capacities of the individual subcodes. Since subcode

T´n-1 consists of (n-1)-bit words its capacity does not exceed 2n-1, so |Tn-1|=|T´n-1|≤2n-1=

|X(n-1)|. The depth of the subcode T´m-1 cannot be greater than n. Otherwise the depth of

Tm and therefore the depth of Snm would exceed n. Since T´m-1 consists of (m-1)-bit

words its capacity has the upper limit |Exnm-1|. For Tm we therefore have |Tm|=|T´m-1|≤
|Exnm-1|. Since the capacity of Tn-1 cannot exceed that of En-1, and since the capacity of

Tm cannot exceed that of Em, the inequality |Tk|>|Ek| has to hold true at least for one

k∈ [n,m-1] to meet the assumption |Snm|>|Rnm|. We define s as the minimal value of the

index k for which the inequality |Tk|>|Ek| holds. Since |Ts|=|T´s-1|>|Es| and |Es|=|Exn-2s-1|,

the depth d(Ts)=d(T´s-1) is greater than (n-2).

Let us form the code Ds+1=Ts+1∪ Ts+2∪ ...∪ Tm. Consider in this code the bits of

column (m-s+1) (see Fig. 3b). If in Ds+1 there exists a word aj with a non-zero bit (m-

s+1), then the arbitration process for the code Z=Ts∪ {aj} can require more than n

switches. They are: the assertion of the words of Z (the first switch), the withdrawal of

the non-zero bit (m-s+1) of the word aj (the second switch), and the settlement of the

maximal word of the code T´s-1 (a sequence of more than (n-2) switches). This is

impossible for the code Snm of depth n. So, all words of Ds+1 as well as the words of Ts

must also have zeros in column (m-s+1). Let us form the code D*s by elimination of this

column (m-s+1) from the code Ds=Ts∪ Ds+1. Obviously the depth d(D*s) is still equal to

d(Ds). Furthermore, the depth d(Ds) as well as the depth of any other subcode of Snm

cannot be greater than n. Then we have |D*s|<|Exnm-1| for the capacity of the code D*s of

(m-1)-bit words. Therefore, |Ds|=|D*s|<|Exnm-1|.

Now we have upper bounds for the subcodes of Snm. Taking into account the basis

(6) and (7), we can finally estimate |Snm| as

|Snm|=|Tn-1|+|Tn|+|Tn+1|+...+|Ts-1|+|Ds|≤

≤|X(n-1)|+|Exn-2n-1|+|Exn-2n|+|Exn-2s-2|+|Exnm-1|=

=2n-1+Σk=n,...,s-1Σi=0,...,n-2 Cik-1+Σi=0,...,n Cim-1
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After comparing this expression with (9), we directly obtain

|Snm|<Σi=1,...,m Cim=|Rnm| (10)

since s<m. So the assumption |Snm|>|Rnm| leads to the contradiction (10) which proves

that a code with capacity greater than |Rnm| cannot exist.

Let us prove now that any code Snm of depth n which is different from Rnm has a

smaller capacity. Assume in contrast that |Snm|=|Rnm| and Snm≠Rnm. If |T´k|>|Exn-2k-1| or

d(T´k)>(n-2) holds true for some k∈ [n,m-1] then the previous argument brings us back

to (10) which contradicts the assumption. On the other hand, |T´k|<|En-2k-1| for all

k=n,...,m-1 directly yields |Snm|<|Rnm|. The only alternative left is |Tk|=|Ek| and

d(Tk)≤(n-2) for all k=n,...,m-1. This is possible only if T´k-1=Exn-2k-1 and Tk=Ek. In

the same way we have Tm=Em, Tn-1=En-1, and therefore Snm=Rnm.

So, no code of depth n and width m can have a higher capacity than determined by

(5). Q.E.D.

We proved that the capacity of the extremal codes is determined by expression (5)

for all m and n. Some values are given in Tab. 1. In [4] it was shown that the capacity of

the binomial codes of width m and depth n is also determined by the same expression.

Therefore, the binomial codes are extremal.

Construction of the Extremal Codes. During the proof of (5) it has been shown

that any code Rnm constructed in accordance with (8) has the depth n and the maximum

capacity. It also has been proven that any code different from Rnm has a lower capacity.

In view of this, expression (8) represents the general structure of the extremal codes for

any n (n≠0,1,m). We can, therefore, rewrite (8) as

Exnm={0*Exnm-1}∪ {1(m-n+1)*X(n-1)}∪ i=1,...,m-n{1(i)*0*Exn-2m-i-1}, n≠0,1,m.  (11)

Using expressions (2)-(4) and (11) the extremal codes of any depth and width can be

constructed. For even n (n≠0,m) expression (11) allows to construct the code Exnm from

the codes of depth 0, which are determined uniquely by Lemma 1. So for even n only

one extremal code exists. Since the binomial code with the same parameters m and n has

the capacity given by (5) it is this extremal code. If n is odd (n≠1,m) then the codes Exnm

are constructed from the codes of depth 1, which are not unique (Lemma 2). So it is

possible to construct different extremal codes of the same odd n. Here the binomial codes

are only one example among them.

In Fig. 4 some examples of codes Exn5 are shown. The code Ex35, e.g., is formed

in accordance with (11) as
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{0*Ex34}∪ {1(3)*X(2)}∪ {1(2)*0*Ex12}∪ {1*0*Ex13}

where Ex34={0*Ex33}∪ {11*X(2)}∪ {10*Ex12} is also given by (11).

It is easy to determine the number γnm of different codes Exnm. From Lemmas 1-3

we have γ0m=γmm=1 and γ1m=m!. For other n

γnm=γnm-1·γn-2m-2·γn-2m-3·...·γn-2n-1  for m>n>1

follows directly from (11).

It allows to calculate γnm recursively. Some values of γnm are given in Tab. 2.

Application. Having derived the expressions for the capacities of extremal codes we

can calculate the achievable speed-up.

Consider a system that uses a code K of width m, |K|<2m. If the arbitration words of

this code are chosen without taking into account its depth, then the chances are high to get

a depth equal to m. Since the system uses not all possible binary words of width m, it is

possible to replace the original code K by an extremal code in order to reduce the maximal

number of switches. To achieve the maximal speed-up one has to find a code Exnm of

capacity |Exnm|≥|K| and minimal depth n. Now if K is replaced by Exnm, the maximal

number of switches is reduced from m to n. This results in a speed-up of the arbitration

process by factor of m/n.

Obviously the maximal speed-up s is obtained if the depth n of the code K is minimal

and the number of processors p is maximal. For arbitration the minimal n is equal to 1.

Here the maximal number of processors is the width of the arbitration words plus 1.

Thus, the highest speed-up is obtained with a relatively small number of processors.

Nowadays this is the most relevant case. Consider, e.g., a Futurebus+ system with nine

processors. Since Futurebus+ uses a priority word of width m=8, it is possible to

achieve a speed-up s=8 by applying the extremal code of depth n=1. For a higher number

of processors the achievable speed-up decreases because codes Exn
m of increasing depth

are required to assign arbitration words to all processors.

Tab. 3 shows the achievable speed-up for a system where all arbitration words are

used. In this case the speed-up is obtained by providing additional arbitration lines. This

allows to apply extremal codes of higher width and smaller depth. Note that the arbitra-

tion time can be reduced by a factor of ≈2 by adding a single line only [4]. Higher speed-

ups can only be obtained using additional arbitration lines.

Note that after the maximal word is finally asserted onto the arbitration lines switches

in the local arbitration circuits of processors can still occur. Consider, e.g., an arbitration

between the two words {‹1111›,‹1101›}. The arbitration process takes only one switch

to assert the word ‹1111›. After this moment the processor having the word ‹1101› with-
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draws its least significant non-zero bit. Depending on the technology used this with-

drawal might or might not influence the arbitration line which is already set to a logic

"one". If, e.g., open collector lines are used to implement wired OR logic, the with-

drawal of a signal from a line in the logic "one" state may result in a "zero" glitch [5]. It is

possible to avoid this glitch by using the code

∪ i=1,...,m{1(i)*0(m-i)}

as the Ex1m code. In this case the code Exnm is uniquely defined for any m and n. For

even n it coincides with the binomial code.

Conclusions. In this paper we derived the structure of codes which reduce the maximal

arbitration time to a defined limit. We obtained a recursive formula that allows one to

construct codes of highest capacity for all possible numbers of switches. No higher

speed-up can be achieved by using any other code. It was shown that, in some cases, a

considerable number of extremal codes exist. Binomial codes are only one representative

of these codes. The recursive formula (11) that gives us the general structure of extremal

codes is quite complicated. However, one has to use it only once when the arbitration

system is set up. For most arbitration systems the codes can be applied directly without

changes of the hardware.

APPENDIX.

Here we present the detailed derivation of (9). The properties
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Cm-1
i

=2
n-1

+∑
i=0

n-2

∑
j=n-1

m-2

Cj
i
+∑

i=0

n

Cm-1
i

=2
n-1

+∑
i=0

n-2

(∑
j=i

m-2

Cj
i
-∑

j=i

n-2

Cj
i)+∑

i=0

n

Cm-1
i

=

 =2
n-1

+∑
i=0

n-2

∑
j=i

m-2

Cj
i
 - ∑

i=0

n-2

∑
j=i

n-2

Cj
i
+ ∑

i=0

n

Cm-1
i

=2
n-1

+∑
i=0

n-2

∑
j=i

m-2

Cj
i
 - ∑

j=0

n-2

∑
i=0

j

Cj
i
+ ∑

i=0

n

Cm-1
i

 =
1, 2)
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 = 2
n-1

+∑
i=0

n-2

Cm-1
i+1

-∑
j=0

n-2

2
j
+∑

i=o

n

Cm-1
i

=2
n-1

+∑
i=0

n-2

Cm-1
i+1

- 2
n-1

+1+∑
i=0

n

Cm-1
i

=∑
i=0

n-2

(Cm-1
i+1

+Cm-1
i )+

 Cm-1
n-1

+Cm-1
n

+1=
3)

+

 = ∑
i=0

n-2

Cm
i+1

+Cm-1
n-1

+Cm-1
n

+1 = ∑
i=0

n-2

Cm
i+1

+Cm
n

+1=∑
i=0

n

Cm
i
 - Cm

0
+1=∑

i=0

n

Cm
i
 .

3) 3)
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Captions.

Fig. 1. Local arbitration circuit.
Fig. 2. Examples of extremal codes Ex14.
Fig. 3. The structure of the sets Rnm and Snm.
Fig. 4. Examples of extremal codes Exn5.

Tab. 1. The capacity Exnm of extremal codes of depth n and width m.
Tab. 2. The number γnm of extremal codes of depth n and width m.
Tab. 3. The speed-up s for different word widths m and number of processors p=2m

achieved by adding dm arbitration lines.
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d
m 0   1   2     3       4      5      6      7     8
2 1   3   4
3 1   4   7     8
4 1   5 11   15     16
5 1   6 16   26     31    32
6 1   7 22   42     57    63     64
7 1   8 29   64     99   120   127   128
8 1   9 37   93   163   219   247   255   526
9 1 10 46 130   256   382   466   502   511
10 1 11 56 176   386   638   848   968 1013
11 1 12 67 232   562 1024 1486 1816 1981
12 1 13 79 299   794 1586 2510 3302 3797
13 1 14 92 378 1093 2380 4096 5812 7099

Table 1.

m
n 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 1 1 1
1 1 2 6 24 120 720 5040 40320 4•105

2 1 1 1 1 1 1 1 1
3 1 2 24 6912 2•108 6•1015 8•1026

4 1 1 1 1 1 1
5 1 2 96 3•107 2•1021

Table 2.

m p dm
  1       2 1.0
  2       4 2.0
  3       8 1.5 1.5 1.5 3.0
  4     16 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
  5     32 1.7 1.7 2.5 2.5 2.5 2.5 2.5 2.5 2.5
  6     64 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0
  7   128 1.8 2.3 2.3 2.3 2.3 2.3 2.3 2.3 3.5
  8   256 2.0 2.0 2.0 2.7 2.7 2.7 2.7 2.7 2.7
  9   512 1.8 2.2 2.2 2.2 2.2 3.0 3.0 3.0 3.0
10 1024 2.0 2.0 2.5 2.5 2.5 2.5 2.5 2.5 3.3
11 2048 1.8 2.2 2.2 2.2 2.8 2.8 2.8 2.8 2.8
12 4096 2.0 2.0 2.4 2.4 2.4 2.4 3.0 3.0 3.0
13 8192 1.9 2.2 2.2 2.6 2.6 2.6 2.6 2.6 3.2

Table 3.
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