
Genetic Algorithm Solution of the TSP

Avoiding Special Crossover and Mutation

Göktürk Üçoluk

Department of Computer Engineering
Middle East Technical University

06531 Ankara, Turkey

Email: ucoluk@ceng.metu.edu.tr

Abstract

Ordinary representations of permutations in Genetic Algorithms (GA) is hand-
icapped with producing offspring which are not permutations at all. The conven-
tional solution for crossover and mutation operations of permutations is to device
‘special’ operators. Unfortunately these operators suffer from violating the nature of
crossover. Namely, considering the gene positions on the chromosome, these methods
do not allow n-point crossover techniques which are known to favour building-block
formations. In this work, an inversion sequence is proposed as the representation of a
permutation. This sequence allows repetitive values and hence is robust under ordi-
nary (n-point) crossover. There is a one-to-one mapping from ordinary permutation
representation to the inversion sequence representation.

The proposed method is used for solving TSPs and is compared to the well known
PMX special crossover method. It is observed that this method outperforms PMX
in convergence rate by a factor which can be as high as 11.1 times, on a cost of
obtaining slightly worse solutions on average.

Key Words: genetic algorithms, permutation representation, traveling salesman
problem, crossover, partially mapped Crossover, PMX, TSP

1 Introduction

A well known computational problem is the Traveling Salesman Problem (TSP) which is
known to be NP-complete. Here is the wording of it:

N points (‘cities’), as well as the cost of traveling between every pair of them is given.

Assume that a salesperson, starting from a given city, has to visit each city exactly

once and hence make a round-trip. The aim is to find an optimal tour in which the

total cost of the round-trip is minimized.

More formally, the TSP can be formulated as a problem of graph theory: Given a graph
G on a set of N vertices (cities), a closed sequence of edges in G (i.e. a cycle) which passes
through each vertex of G exactly once is called a Hamiltonian Cycle. Given a complete
weighted graph G on a set of N vertices the TSP is then the problem of finding the
shortest Hamiltonian Cycle through G. From the computational point of view this means
the determination of the particular permutation of the non-repeating sequence 1, 2, . . . , N
where the cities are numbered consecutively from 1 to N and the permutation represents
the visiting order for which the weight sum is minimized.

The search space contains N ! permutations and since TSP is NP-complete, the corre-
sponding optimization problem is NP-hard. The best known algorithms have exponential
(deterministic) run time complexity. Such combinatorial optimization problems are in the

1



domain of Genetic Algorithms interest. In the next section, the most popular method
among conventional GA solutions of TSP will be reviewed. In section 3 an alternative
solution will be introduced. A comparative experimental study will be covered in section
4 which is followed by the conclusion.

2 Conventional Approach

The first GA approach on TSP was by Brady [1] which was then followed by Grefenstette
et al. [4]; Goldberg and Linge [6] and Oliver et al. For a detailed discussion on TSP a good
reference is the study of Lawler et al. [11]. A perfect review article on GA for TSP is by
Larranaga et al. [10].

In the conventional approach a chromosome which is devised to represent a solution
constitutes of N (count of the cities) genes. Each gene holds a number which is a label of
a city. So the n th gene holds the label of the city which is visited n th. In other words,
the chromosome is a direct coding of a permutation of the sequence 1, 2, . . . , N .

The problem with this representation is obvious. Starting with a population of valid
chromosomes, ordinary crossover and mutation operators cause problems. This is so, be-
cause offspring generated by means of the ordinary operators have a high chance of being
invalid with some cities missing, and others repeated. A variety of methods that handle
problems of this sort are introduced throughout the literature.

Solutions are observed to fall into one of the following three categories:

• Disqualification: The idea is to allow the generation of invalid chromosomes but assign
such a low fitness values that they got eliminated in the forthcoming selection process.
This simple method has a disadvantage of being time consuming. The genetic engine
spends most of its time generating invalid chromosomes and then eliminating them.

• Repairing: In this approach invalid chromosomes are generated but then fed into an
intermediate process where they are transformed into valid ones. Here the key idea
is to do the least modification such that the merits of crossover are preserved. This
type of methods are also time consuming.

• Inventing Specialized Operators: Instead of creating invalid chromosomes the GA
operators are modified to generate only valid chromosomes.

The idea of disqualification proves itself to be extremely inefficient. Attempts for re-
pairing can be found in Lidds study [12].

Falling into the third category and concerning permutation-respecting path crossover
operators, the following operators are worth to mention:

Partially - Mapped Crossover (PMX) Goldberg and Lingle (1985) [6]
Order - Crossover (OX1) Davis (1985) [2]
Order Based Crossover (OX2) Syswerda (1991) [17]
Position Based Crossover (POS) Syswerda (1991) [17]
Heuristic Crossover (HX) Grefenstette (1987) [5]
Edge Recombination Crossover (ER) Whitley et al. (1989) [18]
Sorted Match Crossover (SMX) Brady (1985) [1]
Maximal Preservative Crossover (MPX) Mühlenbein et al. (1988) [13]
Voting Recombination Crossover (VR) Mühlenbein (1989) [14]
Alternating - Position Crossover (AP) Larranaga et al. (1996) [9]



Among these PMX, ER and POS are quoted to be the fastest operators as far as the
number of necessary iterations to reach convergence is concerned [10, 16]. The convergence
rates of these three operators are observed to be similar. Literature also mentions that ER
is observed to produce the best quality solutions [10, 18].

In this work we pick PMX among these and claim that our proposed crossover method
produces slightly worse quality solution at a convergence rate which is faster then PMX
by a factor of 3-5.

How does PMX function?

Given two parents s and t, PMX randomly picks a crossover point – like 1-point crossover.
The child is then constructed in the following way. Starting with a copy of s, the positions
between the crossover points are, one by one, set to the values of t in these positions. To
keep the string a valid chromosome the cities in these positions are not just overwritten.
To set position p to city c, the city in position p and city c swap positions. Below you see
an example of this coding and special crossover technique for two sample permutations:
5, 7, 1, 3, 6, 4, 2 and 4, 6, 2, 7, 3, 1, 5

3

3 1 54 6 7

6 2 7 5 14 3

2 3 1 45 6

7 1 6

2 3 1 54 6

7 1 6 4 25

7

3

4 25

7

3 7 1 6 4 25 3

1 3

6 1 7 5 24 3

55 7 6 2Second offspring:

First offspring:

2

2 3 1 54 6

7 1 6 4 25

7

3

3 1 54 6

7 1 6 5 24

2 3 1 55 7 6

7 2

The resulting child has

1. between the crossover points, the same cities in the same positions as t, and

2. outside the crossover interval, the same cities in the same positions as s, where this
is not in conflict with (1).

This idea can very easily be generalized to n-point crossover. Mutation is done by ex-
changing gene values in pairs (in a chromosome).

This method has the following draw backs:

1. The changes in the chromosomes are not confined to the exchanged portions. There-
fore the building-blocks mechanism of EC [7] is damaged.

2. Mutations are not performed at single points.

3. Simple bit-string crossover and mutation implementations will not work.



In the following section a new technique for GA to deal with permutation encoding, where
the representation is crossover and mutation robust, is introduced. This means that the
offspring generated by crossover and mutation are still valid chromosomes and no spe-
cial definitions for these operators are needed: the conventional bit-string crossover and
mutation operators suffice.

3 Proposed Method

The proposed method is to describe a permutation by means of its inversions [8]. For a
permutation i1, i2, . . . , iN of the set {1, 2, . . . , N} we let aj denote the number of integers in
the permutation which precede j but are greater than j. So, aj is a measure of how much
out of order j is. The sequence of numbers a1, a2, . . . , aN is called the inversion sequence

of the permutation i1, i2, . . . , iN . For example the inversion sequence of the permutation
4, 6, 2, 7, 3, 1, 5 is 5, 2, 3, 0, 2, 0, 0. Here, for example, the 2 (which is the 5th element in the
inversion sequence) is saying that there are exactly 2 elements in the permutation which
are to the left of 5 and are greater than 5 (Yes this is true, they are: 6, 7).

The inversion sequence a1, a2, . . . , aN satisfies the conditions

0 ≤ ai ≤ N − i for i = 1, 2, . . . , N

As seen there is no restriction on the elements which says ai = aj is forbidden for i 6= j.
This is of course very convenient for the crossover and mutation operations in GA.

Below two iterative algorithms are given. The first generates the inversion sequence of
a given permutation and the second does the inverse (generates the corresponding permu-
tation of a given inversion sequence).

Input perm : array holding the permutation

Output inv : array holding the inversion sequence

for i← 1..N do

{ invi ← 0
m← 1
while permm 6= i do

{ if permm > i then invi ← invi + 1
m← m+ 1 } }

Input inv : array holding the inversion sequence

Output perm : array holding the permutation

Uses pos : dummy array for intermediate result1

for i← N..1 do

{ for m← i+ 1..N do

if posm ≥ invi + 1 then posm ← posm + 1
posi ← invi + 1 }

for i← 1..N do permposi
= i

1The use of this array can be avoided by a more elaborated algorithm but this will not reduce the time
complexity.



By this method a chromosome or a subsection of it, which has to keep a permutation,
will consist of a sequence of N genes2 where the allele of each element is a natural number.
The maximal allele value allowed decreases by one at each element from the first position
of the sequence to the last one.

In GA applications natural number valued genes are usually represented by bit strings
which are the binary representation of that number. The limitation is very easily controlled
by choosing a restricted bit length and/or a modulo operation. Except this limitation on
the maximal values, which always is the case in GA applications with numerical alleles,
there is no extra restriction or order that has to be preserved throughout the GA opera-
tions. Therefore, whatever crossover or mutation will produce will correspond to a valid
permutation. Now there is a question to be answered:

What characteristics of the parents will be inherited by the offspring?

Assuming that an ordinary bit-string one-point crossover is performed on both components
of the chromosome, we can state that the offspring will inherit characteristics from both
parents. For one of the offspring, one of the parents, p1, will provide the displacement

information of some of the permutation elements (lets call them E ′) and the other parent,
p2 will provide a similar information for the remaining permutation elements (E ′′). Of
course the other offspring will receive the displacement information for E ′ and E ′′ from p2
and p1, respectively. Similar properties can be stated for mutation.

Below is an example coding of the two permutations 5, 7, 1, 3, 6, 4, 2 and 4, 6, 2, 7, 3, 1, 5
which undergo an ordinary crossover that generates two offspring from them:

2 0 2 0 02 5

3 3 0 1 05 25 7 2 6 3 1 4

4 6 1 3 7 5 22 3 0 1 0

4 6 2 7 3 1 5

7 1 3 6 4 25 2 5

3 0 2 0 05 2

Chromosome representation

O F F S P R I N G

Permutation
(generated)

Chromosome representation

P A R E N T S

Permutation

Crossover point

4 GA Solution of the TSP Problem

Both methods, PMX and the newly proposed one, are implemented as C programs. The
differences are kept as local as possible. As a test bed a problem from the TSPLIB is
chosen. This library is located at

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

provided and maintained by the Research Group on Discrete Optimization at Heidelberg
University. As it is true for many problems in the TSPLIB pool, the problems used in our
work have known optimal solutions. These values are quoted in our work. We refer to the
given URL for further information and references.

The three test bed problems are symmetric TSPs and two of the data sets come from
‘Real World problems’:

2Actually (N − 1) suffices, since invN is always zero.



bays29 : The road distances that connect 29 cities in Bavaria, Germany.

berlin52 : Street distances of the city of Berlin, Germany.

eil101 : An artificial 101 city problem created by Eilon and Christofides.

Both methods were run with the same settings of GA dynamics: 10-point crossover, pool
size of 1000 chromosomes, 15% elitism, 0.007 mutation/gene exchange. These values were
set empirically to work well for both methods. Interestingly, while this tuning was per-
formed, both PMX and the proposed method reacted coherently. That means, there was
no special setting observed which would favour one of the methods.

The termination criteria was to continue to run the GA engine until there is no change
in the fitness of the best of the pool for max(200, Generation/3) generations. This figure,
namely the count of generations in which no changes occurred, is subtracted from the total
generation count. So, in our analysis the generation count of a GA run is taken to be the
generation in which a change of the fitness (of the best) occurred for the last time.

To avoid the differences coming from the randomization of the initial pool both methods
were run for 1000-5500 times and the comparison was made statistically.

Of course neither method converges always to the optimum but rather gets caught in
local minima which are nearly optimal. Figures 1a, 2a, 3a displays the number distribution
of the pool’s bests of each of the runs for both the methods are given as histograms
respectively for the test TSPs bays29, berlin52 and eil101. Similarly, figures 1b, 2b, 3b
displays the number distribution of the count of iterations of each run for the same test
TSPs.

Below you find tabulated parameters and results for the three test data sets.

Data set names bays29 berlin52 eil101

Count of cities 29 52 101

Count of runs 5500 2000 1000

Optimal path length 2020 7542 629
Best path length found by PMX 2020 10007 10000
Best path length found by the proposed
method

2026 10000 10000

Average path length & the standard de-
viation (in parenthesis) in path length,
found by PMX

2239 (110) 9096 (447) 922 (148)

Average path length & the standard de-
viation in path length, found by by the
proposed method

2261 (100) 10199 (539) 1069 (59)

Average iteration count & the standard
deviation in iteration count, found by
PMX

247 (48) 657 (229) 3457 (2405)

Average iteration count & the standard
deviation in iteration count, found by
the proposed method

112 (17) 201 (21) 311 (29)



0

50

100

150

200

250

300

350

400

2000 2100 2200 2300 2400 2500 2600 2700 2800

N
um

be
r 

of
 R

un
s

Best Path Length of the Pool

Proposed Method
PMX Method

0


500


1000


1500


2000


2500


0
 100
 200
 300
 400
 500
 600
 700


N
um

be
r 

of
 R

un
s


Number of Iterations Required to Converge


Proposed Method

PMX Method


Figure 1a: Histogram of the pool’s best over all runs of

the bays29 problem.

Figure 1b: Histogram of the iteration count over all

runs of the bays29 problem.

0

50

100

150

200

250

300

7500 8000 8500 9000 9500 10000 10500 11000 11500 12000 12500 13000

N
um

be
r 

of
 R

un
s

Best Path Length of the Pool

Proposed Method
PMX Method

0


200


400


600


800


1000


1200


1400


1600


1800


2000


0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000


N
um

be
r 

of
 R

un
s


Number of Iterations Required to Converge


Proposed Method

PMX Method


Figure 2a: Histogram of the pool’s best over all runs of

the berlin52 problem.

Figure 2b: Histogram of the iteration count over all

runs of the berlin52 problem.

0

50

100

150

200

250

300

350

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

N
um

be
r 

of
 R

un
s

Best Path Length of the Pool

Proposed Method
PMX Method

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

N
um

be
r 

of
 R

un
s

Number of Iterations Required to Converge

Proposed Method
PMX Method

Figure 3a: Histogram of the pool’s best over all runs of

the eil101 problem.

Figure 3b: Histogram of the iteration count over all

runs of the eil101 problem.



Observing the results we conclude that:

• Regarding the best solution found for each TSP there is no observed systematic
difference between PMX and the proposed method.

• On the average PMX is producing 1%-15% better solutions than the proposed method.
The standard deviation of this value varies for both method and is not conclusive.

• The proposed method outperforms PMX by factors that range from 2.2 times to 11.1
times when the converge rate is concerned. The proposed method converges much
faster than PMX does. Also standard deviation figures of these values shows that
the proposed method is much more stable in the iteration count needed to converge.

5 Conclusion

A new method for representing permutations as GA chromosomes has been introduced. In
contrast to the conventional ones this proposed representation is not handicapped under
crossover and mutation. The proposed method was used in a TSP test bed and has proven
itself to be almost as good as the conventional method as far as the solution quality
(i.e. finding the optimum solution) is concerned. The comparative study of the results
shows that the new method outperforms the conventional PMX method by a factor which
can be as high as 11.1 in convergence rate.

Other discrete optimization problems, like scheduling or timetabling problems that
involve permutation representations and are attempted to be solved by means of GA ap-
proaches, may also benefit from the proposed method.

References

[1] Brady, R.M. “Optimization Strategies Gleaned from Biological Evolution.” Nature

317, 1985, pp. 804.

[2] Davis, L. “Applying Adaptive Algorithms to Epistatic Domains.” Proceedings of the

International Joint Conference on Artificial Intelligence, 1985, pp. 162-164.

[3] Even, S. Algorithmic Combinatorics. The Macmillan Company, NY, 1973.

[4] Grefenstette, J., R. Gopal, B. Rosmaita, and D. Van Gucht. “Genetic Algorithms for
the TSP.” Proceedings of the First International Conference on Genetic Algorithms

and Their Applications, edited by Grefenstette J., Lawrence Erlbaum, Hillsdale, New
Jersey, 1985, pp. 160-165.

[5] Grefenstette, J. “Incorporating Problem Specific Knowledge into Genetic Algorithms.”
Genetic Algorithms and Simulated Annealing, edited by Davis L., Morgan Kaufmann,
Los Altos, CA, pp. 42-60, 1987.

[6] Goldberg, D.E., and R. Lingle. “Alleles, Loci, and the Traveling Salesman Problem.”
Proceedings of the First International Conference on Genetic Algorithms and Their

Application, edited by Grefenstette J., Lawrence Erlbaum Associates, Hillsdale, NJ,
1985, pp. 154-159.



[7] Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.

[8] Hall, M. American Mathematical Society, Proceedings of the Symposium on Pure

Mathematics, 6, 1963, pp. 203.

[9] Larranaga, P., C.M.H. Kuijpers, M. Poza, and R.H. Murga. “Decomposing Bayesian
Networks: Triangulation of the Moral Graph with Genetic Algorithms.” Statistics and
Computing, 1996.

[10] Larranaga, P., C. Kuijpers, R. Murga, I. Inza, and S. Dizdarevic. “Genetic Algorithms
for the Traveling Salesman Problem: A Review of Representations and Operators.”
Artificial Intelligence Review, 13, 1999, pp. 129-170.

[11] Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys (Eds.). The Travel-
ing Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chich-
ester, 1985.

[12] Lidd, M.L. The Traveling Salesman Problem Domain Application of a Fundamentally

New Approach to Utilizing Genetic Algorithms. Technical Report, MITRE Corpora-
tion, 1991.

[13] Mühlenbein, H., M. Gorges-Schleuter, and O. Kramer. “Evolution Algorithms in Com-
binatorial Optimization.” Parallel Computing, 7, 1988, pp. 65-85.

[14] Mühlenbein, H. “Parallel Genetic Algorithms, Population Genetics and Combinatorial
Optimization.” Proceedings on the Third International Conference on Genetic Algo-

rithms, edited by Schaffer J., Morgan Kaufmann Publishers, Los Altos, CA, 1989,
pp. 416-421.

[15] Oliver, M., D.J. Smith, and J.R.C. Holland. “A Study of Permutation Crossover Op-
erators on the Traveling Salesman Problem.” Proceedings of the Second International

Conference on Genetic Algorithms, edited by Grefenstette J., Lawrence Erlbaum As-
sociates, Hillsdale, NJ, 1987, pp. 224-230.

[16] Starkweather, T., S. McDaniel, K. Mathias, C. Whitley, and D. Whitley. “A Com-
parison of Genetic Sequencing Operators.” Proceedings on the Fourth International

Conference on Genetic Algorithms, edited by Belew R. and Booker L., Morgan Kauf-
mann Publishers, Los Altos, CA, 1991, pp. 69-76.

[17] Syswerda, G. “Schedule Optimization Using Genetic Algorithms.” Handbook of Ge-

netic Algorithms, edited by Davis L., Van Nostrand Reinhold, New York, 1991,
pp. 332-349.

[18] Whitley, D., T. Starkweather, and D. Shaner. “The Traveling Salesman and Sequence
Scheduling: Quality Solutions Using Genetic Edge Recombination.” Handbook of

Genetic Algorithms, edited by Davis L., Van Nostrand Reinhold, New York, 1991,
pp. 350-372.


