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The interactions among the components of a biological system can be given a logical representation
that is useful for reasoning about them. One of the relevant problems that may be raised in this context is
findingwhat would explain a given behaviour of some component; in other terms, generating hypotheses
that, when added to the logical theorymodeling the system, imply that behaviour. Temporal aspects have
to be taken into account, in order to model the causality relationship that may link the behaviour of a
given component to that of another one.

This paper presents a hypothesis generationmethod for linear temporal logic theories whose formulae
have a restricted syntactic form, which is however sufficient to model cellular and molecular interac-
tions, as they are often represented by biologists. The method exploits the duality between hypothesis
generation and consequence finding, and can therefore be also used to infer the consequences of a given
fact. It is based on a resolution system proposed by Cavalli and Fariñas del Cerro in 1984.
Keywords: Linear Temporal Logic, Abduction, Hypothesis Generation, Consequence Finding,
Reasoning about Biological Systems

1. Introduction

The biochemical properties of a cell depend on a series of intracellular and extracellular reac-
tions that produce and consume proteins. Such reactions are in turn regulated by interactions
with other proteins and enzymes which can either activate or inhibit them. Cellular and molecu-
lar interactions can be graphically represented by means of diagrams called molecular interac-
tion maps (MIMs) (Kohn, Aladjem, Weinstein, & Pommier, 2006). Such networks may involve
many proteins and enzymes, and are consequently very complex, so that reasoning by hand
about them is very hard.
Several works, among which (Obeid, 2014; Demolombe, Fariñas del Cerro, & Obeid, 2013,

2014; Alliot et al., 2016), propose to give a logical representation of the series of biochemical
reactions that may occur within a cell, in order to provide biologists with a useful support tool.
A logical model of a MIM can be used to perform query answering by use of deduction, but also
some form of abductive reasoning. For instance, since the maps used by biologists define causal
relationships between different kinds of proteins, one may be interested in finding out which
proteins should be activated or inhibited in order to obtain a given effect. Reasoning on such
complex sequences of interactions may be of help, for instance, in the field of cancer research,
when biologists have to find how the apoptosis (i.e. the "death") of a cell can be obtained by the
activation or inhibition of some proteins in a cell. It is not too complex to check, by deductive
reasoning, that the state of some proteins causes the apoptosis of a cell. However, it is much
more difficult to find, by abductive reasoning, which proteins it is sufficient to activate or inhibit
in order to obtain the apoptosis. The dual problem consists in finding out which would be the
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consequences of a given fact, knowing the overall behaviour of the network, in order to find out,
for instance, the side effects of a given therapy. As a matter of fact, finding a solution to such
problems cannot be reduced to finding a path in a graph, because, depending on the state of the
proteins, a given edge may represent, or not, the capacity to change other proteins. Moreover,
the status of many proteins can evolve in time, i.e., they can appear or disappear, according to
the cell reactions.
A simple example of molecular interactions is represented in Figure 1. The graph represents

a situation where the activation of a given protein A may activate the protein B. However, this
activation is inhibited if either C or D are activated. Moreover, D is activated by F ; if E is
active, then C is inhibited, but this capacity to inhibit C is in turn inhibited when G is active. If,
for instance, one is looking for the proteins whose activation produceB, there are two solutions:
1) A is active and neither C nor D are active, or 2) A and E are active, and both D and G
are inactive. From this simple example one can imagine the difficulty in real cases where the
number of proteins and edges increases.

Figure 1. A simple molecular interaction map

The formalism used in (Demolombe et al., 2013, 2014; Obeid, 2014) to model metabolic
networks is based on a fragment of first order logic. However, the status of the entities in a MIM
may change in time. Consequently, reasoning about metabolic networks requires some form of
temporal reasoning and, in fact, the logic used to model and reason about MIMs in (Alliot et
al., 2016) takes time into account. In some cases, for instance, the reactants of a biochemical
reaction can be consumed when producing their effect. In a MIM, this kind of productions are
distinguished by using filled-in arrows, like in Figure 2, that represents the fact that B produces
C , and is consumed in the reaction; on the contrary, A is still present and active after producing
B. Let us assume that only A is initially present and active; since A produces B, both A and B
will be present next. But, subsequently, B produces C and is consumed in the reaction, i.e. it
disappears, and can no more been produced, since C inhibits the capacity of A to produce B.
This shows that the status of the proteins represented in the simple MIM in Figure 2 evolves in
time.

Figure 2. A resource consuming reaction

The proposal presented in (Alliot et al., 2016) consists in representing networks of molecular
interactions in a particular logic, called Molecular Interaction Logic (MIL). The work provides
a general methodology allowing for the representation of all the basic molecular interactions. In
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order to reason about MIMs, it is shown that such MIL logical representations can be translated
into a Linear Temporal Logic (LTL) theory.
In this paper, we propose an hypothesis generation method for LTL theories consisting of for-

mulae in a restricted syntactic form, which is however sufficient to model the metabolic interac-
tions in biological systems. Like shown in (Alliot et al., 2016), in fact, MIMs can be represented
by LTL theories using only the temporal operators○ (“next”) and□ (“always”). Moreover, such
theories are equivalent to sets of formulae where the □ operator only occurs as the outermost
logical operator. Let us consider, for instance, the network of Figure 1. With some simplifica-
tion, one can use the atoms A,B, C,… to represent the fact that the proteins A,B, C,… are
active, and represent the simple MIMs basically by the following set of formulae:

□(A ∧ ¬C ∧ ¬D → ○B),
□(E ∧ ¬G → ○¬C),
□(F → ○D)

Actually, also inertia rules should be added to the representation, as well as completion axioms
in order to take into account the underlying closed world assumption. We omit them here for
simplicity, and the reader is referred to (Alliot et al., 2016) for a detailed account of the repre-
sentation methodology.
The first works dealing with abduction in a temporal setting (Eshghi, 1988; Shanahan, 1989)

were based on the Event Calculus (Kowalski & Sergot, 1986). In more recent years, several
methods have been proposed for computing temporal explanations relying on constraint net-
works (see, for instance, (Bouzid &Ligeza, 2000; Brusoni, Console, Terenziani, &Dupré, 1997;
Ribeiro & Porto, 1994)), and this kind of approach has also been applied in biomedical do-
mains (Teijeiro, Félix, & Presedo, 2014). To the best of our knowledge, however, the problem
of hypothesis generation has never been faced in the context of logics with a non-quantitative
representation of time. The maybe most similar problem to hypothesis generation in LTL ad-
dressed in the literature is temporal query abduction in Description Logics. The language used
in (Klarman & Meyer, 2014), which mainly addresses complexity issues, is, in many respects,
more expressive than propositional future time LTL. However there are some limitations that
make it unsuited for the application considered in the present work. In particular, the statements
representing properties holding at all time points are the usual TBox statements, which do not
contain the “next” operator.
In the rest of this paper, linear temporal logic is briefly presented (Section 2), followed by a

description of hypothesis generation problems (Section 3). Section 4 is the core of this work,
presenting the syntactic restrictions on temporal formulae dealt with and the hypothesis gener-
ation method for such formulae. Some properties of the underlying inference system are stated
(and proved in the Appendix). The hypothesis generation method is based on the resolution
system for LTL presented by (Cavalli & Fariñas del Cerro, 1984). This choice is justified in
Section 5, where other existing resolution calculi for LTL are considered. The same section also
addresses some modeling issues. Finally, Section 6 concludes this work.

2. Linear Temporal Logic

The language of propositional linear temporal logic (LTL) considered in this work contains
only unary future time temporal operators: □ (now and always in the future), ◊ (either now
or sometimes in the future), and ○ (in the next state). Among the propositional connectives,
¬ (negation), ∧ (conjunction) and ∨ (disjunction) are taken as primitive. The model of time
underlying LTL is a countably infinite sequence of states (a time frame), that can be identified
with IN. Its elements are called time points. An interpretation  is a function mapping each
time point i to the set of propositional letters true at i. The satisfiability relation i ⊧ A, for
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i ∈ IN (A is true at time point i in the interpretation), is inductively defined as follows:
(1) i ⊧ p iff p ∈(i), for any propositional letter p in the language.
(2) i ⊧ ¬A iff i ̸⊧ A.(3) i ⊧ A ∧ B iffi ⊧ A andi ⊧ B.(4) i ⊧ A ∨ B iff eitheri ⊧ A ori ⊧ B.(5) i ⊧ □A iff for all j ≥ i, j ⊧ A.(6) i ⊧ ◊A iff there exists j ≥ i such that j ⊧ A.(7) i ⊧ ○A iff i+1 ⊧ A.
Truth is satisfiability in the initial state: a formula A is true in  (and  is a model of A)

iff 0 ⊧ A. Truth of sets of formulae is defined as usual. If S is a set of formulae and A is a
formula, A is a logical consequence of S (S ⊧ A) iff for every interpretation  and k ∈ IN: if
k ⊧ S then k ⊧ A. Two formulae A and B are logically equivalent iff A ⊧ B and B ⊧ A.
The standard axiomatic system for LTL is obtained by adding the following axioms A1-A5

and the inference rule R to any axiomatization of classical propositional logic:

A1.□(A → B) → (□A→ □B)
A2. ○(A → B) → (○A → ○B)
A3. ○¬A ≡ ¬○A
A4.□A→ (A ∧○□A)
A5.□(A → ○A)→ (A → □A)
R. A

□A

3. Hypothesis Generation

Hypothesis generation consists in finding what, in the context of a given background knowledge
T , would explain something that is not a consequence of T . Hypothesis generation is strictly
related to abductive reasoning, a natural form of reasoning performed by an agent when new
evidence informs her knowledge: an abductive inference is drawn when the truth of the sentence
explaining the new evidence is “derived”, i.e., it is added to the knowledge base. In general there
may be different sentences explaining the same evidence, so some of them are rejected before
the inference is performed. In other terms the inference is drawn when the agent is convinced
that any other sentence is not plausible enough, compared with the chosen one, to be accepted
as an explanation.
In the pure logical account of abduction, an abductive problem (in a given logic) is specified

by a theory T and a sentence F to be explained (the explanandum); it is solved by finding
a sentence E (among the best ones, according to some given preference criteria), such that
T ∪ {E} ⊧ F . It is moreover assumed that T ̸⊧ F and T ̸⊧ ¬F , i.e., F is consistent with
T . When viewed in these terms, there is an obvious duality between hypothesis generation and
consequence finding (and between abduction and deduction): if T is the background theory, in
the context of which a given fact F has to be explained, then the problem can be addressed
by searching for a formula E such that T ∪ {¬F } ⊧ ¬E. This amounts to T ∪ {E} ⊧ F ,
i.e, E explains F in the context of T . In other words, hypothesis generation can be reduced to
consequence finding (up to a certain extent).
In both contexts, the formula looked for must satisfy additional conditions. In the logical ap-

proach to abduction, such conditions generally include minimality with respect to logical con-
sequence: a formula E is a “relevant explanation” of F in the context of a theory T , only if
T ∪ {E} ⊧ F (i.e., E is an explanation of F ) and there is no weaker explanation of F : for every
formula E′, if T ∪{E′} ⊧ F and E ⊧ E′, then also E′ ⊧ E. In other terms, weaker explanations
are preferred to stronger ones.
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On the side of consequence finding, a stronger consequence is preferred to a weaker one: A is
a “relevant consequence” of a set S of formulae only if for every consequence B of S, if B ⊧ A,
then also A ⊧ B.
Though this may be seen as a “maximality” condition, it amounts to minimality w.r.t. sub-

sumption when looking for clauses implied by a given set of clauses S, in classical logic: a
“relevant consequence” of S is a clause C that is a consequence of S and is not subsumed by
any other clause C ′ such that S ⊧ C ′.
Getting back to hypothesis generation, there are additional requirements to be fulfilled by

relevant explanations, in order to rule out trivial ones: a relevant explanation E of F in the
background theory T is a minimal explanation of F such that

A. T ̸⊧ ¬E: if T ∪ {E} is inconsistent, E is a trivial explanation of any fact.
B. E ̸⊧ F : since T ∪ {F } ⊧ F , F is an explanation of F itself in T . If E is a minimal

explanation of F in T , then E ⊧ F implies F ⊧ E, i.e., E and F are logically equivalent.
This would also make E a trivial explanation.

Consequently, when looking for hypotheses explaining a given observation, the two conditions
A and B must be additionally considered.
It is worth pointing out that, although the two above conditions have no meaning in a general

consequence finding problem, they have to be considered when the problem is finding out which
new consequences can be drawn when a given fact F ′ is added to the background theory T (as is
the case in the biological setting considered in this work). In this case, a “relevant” consequence
C must be such that T ̸⊧ C and F ′ ̸⊧ C , i.e. the relevant new consequences must be derivable
neither from the theory alone, nor from the fact F ′ alone.

4. The hypothesis generation method

The problem of computing abductive explanations for LTL theories is very hard to face. In fact,
it is not easy to adopt methodologies based on resolution or tableau methods, like it can be
done for classical logic (Cialdea Mayer & Pirri, 1993; Cox & Pietrzykowski, 1986; Demolombe
& Fariñas del Cerro, 1991; Inoue, 1992) or even modal logics (Cialdea Mayer & Pirri, 1995),
because both resolution and tableau-based proof systems for temporal logics are among the most
complex ones formodal logics. The hypothesis generationmethod proposed in this work exploits
the very simple form of formulae making up theories modeling the behaviour of biological
systems, and both explananda and explanations. In this restricted context, the problem becomes
much simpler.
The method exploits the duality between hypothesis generation and consequence finding. In

order to properly define the minimality condition, a suitable notion of subsumption for tem-
poral clauses (in the considered restricted syntactical form) is defined. Hypothesis generation
derive the “relevant” consequences of the set of clauses obtained by adding the negation of the
explanandum F to the background theory T . Relevant consequences are those which are not
subsumed by any other consequence of T ∪ {¬F } and are derived by using both ¬F and some
clause in T . The latter condition is required in order to satisfy the non triviality conditions A
and B given in Section 3. Analogously, when the relevant consequences that can be drawn by
the addition of a fact F to the background theory T are looked for, the solutions are the con-
sequences of T ∪ {F } depending from both F and some clause in T , and are minimal w.r.t.
subsumption.

4.1 The syntactic restrictions

The important restrictions in the LTL language used to state the background theory and the
negation of the explanandum are the following, where, for the sake of simplicity, formulae are
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assumed to be in negation normal form:
(1) there are no occurrences of the ◊ operator; and
(2) the□ operator never occurs in the scope of a disjunction.

The next definition introduces the syntactical form allowed for clauses (flat clauses) occurring
in a proof.1 The notation○n abbreviates a sequence of n occurrences of the○ operator.
Definition 1 (Flat clauses). A modal literal is a formula of the form○nl where n ≥ 0 and l is
a classical literal (i.e., either an atom or the negation of an atom).
A flat clause is either:

• an initial clause, of the form L1 ∨⋯∨Lk where L1,… , Lk are modal literals and k ≥ 0,
or

• an always clause, of the form □(L1 ∨⋯ ∨ Lk) where L1,… , Lk are modal literals and
k ≥ 0.

Empty disjunctions will be denoted by ⊥.
Calligraphic lowercase letters (l,p,q, possibly with subscripts) will be used to denote clas-

sical literals, while for modal literals the meta-symbols L andM (possibly with subscripts) will
be used. As usual, disjunctions of literals are treated as sets, i.e., the order in which literals oc-
cur is irrelevant, and they are assumed to contain no repetitions. Flat clauses will sometimes be
simply called clauses, when there is no risk of confusion.
It is worth pointing out that any LTL formula in negation normal form not containing ◊ and

such that □ never occurs in the scope of a disjunction is logically equivalent to a set of flat
clauses.
Facts to be explained are assumed to be either a conjunction of modal literals or formulae of

the form ◊(L1 ∧⋯ ∧ Lk), where L1,… , Lk are modal literals. Consequently, the negation of
an explanandum is equivalent to a flat clause. The generated hypotheses have the same form as
the explananda, since they will be built as negations of flat clauses.
The subsumption relation for flat clauses is defined next.

Definition 2 (Subsumption). Let C and C ′ be flat clauses. The clause C is subsumed by C ′ if
one of the following cases holds (where disjunctions are treated as sets):

• C = L1 ∨⋯ ∨ Lk ∨M1 ∨⋯ ∨Mn, for n ≥ 0, and C ′ = L1 ∨⋯ ∨ Lk;• C = ○mL1 ∨⋯∨○mLk ∨M1 ∨⋯∨Mn, for some m, n ≥ 0, and C ′ = □(L1 ∨⋯∨Lk);• C = □(○mL1∨⋯∨○mLk∨M1∨⋯∨Mn), for somem, n ≥ 0, andC ′ = □(L1∨⋯∨Lk).
For instance, both ○p ∨○2¬p ∨ q and □(○2p ∨○3¬p ∨ q) are subsumed by □(p ∨○¬p).

Subsumption between two initial clauses amounts to the subset relationship, like in classical
propositional logic. It is worth noting that the subsumption relation is transitive, and that, if C
is subsumed by C ′, then C ′ → C is valid.2

4.2 The basic inference rules for flat clauses

In order to give a compact formulation of the inference rules of our formal system, it is useful
to define the complement of a modal literal.
Definition 3 (Complement). Let L be a modal literal. The complement of L, denoted by ∼L, is
defined as follows:

1A flat clause corresponds to a clause in separated normal form, as defined by Fisher et al. (Fisher, Dixon, & Peim, 2001), but the
syntactic form of flat clauses is more general. The definition of separated normal form can be found in Section 5.
2Like in classical logic, the converse does not hold. Consider, for instance C = □(¬p∨○2p) and C ′ = □(¬p∨○p). The flat clause
C is not subsumed by C ′, though C ′ → C is valid.
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• if L = p, where p is an atom, then ∼L = ¬p;
• if L = ¬p, where p is an atom, then ∼L = p;
• ifL = ○M , whereM is a modal literal, then ∼L = ○∼M . In other terms, ∼○nl = ○n∼l,

where l is a classical literal.
The basic inference rules adopted in this work simplify, taking advantage of the flat clause

form, the resolution rules introduced by Cavalli and Fariñas del Cerro (Cavalli & Fariñas del
Cerro, 1984).
Definition 4 (Basic Inference Rules). Let L,L1,… , Ln,M1,… ,Mm be modal literals and k ≥
0. The inference system includes the following rules:

□(L ∨ L1 ∨⋯ ∨ Ln) □(○k∼L ∨M1 ∨⋯ ∨Mm)
□(○kL1 ∨⋯ ∨○kLn ∨M1 ∨⋯ ∨Mm)

(R1)

□(L ∨ L1 ∨⋯ ∨ Ln) ○k∼L ∨M1 ∨⋯ ∨Mm

○kL1 ∨⋯ ∨○kLn ∨M1 ∨⋯ ∨Mm
(R2)

L ∨ L1 ∨⋯ ∨ Ln ∼L ∨M1 ∨⋯ ∨Mm
L1 ∨⋯ ∨ Ln ∨M1 ∨⋯ ∨Mm

(R3)

The two modal literals L and ○k∼L in R1 and R2, and L and ∼L in R3 are called the literals
resolved upon in the inference.
In addition to the above rules, a simplification rule is added, allowing one to replace□⊥with

⊥. Simplification will be applied implicitly. In what follows, R1-R3 will denote the inference
system consisting of the three rules of Definition 4 (and simplification), and the symbol ⊢R1−R3is used to denote derivability in such a system.
Example 1. Consider the example of the simple MIM of Figure 1, and its representation by
means of the set of formulae {□(A ∧ ¬C ∧ ¬D → ○B),□(E ∧ ¬G → ○¬C),□(F → ○D)}.
The flat clause form of such formulae constitute the background theory T = {□(¬A∨C ∨D ∨
○B),□(¬E ∨ G ∨○¬C),□(¬F ∨○D)}. In order to find an explanation for ◊B, its negation
is added to T . Figure 3 contains a complete deduction from T ∪ {¬◊B}. The derived clauses
5 and 6 depend from both some clause in T and from clause 4, so they are used to generate the
two explanations ◊(A ∧ ¬C ∧ ¬D) and ◊(E ∧ ¬G ∧○A ∧○¬D).

1)□(¬A ∨ C ∨D ∨○B) (in T)
2)□(¬E ∨ G ∨○¬C) (in T)
3)□(¬F ∨○D) (in T)
4)□(¬B) (negation of the explanandum)
5)□(¬A ∨ C ∨D) (from 1 and 4)
6)□(¬E ∨ G ∨○¬A ∨○D) (from 2 and 5)

Figure 3. A deduction from the clauses of Example 1

Example 2. As another simple example, let us consider the problem of finding an explanation
for◊p in the theory T = {□(¬p∨q∨○t),□(¬p∨e∨○t),□(q∨○p),□(e∨○p)}. A complete
deduction from T ∪ {¬◊p} can be found in Figure 4. The four clauses of lines 8-11, beyond
being consequences of T alone, are subsumed by other clauses in the derivation (8 and 11 are
subsumed by both 7 and 6, 9 is subsumed by 7 and 10 by 6), so they are ignored for hypothesis
generation and should not even be added to the derivation.
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The derivation of 6 makes use both of some clause in T and of clause 5, and the same holds
for 7, therefore they are used to generate the two explanations ◊¬q and ◊¬e, i.e. the negations
of clauses 6 and 7, respectively.

1) □(¬p ∨ q ∨○t) (in T)
2) □(¬p ∨ e ∨○t) (in T)
3) □(q ∨○p) (in T)
4) □(e ∨○p) (in T)
5) □¬p (negation of the explanandum)
6) □ q (from 3 and 5)
7) □ e (from 4 and 5)
8) □(e ∨○q ∨○2t) (from 1 and 4)
9) □(e ∨○e ∨○2t) (from 2 and 4)
10)□(q ∨○q ∨○2t) (from 1 and 3)
11)□(q ∨○e ∨○2t) (from 2 and 3)

Figure 4. A deduction from the clauses of Example 2

Example 3. Consider the theory T = {□(¬p ∨ q ∨ ○r),□(¬s ∨ ○p)} and the explanandum
◊r. A (complete) deduction from T and the negation of the explanandum is illustrated in Figure
5. Clause 5 is a consequence of T , since in its derivation no use is made of clause 3, therefore
its negation would be a trivial explanations. On the contrary, 4 and 6 depend both on T and the
negation of the explanandum, therefore their negations constitute the two explanations found
for ◊r, i.e., ◊(¬q ∧ p) and ◊(s ∧○¬q).

1)□(¬p ∨ q ∨○r) (in T)
2)□(¬s ∨○p) (in T)
3)□¬r (negation of the explanandum)
4)□(¬p ∨ q) (from 1 and 3)
5)□(¬s ∨○q ∨○2r) (from 1 and 2)
6)□(¬s ∨○q) (from either 2 and 4, or 3 and 5)

Figure 5. A deduction from the clauses of Example 3

4.3 Refutational completeness

The rules R1-R3 are special cases of the general resolution rules defined in (Cavalli & Fariñas del
Cerro, 1984). The latter are defined for formulae in a clausal form, that will be here called
CF-clauses. CF-clauses include flat clauses, but not vice-versa (CF-clauses are expressively
complete for LTL).
The problem of the refutational completeness for flat clauses of the systemR1-R3 is addressed

by reduction to the resolution calculus defined in (Cavalli & Fariñas del Cerro, 1984), that will
henceforth be called CF and for which a brief description is given below, limited to what is
relevant for the treatment of flat clauses. The resolution rule of CF, when restricted to act on to
CF-clauses without any occurrence of the◊ operator, can be reformulated as follows. If C1 and
C2 are clauses, Σ(C1, C2)⊳C denotes a Σ-reduction step of C1 and C2 and is recursively defined
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by the following Σ-reduction rules:1
(a) Σ(p,¬p) ⊳ ⊥;
(b) Σ(D1 ∨D2, F ) ⊳ Σ(D1, F ) ∨D2;(c) Σ(○E,○F ) ⊳ ○Σ(E, F );
(d) Σ(□E,∇F ) ⊳ ∇Σ(E, F ) where ∇ ∈ {□,○};
(e) Σ(□E, F ) ⊳ Σ(E, F );
(f) Σ(□E, F ) ⊳ Σ(□□E, F ).
The reflexive and transitive closure of ⊳ is denoted by ⊳∗: Σ(C1, C2)⊳∗ C if and only if C is a

clause and there is a sequence of Σ-reduction steps Σ(C1, C2)⊳⋯⊳ C . Two clauses C1 and C2are resolvable if Σ(C1, C2)⊳∗ C for some clause C . The simplification of a clause C is obtained
by recursively replacing F for every subformula of the form ⊥∨F , and ⊥ for every subformula
of the form □⊥ and ○⊥. If C1 and C2 are resolvable, then a CF-resolvent R(C1, C2) of C1 and
C2 is the simplification of some C such that Σ(C1, C2) ⊳∗ C .When restricted to act on flat clauses, the system CF and R1-R3 are equivalent. Below, the
symbol ⊢CF denotes derivability in the calculus CF.
Theorem 1. If S ∪ {C} is a set of flat clauses, then:

(1) ifS ⊢CF C , thenS ⊢R1−R3 C ′ for some flat clauseC ′ subsuming a clause that is logically
equivalent to C;

(2) if S ⊢R1−R3 C , then S ⊢CF C ′ for some clause C ′ that is logically equivalent to C .

A direct consequence of Theorem 1 is the following:
Corollary 1. The inference system consisting of the rules R1-R3 is sound and refutationally
complete for flat clauses.

The proof of these results and the others which follow can be found in the Appendix.
Example 4. Let us consider, for instance, the unsatisfiable set S = {p,□(¬p ∨ ○p),○2¬p}.
The following derivation shows that S ⊢R1−R3 ⊥.

1)□(¬p ∨○p) (in S)
2) p (in S)
3) ○2¬p (in S)
4) ○p (from 1 and 2)
5) ○2p (from 1 and 4)
6) ⊥ (from 3 and 5)

In general, every clause of the form ○np can be derived from {p,□(¬p ∨○p)}. Therefore any
set of the form {p,□(¬p ∨○p),○n¬p} can be refuted.

4.4 A weak form of implicational completeness

In order to study the derivational strength of the inference system R1-R3, a translation into clas-
sical first-order logic is defined, mapping each flat clause into a monadic formula. It simplifies
the translation used to give an arithmetical semantics to LTL (see, for instance, (Abadi, 1989)).1
The translation takes again advantage of the syntactical restrictions, in particular of the fact that,

1In (Cavalli & Fariñas del Cerro, 1984), other reduction rules are included, but they all act on CF-clauses containing the◊ operator,
that is absent in flat clauses.
1In order to avoid misunderstandings, it is worth pointing out that, although syntactically the mapping � is a simplification of
Kamp’s translation, the semantics of the target language is not First-Order Monadic Logic of Order, so that one cannot expect that
the equivalence established by Kamp’s theorem holds.
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since the□ operator only occurs as the outermost logical symbol in a flat clause, it acts as a sort
of global modality.
Definition 5 (Translation). LetP be a set of propositional atoms, andP the first-order languagecontaining a unary predicate symbol p for each p ∈ P , a constant a and a unary functional
symbol f .
The (auxiliary) mapping �∗ maps a first-order term of P and a disjunction of modal literals

into a formula of P , and is defined as follows:
• �∗(t, p) = p(t), if p ∈ P ;
• �∗(t,¬p) = ¬p(t), if p ∈ P ;
• �∗(t,○L) = �∗(f (t), L), if L is a modal literal;
• �∗(t, A ∨ B) = �∗(t, A) ∨ �∗(t, B)

Flat clauses are translated into classical first-order clauses of P by means of the mapping �
defined as follows:

• �(L1 ∨⋯ ∨ Lk) = �∗(a, L1 ∨⋯ ∨ Lk);• �(□(L1 ∨⋯ ∨ Lk)) = �∗(x, L1 ∨⋯ ∨ Lk).
When translating a set S of flat clauses, a different variable is used for each clause in S.
For instance, if C = p ∨○q ∨○2¬r (an initial clause), �(C) = p(a) ∨ q(f (a)) ∨ ¬r(f (f (a))),

while �(C ′) = p(x) ∨ q(f (x)) ∨ ¬r(f (f (x))) for the always clause C ′ = □(p ∨○q ∨○2¬r).
By use of the above defined translation, the relation between classical and temporal subsump-

tion can be established. We recall that, in classical logic, a clause C subsumes a clause C ′ if
there exists a substitution � such that C� ⊆ C ′.
Theorem 2. A flat clause C subsumes a flat clause C ′ if and only if �(C) (classically) subsumes
�(C ′).

The correspondence between the temporal and classical settings established by the translation
� also applies to the inference system consisting of the three rules R1-R3. As a matter of fact,
such rules are just a rewriting of the classical resolution rule. In what follows, the symbol ⊢FOLdenotes derivability by classical resolution in first-order logic. Analogously, while ⊧ denotes
logical consequence in LTL, logical consequence in first-order logic is denoted by ⊧FOL. Asusual, a classical clause is intended to be universally closed; in particular, �(C1),… , �(Cn) ⊧FOL
�(C) stands for ∀�(C1),… ,∀�(Cn) ⊧FOL ∀�(C), where ∀A is the universal closure of A.
Theorem 3. If C1,… , Cn, C are flat clauses, then C1,… , Cn ⊢R1−R3 C if and only if
�(C1),… , �(Cn) ⊢FOL �(C).

Theorem 3 allows one to exploit results holding for classical logic, such as the implicational
completeness of resolution:
Theorem 4 ((Lee, 1967)). Let S be a set of classical clauses and C a non valid clause. If
S ⊧FOL C , there is a clause C ′ subsuming C such that C ′ is derivable from S by (classical)
resolution.

The strict correspondence between classical resolution and the temporal rules R1-R3 implies
a weak form of completeness w.r.t. consequence finding:
Theorem 5. If C1,… , Cn, C are flat clauses, C is not valid and �(C1),… , �(Cn) ⊧FOL �(C),
then there exists a clause C ′ subsuming C such that C1,… , Cn ⊢R1−R3 C ′.

The above results allows one to prove that the calculus R1-R3 is implicationally complete
w.r.t. initial clauses:
Theorem 6. If C1,… , Cn are flat clauses, C is a non valid initial clause and C1,… , Cn ⊧ C ,
then there exists a clause C ′ subsuming C such that C1,… , Cn ⊢R1−R3 C ′.

10
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Example 5. Let S be the set
{○2p ∨○3q, □(○¬p ∨○2p ∨○2q), □(○2¬q ∨○3p ∨○3q)}

For all n ≥ 3 and any disjunction of modal literals D, it holds that S ⊧ ○np ∨○nq ∨D.
The following derivation shows that the logical consequences of S of the form ○np ∨ ○nq

for n ≥ 3 are derivable from S, hence for every initial clause C = ○np ∨○nq ∨D, with n ≥ 3,
there is a clause C ′ subsuming C such that S ⊢R1−R3 C ′. The clauses of the form ○np ∨○nq
with n ≥ 3 are all subsumed by□(○3p ∨○3q), which, however, is not derivable from S.

1) □(○¬p ∨○2p ∨○2q) (in S)
2) □(○2¬q ∨○3p ∨○3q) (in S)
3) ○2p ∨○3q (in S)
4) ○3p ∨○3q (from 1 and 3)
5) ○3p ∨○4p ∨○4q (from 2 and 4)
6) ○4p ∨○4q (from 1 and 5)
7) ○4p ∨○5p ∨○5q (from 2 and 6)
8) ○5p ∨○5q (from 1 and 7)
…

4.5 Coping with the induction axiom

As a consequence of Theorem 5 and Corollary 1, the translation given in Definition 5 enjoys the
following general property: if �(C1),… , �(Cn) ⊧FOL �(C), then C1,… , Cn ⊧ C . The converse,obviously, does not hold: for instance, p,□(¬p∨○p) ⊧ □p, but p(a),∀x(¬p(x) ∨ p(f (x)) ⊧̸FOL
∀xp(x). As a matter of fact, the rules R1-R3 do not allow one to derive the flat clause□p from
p and□(¬p∨○p) (though all the subsumed clauses of the form○np are derivable, by Theorem
6). So, the system whose only rules are R1-R3 is implicationally incomplete. Such rules in fact
do not take into account what makes LTL different from FOL, i.e. the induction axiom (axiom
A5 of Section 2):□(A → ○A)→ (A→ □A).
It is worth pointing out that there is no contradiction with Corollary 1: the negation of the

induction axiom cannot be refuted in R1-R3 just because it cannot be expressed as a set of flat
clauses (i.e. {A,□(¬A ∨○A),◊¬A} is not a set of set of flat clauses).
To the aim of gaining implicational completeness, the restricted syntax of flat clauses can be

exploited again. Here, the □ operator only occurs as the outermost logical symbol, and conse-
quence finding is also restricted to flat clauses. In this context, the induction axiom can be taken
into account by adding the following induction rule:

L1 ∨⋯ ∨ Lk C1 … Ck
□(L1 ∨⋯ ∨ Lk)

(Ind)

where, for i = 1,… , k, Ci is any clause subsuming□(∼Li ∨○L1 ∨⋯ ∨○Lk).It is worth observing that the following inference would also be correct:
L1 ∨⋯ ∨ Lk ∨Q □(∼L1 ∨○L1 ∨⋯ ∨○Lk) … □(∼Lk ∨○L1 ∨⋯ ∨○Lk)

Q ∨□(L1 ∨⋯ ∨ Lk)

but its conclusion is not a flat clause. Analogously, although□(p∨q),□(¬q∨○q) ⊧ □(p∨□q),
the conclusion could not be derived just because it is not a flat clause.
Example 6. By use of the induction rule,□(○3p∨○3q) can be derived from the set of clauses
S = {○2p ∨○3q, □(○¬p ∨○2p ∨○2q), □(○2¬q ∨○3p ∨○3q)}. In fact, S ⊢R1−R3 ○3p ∨
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○3q, as shown in Example 5, □(○¬p ∨ ○2p ∨ ○2q) subsumes □(○3¬p ∨ ○4p ∨ ○4q) and
□(○2¬q ∨○3p∨○3q) subsumes□(○3¬q ∨○4p∨○4q). Consequently, the induction rule can
be applied to obtain□(○3p ∨○3q).
Let FlaTL be the proof system consisting of the rules R1-R3 and Ind, and let ⊢F laTL denote

derivability in FlaTL. It may be hypothesized that FlaTL is complete for LTL w.r.t. consequence
finding restricted to flat clauses.
Conjecture. If C1,… , Cn, C are flat clauses, C is not valid and C1,… , Cn ⊧ C , then there existsa clause C ′ subsuming C such that C1,… , Cn ⊢F laTL C ′.

4.6 Non termination

The calculus FlaTL does not enjoy the termination property, even if the generation of clauses
subsumed by other clauses in the proof is blocked. A simple example of non-terminating deriva-
tion can be extracted from Example 4: if T = {□(p→ ○p), p}:

□(¬p ∨○p)
□(¬p ∨○p)

□(¬p ∨○p) p
○p (R2)

○○p (R2)

○○○p (R2)

⋮

Derivations may not terminate even if the application of rule R2 is blocked when the induction
rule Ind can be applied. For instance, from T = □(¬p ∨○p) every clause of the form □(¬p ∨
○np), for n ≥ 1, can be generated, and none of them is subsumed by the others:

□(¬p ∨○p)
□(¬p ∨○p)

□(¬p ∨○p) □(¬p ∨○p)
□(¬p ∨○2p)

(R1)

□(¬p ∨○3p)
(R1)

□(¬p ∨○4p)
(R1)

⋮

As a matter of fact, □(¬p ∨ ○p) has an infinite number of logical consequences. They are all
implied by □(¬p ∨□p), but the latter is not a flat clause.

5. Discussion

In this section two points are addressed: the first one concerns modeling issues in relation to
the completeness of the hypothesis generation method; the second one regards the choice of the
resolution calculus on which it is based.
Although the implicational completeness of the calculus presented in this work w.r.t. always

clauses is only conjectured at present, Theorem 6 establishes that the calculus is implicationally
complete w.r.t. initial clauses. In the context of problems concerning biochemical reactions,
implicational completeness for initial clauses must not be underestimated. In general both the
fact to be explained and the found explanations can reasonably be represented by formulae of the
form◊(L1∧⋯∧Lk), so that one is interested in deriving always clauses. However, in some cases,
counterintuitive explanations can be obtained. Consider, for instance, the case where one looks
for causes for the inhibition of a given protein C (◊¬C) in the context of the background theory
(equivalent to) {□(A ∧ ○B → ○2¬C), □(C → ○D)} (activating A and then B causes the
inhibition of C, and the activation of C causes the activation of D). Then, beyond the explanation
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◊(A∧○B), also the explanation◊○¬Dwould be obtained, as if a given fact could be explained
by something happening in its future (see Figure 6, on the left). Logically, this is correct, but
the inhibition of D cannot be considered a cause for the inhibition of C. If however the fact to
be explained is expressed by an initial clause, for instance ○2¬C , then its explanations would
be initial clauses too, and one could easily distinguish “good explanations” (causes) from the
others by looking at whether the activation/inhibition of proteins should occur before or after the
inhibition of C. In this simple example (see Figure 6, on the right), the only “good” explanation
would be A∧○B, while○3¬D would be recognized as a (logically good but) fake explanation.

1)□(¬A ∨○¬B ∨○2¬C) (in T)
2)□(¬C ∨○D) (in T)
3)□C (negation of the

explanandum)
4)□○D (from 2 and 3)
5)□(¬A ∨○¬B) (from 1 and 3)

1)□(¬A ∨○¬B ∨○2¬C) (in T)
2)□(¬C ∨○D) (in T)
3)○2C (negation of the

explanandum)
4)○3D (from 2 and 3)
5)¬A ∨○¬B (from 1 and 3)

Explanations found: Explanations found:
1)◊(A ∧○B) (from row 5)
2)◊(○¬D) (from row 4)

1)A ∧○B (from row 5)
2)○3¬D (from row 4)

Figure 6. The problem of fake explanations

A different way to solve the problem of “fake” explanations is by encoding rules as if the ○
operator meant “in the previous state”, and setting the fact to be explained in the present. In the
above example, the background theory would be encoded by the set S = {□(○2A ∧ ○B →
¬C),□(○C → D)} (C is inhibited whenever A is active two states before and B is active in
the previous state, and D is active when C was previously active) and the fact to be explained
would just be ¬C . In this case, explanations in the future are automatically ruled out: one obtains
only the explanation ○2A ∧○B. In fact, the only clause that can be derived from S ∪ {C} is
○2¬A ∨ ○¬B, since □(○C → D) cannot be resolved against C . Following this approach,
explanations are again initial clauses, so that Theorem 6 guarantees that all the minimal ones
can be found.
For what concerns the choice of the calculus proposed in (Cavalli & Fariñas del Cerro, 1984)

as the starting point of the hypothesis generation method, a comparison with other resolution
methods for LTL is in order. The two other main resolution systems for LTL proposed in the
literature have been defined by Abadi and Manna (Abadi &Manna, 1985) and Fisher et al. (see,
for instance, (Fisher et al., 2001)).
The first one, however, deals with formulae in non-clausal form, and this would raise unnec-

essary complications in the context of the application considered here. The second one, on the
other hand, is not complete for consequence finding, even when deriving the consequence does
not involve any use of the induction axiom.
In order to prove this claim, the system defined by Fisher et al. must be briefly presented. It

deals with clauses in separated normal form (SNF), which have one of the following forms:
• initial clauses:□(start → l1∨⋯∨ln)where start is a distinguished propositional letterwhose semantics is given by the condition that i ⊧ start if and only if i = 0;
• step clauses:□(l1 ∧⋯ ∧ ln → ○(p1 ∨⋯ ∨pk))• sometime clauses: □(l1 ∧⋯ ∧ ln → ◊l)

Here, li,pi and l are classical literals, which may include ⊤ and ⊥. Every LTL formula can be
rewritten into a conjunction of SNF-clauses. The transformation involves the introduction of new
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propositional symbols; consequently, in order to use the calculus for hypothesis generation, the
explanations extracted from a derivation should be re-converted back to formulae in the original
language, and this may not be straightforward.
Assume, however, that the modal literals in the clauses of the background theory T and the

negation of the explanandum have no nesting of the ○ operator. In this case, the only transfor-
mation needed to obtain SNF-clauses would be rewriting formulae of the form □D, where D
is a disjunction of classical literals (without any literal of the form ○l) into the conjunction of
the two SNF-clauses □(start → D) and □(⊤ → ○D). In particular, if the explanandum has
the form ◊(l1 ∧⋯ ∧ ln), its negation is rewritten as the conjunction of the two SNF-clauses
□(start → l1 ∨⋯ ∨ ln) and□(⊤→ ○(l1 ∨⋯ ∨ ln)).In the hypothesis generation problems considered in this work, the set of SNF-clauses to be
considered are only initial and step clauses, since sometime clauses are absent. Therefore, it
is sufficient to consider the so-called step resolution rules of the resolution calculus given by
Fisher et al., i.e.:

□(start → D1 ∨ p) □(start → D2 ∨ ¬p)
□(start → D1 ∨D2)

□(C1 → ○(D1 ∨ p)) □(C2 → ○(D2 ∨ ¬p))
□(C1 ∧ C2 → ○(D1 ∨D2))

where each Ci is a conjunction of literals and each Di a disjunction of literals (beyond a merge
rule that is not worth stating here).
This calculus is not complete for consequence finding. Consider, for instance the set S =

{□(q → ○p),□q}. The first formula, C1 = □(q → ○p), is an SNF-clause and the second
one is rewritten into the conjunction of C2 = □(start → q) and C3 = □(⊤ → ○q). From
these SNF-clauses, no clause set equivalent to □○p can be derived, although S ⊧ □○p (and,
in fact, S ⊢R1−R3 □○p, by means of an application of the rule R1). This is due to the fact
that literals resolved upon always occur in the right-hand side of SNF-clauses, so that the only
negative occurrence of q (in C1) cannot be resolved against any of the two positive occurrencesof q (in C2 and C3). Other variants of the considered calculus, such as for instance (Konev,
Degtyarev, Dixon, Fisher, & Hustadt, 2005), share the same feature, so that their implicational
incompleteness can be shown by a similar reasoning.
Beyond general resolution systems for temporal logic, many logic programming approaches

have been proposed. The most well known declarative ones are the programming languages
Chronolog (firstly presented in (Wadge, 1988)), Templog (Abadi &Manna, 1989) and Gabbay’s
Temporal Prolog (Gabbay, 1987). The expressive power of Chronolog, however, is quite limited:
the only allowed temporal operators are first (referring to the initial state) and next. Templog is
restricted to act on temporal horn clauses, where only a positive literal may occur. Moreover,
the system does not handle the induction axiom, for obvious efficiency reasons. Finally, the
resolution-based procedure underlying Gabbay’s Temporal Prolog lacks a completeness proofs.
Though all these works, as well as other temporal logic programming approaches, deserve a
deeper analysis, one can hardly expect that they enjoy the implicational completeness property
that is essential in the context of the present work.

6. Concluding Remarks

This paper presents a hypothesis generation method for linear temporal logic, when formulae are
restricted to clauses in a very simple form. The method is based on an inference system, called
FlaTL, whose rules simplify those presented by (Cavalli & Fariñas del Cerro, 1984). The calcu-
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lus FlaTL is refutationally complete and enjoys a weak form of implicational completeness. In
particular, it is implicationally complete w.r.t. initial clauses. Its full implicational completeness
is still an open question.
The method proposed in (Alliot et al., 2016) to reason on the LTL theories encoding MIMs

relies on the encoding of LTL formulae into classical propositional ones, under a bounded time
assumption: the truth of an atom p at each given time point n (up to the maximal time bound)
is encoded by a distinguished classical atom pn, and the behaviour of modal operators is simu-
lated by finite conjunctions and disjunctions. This approach implies that, when the time bound
is increased, the whole theory has to be encoded from scratch. Although in practice also our
approach may be forced to consider a time bound in order to avoid infinite derivations (for in-
stance, by limiting the maximal length of sequences of the next operator dominating classical
literals), such a bound would not affect the theory itself, but only the inference mechanism.
Different resolution methods for LTL have been defined in the literature. The reasons for not

chosing one of them, instead of the calculus defined in (Cavalli & Fariñas del Cerro, 1984),
have been explained in Section 5. However, they still deserve a careful analysis to see whether
new insights can be gained in order to refine the inference system FlaTL, as well as to devise
possibly different implicational complete inference systems for flat clauses.
As far as future work is concerned, the problem of the full implicational completeness of

the resolution calculus FlaTL defined in this paper should be addressed. Moreover, possible
refinements of FlaTL can be studied, based on implicational complete resolution strategies.
Such strategies can be identified by exploiting Theorem 3 and corresponding results in classical
logic (for instance, (Demolombe & Fariñas del Cerro, 1991; Inoue, 1992; Slagle, Chang, & Lee,
1969)), as well as the fact that the derivation of any relevant consequence (whose negation is a
relevant explanation) must make use of the negation of the explanandum.
Acknowledgments. The authors wish to thank Luis Fariñas del Cerro for having inspired this
work, and the organizers of the 3rd Workshop on Logical Reasoning and Computation held in
Toulouse in March 2016.
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Appendix A. Proofs

Proof of Theorem 1: If S ∪{C} is a set of flat clauses, then: (1) if S ⊢CF C , then S ⊢R1−R3 C ′for some flat clause C ′ subsuming a clause that is logically equivalent to C; (2) if S ⊢R1−R3 C ,then S ⊢CF C ′ for some clause C ′ that is logically equivalent to C .

Proof. In order to ease readability, the Σ-reduction rules of the calculus CF are reported here:
(a) Σ(p,¬p) ⊳ ⊥;
(b) Σ(D1 ∨D2, F ) ⊳ Σ(D1, F ) ∨D2;(c) Σ(○E,○F ) ⊳ ○Σ(E, F );
(d) Σ(□E,∇F ) ⊳ ∇Σ(E, F ) where ∇ ∈ {□,○};
(e) Σ(□E, F ) ⊳ Σ(E, F );
(f) Σ(□E, F ) ⊳ Σ(□□E, F ).
Let S ∪ {C} be a set of flat clauses.
(1) We first prove that if S ⊢CF C , then S ⊢R1−R3 C ′ for some flat clause C ′ subsuming a

clause that is logically equivalent to C . Observe, beforehand, that if Σ(C1, C2) ⊳∗ C for
a given clause C , then the sequence of Σ-reduction steps leading to C necessarily ends
with an application of the reduction rule (a) to a pair of complementary literals l and ∼l
occurring in C1 and C2, respectively. The literals l and ∼l are called the literals resolved
upon in the inference leading from C1 and C2 to the simplification of C .
The leading intuition of the proof can be explained as follows. It can be observed, be-

forehand, that every literal l occurring in a flat clause occurs in one of the disjuncts of
the clause, i.e. in a modal literal of the form○nl. Let us assume that Σ(C1, C2) has to bereduced focusing on the literals l, occurring in C1, and ∼l, occurring in C2. By the aboveobservation, one of the disjuncts in C1 has the form ○nl and one of the disjuncts in C2has the form○m∼l. In order to reach the base step (a) of the reductions, reductions of the
form (c) have to be applied, in order to factorize the sequences of○ operators dominating
l and ∼l. And the base step Σ(l, ∼l) can be reached by use of reductions (c) only when
starting from Σ(○kl,○k∼l) for some k ≥ 0. Intuitively, the literals resolved upon must
be brought to the same time point. Therefore, every sequence of Σ-reduction steps leading
to a clause ends with a (possibly empty) sequence of reductions of the form (c), applied
to a pair of complementary literals dominated by the same number of ○, followed by
the base step (a). Furthermore, if C1 and C2 are both initial clauses, it must necessarily be
n = m (i.e. the literals resolved upon are already at the same time point in the two clauses),
because the only reduction rules that can be applied are (a)-(c). On the contrary, if, for
instance, C1 = □(○nl ∨ D) is an always clause, then it may be n < m, because reduc-
tions (f) may be used to increase the number of the outermost□ operator, before applying
reductions (d). In the proof that follows, we assume that, when reducing Σ(C1, C2), oneof the shortest reduction paths is followed, i.e. that there are no interleaved applications
of reductions (e) and (f) leading to the same result. Moreover, possible permutations in
the order of application of the reduction rules, as well as different reduction sequences
leading to the same result, will be ignored.
Assume now that C1 and C2 are resolvable flat clauses and that R(C1, C2) is a CF-

resolvent of C1 and C2, obtained by simplifying a clause C such that Σ(C1, C2)⊳∗ C . Thefollowing reasoning shows that a clause subsuming a clause logically equivalent to C can
be derived from C1 and C2 by use of the rules R1-R3. Three cases are considered.

• C1 and C2 are both initial clauses. Then C can be obtained from C1 and C2 only byapplication of the Σ-reduction rules (a)-(c). In particular, rule (b) must be applied
until a clause of the formΣ(L,M)∨D is obtained, whereL andM aremodal literals.
Then rule (c) is applied until a clause of the form○nΣ(p,¬p)∨D is obtained, which
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finally leads to D, by use of rule (a). Therefore, L andM have the forms ○np and
○n¬p, respectively. In other terms, they are complementary modal literals, and the
inference rule R3 can be applied to C1 and C2 to obtain D.

• C1 and C2 are both always clauses. It may be assumed, w.l.o.g., that C1 = □(○nl ∨
D1) and C2 = □(○k○n∼l ∨D2), where l and ∼l are the literals resolved upon. As
observed above, the base step (a) of theΣ-reductions can only be reached by reducing
Σ(○ml,○m∼l) for some m. Since the number of ○ operators in an argument of Σ
cannot increase, it must be m = n, i.e. the reductions pass through a reduction of
Σ(○nl,○n∼l). In order to bring l and ∼l to the same time point, the k more ○
operators dominating ∼l inC2must be absorbed by the□ operator ofC1: reductionsof the form (f) must be applied k times to obtain□kC1.More precisely, the base step (a) of the Σ-reductions, applied to the given literals,
can be reached as follows (where the reduction symbol ⊳ is indexed by the applied
Σ-reduction rule):

Σ(C1, C2) ⊳∗f Σ(□
kC1, C2) = Σ(□□k(○nl ∨D1),□(○k○n∼l ∨D2))

⊳d □Σ(□k(○nl ∨D1),○k○n∼l ∨D2)
⊳b □(Σ(□k(○nl ∨D1),○k○n∼l) ∨D2)
⊳∗d □(○

kΣ(○nl ∨D1,○n∼l) ∨D2)
⊳b □(○k(Σ(○nl,○n∼l) ∨D1) ∨D2)
⊳∗c □(○

k(○nΣ(l, ∼l) ∨D1) ∨D2)
⊳a □(○k(○n⊥ ∨D1) ∨D2)

If D1 = L1 ∨⋯ ∨ Lm, by applying the inference rule R1 to C1 and C2 the clause
□(○kL1 ∨⋯ ∨ ○kLm ∨ D2) is obtained, which is logically equivalent to the last
CF-clause of the above Σ-reduction steps.
A different clause can be obtained from Σ(C1, C2) by dropping the outermost □

operator from C2 (and, when k = 0, also from C1; in this case, the first reduction
step below uses rule (e)):

Σ(C1, C2) ⊳∗f Σ(□
k(○nl ∨D1),□(○k○n∼l ∨D2))

⊳eΣ(□k(○nl ∨D1),○k○n∼l ∨D2)
⊳b Σ(□k(○nl ∨D1),○k○n∼l) ∨D2
⊳∗d ○

kΣ(○nl ∨D1,○n∼l) ∨D2
⊳b ○

k(Σ(○nl,○n∼l) ∨D1) ∨D2
⊳∗c ○

k(○nΣ(l, ∼l) ∨D1) ∨D2
⊳a ○

k(○n⊥ ∨D1) ∨D2

IfD1 = L1 ∨⋯∨Lm, the last CF-clause of the above Σ-reduction steps is logicallyequivalent to○kL1∨⋯∨○kLm∨D2, and this flat clause is subsumed by□(○kL1∨
⋯ ∨○kLm ∨D2), that can be obtained from C1 and C2 by use of the inference ruleR1.

• C1 is an always clause and C2 an initial one. Assume that the literals resolved upon
are l, occurring in C1, and ∼l, occurring in C2. Since the two literal resolved uponhave to be brought to the same time point, and the Σ-reductions do not allow to
increase the number of○ in an initial clause (with no occurrences of the□ operator),
it must be C1 = □(○nl ∨ D1) and C2 = ○k○n∼l ∨ D2 for some k ≥ 0. If k > 0
then the the base step (a) of the Σ-reductions, applied to the given literals, can be
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reached as follows:
Σ(C1, C2) ⊳∗f Σ(□

k(○nl ∨D1),○k○n∼l ∨D2)
⊳b Σ(□k(○nl ∨D1),○k○n∼l) ∨D2
⊳∗d ○

kΣ(○nl ∨D1,○n∼l) ∨D2
⊳b ○

k(Σ(○nl,○n∼l) ∨D1) ∨D2
⊳∗c ○

k(○nΣ(l, ∼l) ∨D1) ∨D2
⊳a ○

k(○n⊥ ∨D1) ∨D2

If k = 0, the first reduction step in the above sequence is by rule (e). IfD1 = L1∨⋯∨
Lm, by applying the inference rule R2 toC1 andC2, the clause○kL1∨⋯∨○kLm∨D2is obtained, which is logically equivalent to the last clause of the aboveΣ-reductions.
In this case, no different clause can be obtained from Σ(C1, C2) with the chosen

literals to be resolved upon.
(2) For the other direction, let us assume that C1, C2 ⊢R1−R3 C . The reduction steps shown

in the three cases considered above show that C1, C2 ⊢CF C ′ for some CF-clause C ′
logically equivalent to C .

Proof of Corollary 1: The inference system consisting of the rules R1-R3 is sound and refuta-
tionally complete for flat clauses.

Proof. If S ⊢R1−R3 C , then by Theorem 1 S ⊢CF C . Since CF is sound, S ⊧ C , hence the
system consisting of the rules R1-R3 is sound.
SinceCF is refutationally complete, ifS is unsatisfiable, thenS ⊢CF ⊥. Therefore, ifS∪{C}is a set of flat clauses, S ⊢R1−R3 ⊥ follows from Theorem 1 and the fact that ⊥ can be derived

from any contradictory flat clause by use of the simplification rules.
Proof of Theorem 2: A flat clause C subsumes a flat clause C ′ if and only if �(C) (classically)
subsumes �(C ′).

Proof. Three cases are considered, according to the forms of C and C ′. We consider here only
the case when C and C ′ are both always clauses, the others being similar. In this case, if a flat
clause C is subsumed by C ′, then they have the forms:

C = □(○m○p1l1 ∨⋯ ∨○m○pklk ∨M1 ∨⋯ ∨Mn)
C ′ = □(○p1l1 ∨⋯ ∨○pklk)

(A1)

where m, p1,… , pk ≥ 0 and l1,… ,lk are classical.In this case, �(C) and �(C ′) have the forms
�(C) = l1(fm(f p1(x))) ∨⋯ ∨ lk(fm(f pk(x))) ∨D

= l1(f p1(fm(x))) ∨⋯ ∨ lk(f pk(fm(x))) ∨D
�(C ′) = l1(f p1(y)) ∨⋯ ∨ lk(f pk(y))

(A2)

where f n(t) stands for the term f (f (… (f (t)))) with n applications of the functional symbol f
to the term t. If � = {fm(x)∕y}, then �(C ′)� ⊆ �(C), therefore �(C ′) classically subsumes �(C).
For the converse, assume that �(C ′) classically subsumes �(C), i.e., �(C ′)� ⊆ �(C) for some

substitution �. Since C and C ′ are always clauses, there is a single variable x occurring in C and
a single variable y occurring in C ′; moreover, every literal in �(C) contains x and every literal
in �(C) contains y. Therefore, � = {fm(x)∕y} for some m, and �(C) and �(C ′) have the forms
shown in (A2). As a consequence C and C ′ have the forms given in (A1), i.e., C is subsumed
by C ′.

19



June 21, 2017 Journal of Applied Non-Classical Logics JANCL-2016

Proof of Theorem 3: If C1,… , Cn, C are flat clauses, then C1,… , Cn ⊢R1−R3 C if and only if
�(C1),… , �(Cn) ⊢FOL �(C).

Proof. The proof is by induction on the length of the derivations. The base case is obvious in
both directions. For the induction step, it must be proved that C is derivable from C1 and C2 byone of the rules R1-R3 if and only if �(C) is a classical resolvent of �(C1) and �(C2).
(⇒) Three cases are considered, according to the applied rule.We only show here the treatment

of the rule R1, the others being similar. In this case:

C1 =□(○pl ∨○p1p1 ∨⋯ ∨○pnpn)
C2 =□(○k○p∼l ∨○q1q1 ∨⋯ ∨○qmqm)
C =□(○k○p1p1 ∨⋯ ∨○k○pnpn ∨○q1q1 ∨⋯ ∨○qmqm)

(where l,p1,… ,pn,q1,… ,qm are classical literals) and

�(C1) = l(f p(x)) ∨p1(f p1(x)) ∨⋯ ∨pn(f pn(x)))
�(C2) = ∼l(f k(f p(y))) ∨q1(f q1(y)) ∨⋯ ∨qm(f qm(y))

= ∼l(f p(f k(y))) ∨q1(f q1(y)) ∨⋯ ∨qm(f qm(y))

The two classical clauses generate the resolvent

A = p1(f p1(f k(y))) ∨⋯ ∨pn(f pn(f k(y))) ∨q1(f q1(y)) ∨⋯ ∨qm(f qm(y))
= p1(f k(f p1(y))) ∨⋯ ∨pn(f k(f pn(y))) ∨q1(f q1(y)) ∨⋯ ∨qm(f qm(y))

by use of the mgu � = {f k(y)∕x} of l(f p(x)) and l(f p(f k(y))). Since A = �(C), we are
done.

(⇐) First of all, we observe that factorization can never be applied to a clause �(C). In fact,
if C is an initial clause, �(C) contains no variables, and if C is an always clause, all the
literals in �(C) contain the same variable, so no subset of its literals can be unified (unless
it is a singleton).
So, it is sufficient to show that if �(C) is a binary resolvent of �(C1) and �(C2), then

C1, C2 ⊢R1−R3 C .Assume that
�(C1) �(C2)

�(C)

by use of classical resolution. Different cases are considered, according to whether both
C1 and C2 are always clauses, or one or both of them are initial clauses. We deal here only
with the first case, the others being similar.
If both C1 and C2 are always clauses, �(C1) and �(C2) have the forms

�(C1) = p1(f p1(x)) ∨⋯ ∨pn(f pn(x))
�(C2) = q1(f q1(y)) ∨⋯ ∨qm(f qm(y))

where pi and qj are classical literals. We may assume, w.l.o.g., that p1(f p1(x)) and
q1(f q1(y)) are the complementary literals resolved upon, and that p1 ≤ q1. Consequently,
f q1(y) = f p1(f q1−p1(y)) and the m.g.u. of p1(f p1(x)) and the complement of q1(f q1(y))is � = {f q1−p1(y)∕x}. Therefore, if k = q1 − p1, the binary resolvent of �(C1) and �(C2)
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is
A = p2(f p2(f k(y))) ∨ …pn(f pn(f k(y))) ∨q2(f q2(y)) ∨ …qm(f qm(y))
= p2(f k(f p2(y))) ∨⋯ ∨pn(f k(f pn(y))) ∨q2(f q2(y)) ∨⋯ ∨qm(f qm(y))

Let now C = □(○k○p2p2∨⋯∨○k○pnpn∨○q1q1∨⋯∨○qmqm). Clearly,A = �(C)and, since q1 = k + p1, C is derivable from C1 and C2 by application of the rule R1:
□(○p1p1 ∨⋯ ∨○pnpn) □(○k○p1q1 ∨○q2q2 ∨⋯ ∨○qmqm)

□(○k○p2p2 ∨⋯ ∨○k○pnpn ∨○q2q2 ∨⋯ ∨○qmqm)

The proof of Theorem 5 exploits the following intermediate result.
Lemma 1. Let C1,… , Cn be flat clauses andA a first order clause. If �(C1),… , �(Cn) ⊢FOL A,
then there exists a flat clause C such that A = �(C).

Proof. The proof is by induction on the length of the derivation of A from �(C1),… , �(Cn). If
A = �(Ci) for some i = 1,… , n, then the result trivially holds. For the induction step, it must
be shown that for any (classical) resolvent A of two clauses �(C1) and �(C2) there exists a flatclause C such that A = �(C).
By definition, any flat clause C has the following property:
(�) either (i) �(C) is variable-free, or (ii) �(C) contains a single variable x which occurs in

every literal of �(C).
In fact, when C is an initial clause, �(C) is variable-free; if C is an always clause, then (ii) holds.
We first show that property � is preserved:
(1) if A is a classical resolvent of �(C1) and �(C2), then A enjoys �.

If either C1 or C2 (or both) are initial clauses, then either �(C1) or �(C2) (or both) are variable-free and so are also their resolvents.
Otherwise, let C1 and C2 be always clauses, where the variable x occurs in every literal of

�(C1), y occurs in every literal of �(C2), and letp(f n(x)) ∈ �(C1) andq(f k(y)) ∈ �(C2) be theliterals resolved upon. We may assume, w.l.g., that n ≤ k. Then the mgu of the two literals is
{fm(y)∕x} for m = k − n. Consequently, y is the only variable occurring in the resolvent A of
�(C1) and �(C2), and it occurs in every literal of A.
Then, we show that
(2) if A is a classical clause satisfying property �, then there exists a flat clause C such that

A = �(C).
If A is variable free, then it has the form

A = l1(f p1(a)) ∨⋯ ∨ ln(f pn(a))

If C = ○p1l1 ∨⋯ ∨○pnln, then A = �(C).Otherwise, A satisfies (ii), hence it has the form
A = l1(f p1(x)) ∨⋯ ∨ ln(f pn(x))

If C = □(○p1l1 ∨⋯ ∨○pnln), then A = �(C).Finally: ifA is a resolvent of �(C1) and �(C2), then (1) implies that it satisfies �. Consequently,
by (2), there exists a flat clause C such that A = �(C).
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Proof of Theorem 5: If C1,… , Cn, C are flat clauses, C is not valid and �(C1),… , �(Cn) ⊧FOL
�(C), then there exists a clause C ′ subsuming C such that C1,… , Cn ⊢R1−R3 C ′.
Proof. If C is not valid, then �(C) is not valid either. In fact, since either �(C) is ground or it
contains a single variable and no constants, it is valid only if it contains an atom and its negation.
Such a pair of complementary classical literals corresponds to a a pair of complementary modal
literals in C , that is therefore valid too.
Hence, if C is not valid and �(C1),… , �(Cn) ⊧FOL �(C), then by Theorem 4, there exists a

clause A subsuming �(C) such that �(C1),… , �(Cn) ⊢FOL A. By Lemma 1, there exists a flat
clause C ′ such that A = �(C ′), i.e. �(C1),… , �(Cn) ⊢FOL �(C ′). Since �(C ′) subsumes �(C),
by Theorem 2, C ′ subsumes C . Finally, by Theorem 3, C1,… , Cn ⊢R1−R3 C ′.
Proof of Theorem 6: IfC1,… , Cn are flat clauses,C is a non valid initial clause andC1,… , Cn ⊧
C , then there exists a clause C ′ subsuming C such that C1,… , Cn ⊢R1−R3 C ′.
Proof. Let C1,… , Cn, C be flat clauses and C = L1 ∨ ... ∨ Lk a non valid initial
clause. If C1,… , Cn ⊧ C , then C1,… , Cn,¬C ⊧ ⊥, i.e. C1,… , Cn, ∼L1,… , ∼Lk ⊧ ⊥,
since ¬C ≡ ∼L1 ∧ ⋯ ∧ ∼Lk. Then by Corollary 1, C1,… , Cn, ∼L1,… , ∼Lk ⊢R1−R3
⊥, and, by Theorem 3: �(C1),… , �(Cn), �(∼L1),… , �(∼Lk) ⊢FOL ⊥. Since classical res-
olution is sound, �(C1),… , �(Cn), �(∼L1),… , �(∼Lk) ⊧FOL ⊥, which amounts to saying
that �(C1),… , �(Cn),¬(¬�(∼L1) ∨ ⋯ ∨ ¬�(∼Lk)) ⊧FOL ⊥, and: �(C1),… , �(Cn) ⊧FOL
¬�(∼L1) ∨⋯ ∨ ¬�(∼Lk). Since clearly ¬�(∼Li) is logically equivalent to �(Li), it follows that
�(C1),… , �(Cn) ⊧FOL �(L1)∨...∨�(Lk). Moreover �(L1)∨...∨�(Lk) = �(L1∨⋯∨Lk), becauseevery �(Li) is a ground literal. So, finally, by Theorem 5, there exists a clause C ′ subsuming C
such that C1,… , Cn ⊢R1−R3 C ′.
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