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Abstract. This paper concerns the paraconsistent logic LPQ⊃,F and an
application of it in the area of relational database theory. The notions of
a relational database, a query applicable to a relational database, and a
consistent answer to a query with respect to a possibly inconsistent re-
lational database are considered from the perspective of this logic. This
perspective enables among other things the definition of a consistent an-
swer to a query with respect to a possibly inconsistent database without
resort to database repairs. In a previous paper, LPQ⊃,F is presented with
a sequent-style natural deduction proof system. In this paper, a sequent
calculus proof system is presented because it is common to use a sequent
calculus proof system as the basis of proof search procedures and such
procedures may form the core of algorithms for computing consistent
answers to queries.

Keywords: relational database; inconsistent database; consistent query
answering; paraconsistent logic; sequent calculus

1 Introduction

In the area of relational database theory, rather often the view is taken in which
a database is a theory of first-order classical logic, a query is a formula, and
query answering amounts to proving in first-order classical logic that a formula
is a logical consequence of a theory. In [21], the term proof-theoretic view is
introduced for this view and various arguments in favor of this view are given.
In work on query answering in inconsistent databases based on this view, resort
to (consistent) repairs of inconsistent databases is considered unavoidable to
come to a notion of a consistent answer to a possibly inconsistent database (see
e.g. [1]). The reason for this is that in classical logic every formula is a logical
consequence of an inconsistent theory.

In [4], the resort to repairs is avoided by switching from first-order classical
logic to first-order minimal logic, a logic in which not every formula is a logical
consequence of an inconsistent theory. By some shortcomings in [4], there has
been no follow-up of this work. The main shortcoming is that a semantics with
respect to which the presented proof system is sound and complete is not given.
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By that, it remains unclear how the work fits the existing (concrete or abstract)
views on what is a database. Actually, there exists a Kripke semantics of the
proposional fragment (see e.g. [10]), but that semantics seems difficult to relate
the existing views on what is a database.

This paper considers consistent query answering from the perspective of
LPQ⊃,F, another first-order logic in which not every formula is a logical con-
sequence of an inconsistent theory. A sequent calculus proof system of LPQ⊃,F

and a three-valued semantics with respect to which the proof system is sound
and complete are given. The notions of a relational database, a query applicable
to a relational database, and an answer to a query with respect to a relational
database are defined in the setting of LPQ⊃,F. The definitions concerned are
based on those given in [21]. Two notions of a consistent answer to a query
with respect to a possibly inconsistent relational database are introduced. One
of them is reminiscent of the notion of a consistent answer from [4] and the other
is essentially the same as the notion of a consistent answer from [1].

Proof search procedures may form the core of algorithms for computing con-
sistent answers to queries. It is common to use a sequent calculus proof system as
the basis of proof search procedures. That is why a sequent calculus proof system
of LPQ⊃,F is presented in this paper. The proof system of first-order minimal
logic presented in [4] is a natural deduction proof system. A natural deduction
proof system can also be used as the basis of a proof search procedure, but it
is not so widely known how this can be done. The lack of any remark about a
proof search procedure for first-order minimal logic is sometimes considered a
shortcoming in [4] as well.

A logic is called a paraconsistent logic if in the logic not every formula is a
logical consequence of an inconsistent theory. In [20], Priest proposed the para-
consistent propositional logic LP (Logic of Paradox) and its first-order extension
LPQ. LPQ⊃,F is LPQ enriched with a falsity constant and an implication con-
nective for which the standard deduction theorem holds. LPQ⊃,F is essentially
the same as J∗3= [11] and LP◦ [19]. In [15], a sequent-style natural deduction
proof system for LPQ⊃,F is presented. Several main properties of the logical con-
sequence relation and the logical equivalence relation of LPQ⊃,F are also treated
in that paper.

In LPQ⊃,F, for every inconsistent theory Γ in which the falsity constant F does
not occur, for every formula A that does not have function symbols, predicate
symbols or free variables in common with Γ , A is a logical consequence of Γ
only if A is a logical consequence of the empty theory. In minimal logic, for
every inconsistent theory Γ , for every formula A, ¬A is a logical consequence
of Γ . Therefore, LPQ⊃,F is considered a genuine paraconsistent logic and minimal
logic is not considered a genuine paraconsistent logic (cf. [18]). Moreover, the
properties of LPQ⊃,F treated in [15] indicate among other things that the logical
consequence relation and the logical equivalence relation of LPQ⊃,F are very close
to those of classical logic. That is why the choice has been made to consider in
this paper query answering in inconsistent databases from the perspective of
LPQ⊃,F.
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The structure of this paper is as follows. First, the language of LPQ⊃,F,
a sequent calculus proof system of LPQ⊃,F, and a three-valued semantics of
LPQ⊃,F are presented (Sections 2, 3, and 4). Next, relational databases and
query answering in possibly inconsistent relational databases are considered from
the perspective of LPQ⊃,F (Sections 5 and 6). After that, examples of query
answering are given (Section 7) and some remaining remarks about consistent
query answering are made (Section 8). Finally, some concluding remarks are
made (Section 9).

In order to make this paper self-contained, large parts of Sections 2 and 4
have been copied near verbatim or slightly modified from [15].

2 The Language of LPQ⊃,F

In this section the language of the paraconsistent logic LPQ⊃,F is described.
First the notion of a signature is introduced and then the terms and formulas of
LPQ⊃,F are defined for a fixed but arbitrary signature. Moreover, some relevant
notational conventions and abbreviations are presented and some remarks about
free variables and substitution are made. In coming sections, the proof system of
LPQ⊃,F and the interpretation of the terms and formulas of LPQ⊃,F are defined
for a fixed but arbitrary signature.

Signatures It is assumed that the following has been given: (a) a countably
infinite set V of variables, (b) for each n ∈ N, a countably infinite set Fn of
function symbols of arity n, and, (c) for each n ∈ N, a countably infinite set Pn

of predicate symbols of arity n. It is also assumed that all these sets and the set
{=} are mutually disjoint. We write SYM for the set V∪

⋃

{Fn | n ∈ N}∪
⋃

{Pn |
n ∈ N}.

Function symbols of arity 0 are also known as constant symbols and predicate
symbols of arity 0 are also known as proposition symbols.

A signature Σ is a subset of SYM \ V . We write Fn(Σ) and Pn(Σ), where
Σ is a signature and n ∈ N, for the sets Σ ∩ Fn and Σ ∩ Pn, respectively.

The language of LPQ⊃,F will be defined for a fixed but arbitrary signature Σ.
This language will be called the language of LPQ⊃,F over Σ or shortly the lan-
guage of LPQ⊃,F(Σ). The corresponding proof system and interpretation will be
called the proof system of LPQ⊃,F(Σ) and the interpretation of LPQ⊃,F(Σ).

Terms and formulas The language of LPQ⊃,F(Σ) consists of terms and for-
mulas. They are constructed according to the formation rules given below.

The set of all terms of LPQ⊃,F(Σ), written T (Σ), is inductively defined by
the following formation rules:

1. if x ∈ V , then x ∈ T (Σ);
2. if c ∈ F0(Σ), then c ∈ T (Σ);
3. if f ∈ Fn+1(Σ) and t1, . . . , tn+1 ∈ T (Σ), then f(t1, . . . , tn+1) ∈ T (Σ).
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The set of all closed terms of LPQ⊃,F(Σ) is the subset of F(Σ) inductively defined
by the formation rules 2 and 3.

The set of all formulas of LPQ⊃,F(Σ), written F(Σ), is inductively defined
by the following formation rules:

1. F ∈ F(Σ);
2. if p ∈ P0(Σ), then p ∈ F(Σ);
3. if P ∈ Pn+1(Σ) and t1, . . . , tn+1 ∈ T (Σ), then P (t1, . . . , tn+1) ∈ F(Σ);
4. if t1, t2 ∈ T (Σ), then t1 = t2 ∈ F(Σ);
5. if A ∈ F(Σ), then ¬A ∈ F(Σ);
6. if A1, A2 ∈ F(Σ), then A1 ∧ A2, A1 ∨ A2, A1 ⊃A2 ∈ F(Σ);
7. if x ∈ V and A ∈ F(Σ), then ∀x • A, ∃x • A ∈ F(Σ).

The set of all atomic formulas of LPQ⊃,F(Σ) is the subset of F(Σ) inductively
defined by the formation rules 1–4. The set of all literals of LPQ⊃,F(Σ) is the
subset of F(Σ) inductively defined by the formation rules 1–5.

For the connectives ¬, ∧, ∨, and ⊃ and the quantifiers ∀ and ∃, the classical
truth-conditions and falsehood-conditions are retained. Except for implications,
a formula is classified as both-true-and-false exactly when it cannot be classified
as true or false by these conditions.

We write e1 ≡ e2, where e1 and e2 are terms from T (Σ) or formulas from
F(Σ), to indicate that e1 is syntactically equal to e2.

Notational conventions and abbreviations The following will sometimes
be used without mentioning (with or without decoration): x as a meta-variable
ranging over all variables from V , t as a meta-variable ranging over all terms
from T (Σ), A as a meta-variable ranging over all formulas from F(Σ), and Γ

as a meta-variable ranging over all finite sets of formulas from F(Σ).
The string representation of terms and formulas suggested by the formation

rules given above can lead to syntactic ambiguities. Parentheses are used to
avoid such ambiguities. The need to use parentheses is reduced by ranking the
precedence of the logical connectives ¬, ∧, ∨, ⊃. The enumeration presents this
order from the highest precedence to the lowest precedence. Moreover, the scope
of the quantifiers extends as far as possible to the right and ∀x1 • · · · ∀xn • A is
usually written as ∀x1, . . . , xn • A.

The following abbreviation is used: T stands for ¬F.

Free variables and substitution Free variables of a term or formula and
substitution for variables in a term or formula are defined in the usual way.

Let x be a variable from V , t be a term from T (Σ), and e be a term from T (Σ)
or a formula from F(Σ). Then we write [x := t]e for the result of substituting
the term t for the free occurrences of the variable x in e, avoiding (by means of
renaming of bound variables) free variables becoming bound in t.
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3 A Proof System of LPQ⊃,F(Σ)

In this section, a sequent calculus proof system of LPQ⊃,F(Σ) is presented. This
means that the inference rules have sequents as premises and conclusions. First,
the notion of a sequent is introduced. Then, the inference rules of the proof
system of LPQ⊃,F(Σ) are presented. After that, the notion of a derivation of
a sequent from a set of sequents and the notion of a proof of a sequent are
introduced. An extension of the proof system of LPQ⊃,F(Σ) which can serve as
a proof system for first-order classical logic is also described.

Sequents In LPQ⊃,F(Σ), a sequent is an expression of the form Γ ⇒ ∆, where
Γ and ∆ are finite sets of formulas from F(Σ). We write Γ, Γ ′ for Γ ∪Γ ′ and A,
where A is a formula from F(Σ), for {A} on both sides of a sequent. Moreover,
we write ⇒ ∆ instead of ∅ ⇒ ∆.

A sequent Γ ⇒ ∆ states that the logical consequence relation that is defined
in Section 4 holds between Γ and ∆. Informally speaking, that logical conse-
quence relation holds between Γ and ∆ if, whenever every formula from Γ is not
false, at least one formula from ∆ is not false. If a sequent Γ ⇒ ∆ can be proved
by means of the rules of inference given below, then that logical consequence
relation holds between Γ and ∆.

Rules of inference The sequent calculus proof system of LPQ⊃,F(Σ) consists
of the inference rules given in Table 1. In this table, x and y are meta-variables
ranging over all variables from V , t, t1, and t2 are meta-variables ranging over
all terms from T (Σ), A, A1, and A2 are meta-variables ranging over all formu-
las from F(Σ), and Γ and ∆ are meta-variables ranging over all finite sets of
formulas from F(Σ).

Derivations and proofs In LPQ⊃,F(Σ), a derivation of a sequent Γ ⇒ ∆ from

a finite set of sequents H is a finite sequence 〈s1, . . . , sn〉 of sequents such that
sn equals Γ ⇒ ∆ and, for each i ∈ {1, . . . , n}, one of the following conditions
holds:

– si ∈ H;
– si is the conclusion of an instance of some inference rule from the proof

system of LPQ⊃,F(Σ) whose premises are among s1, . . . , si−1.

A proof of a sequent Γ ⇒ ∆ is a derivation of Γ ⇒ ∆ from the empty set
of sequents. A sequent Γ ⇒ ∆ is said to be provable if there exists a proof of
Γ ⇒ ∆.

Let Γ and ∆ be sets of formulas from F(Σ). Then ∆ is derivable from Γ ,
written Γ ⊢ ∆, iff there exist finite sets Γ ′ ⊆ Γ and ∆′ ⊆ ∆ such that the
sequent Γ ′ ⇒ ∆′ is provable.

An inference rule that does not belong to the inference rules of some proof
system is called a derived inference rule if there exists a derivation of the conclu-
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Table 1. Sequent calculus proof system of LPQ⊃,F(Σ)

I
A,Γ ⇒ ∆,A

∗

F-L
F, Γ ⇒ ∆

∧-L
A1, A2, Γ ⇒ ∆

A1 ∧A2, Γ ⇒ ∆

∨-L
A1, Γ ⇒ ∆ A2, Γ ⇒ ∆

A1 ∨A2, Γ ⇒ ∆

⊃-L
Γ ⇒ ∆,A1 A2, Γ ⇒ ∆

A1 ⊃ A2, Γ ⇒ ∆

∀-L
[x := t]A,Γ ⇒ ∆

∀x • A,Γ ⇒ ∆

∃-L
[x := y]A,Γ ⇒ ∆

∃x • A,Γ ⇒ ∆
‡

¬¬-L
A,Γ ⇒ ∆

¬¬A,Γ ⇒ ∆

¬∧-L
¬A1, Γ ⇒ ∆ ¬A2, Γ ⇒ ∆

¬(A1 ∧A2), Γ ⇒ ∆

¬∨-L
¬A1,¬A2, Γ ⇒ ∆

¬(A1 ∨A2), Γ ⇒ ∆

¬⊃-L
A1,¬A2, Γ ⇒ ∆

¬(A1 ⊃ A2), Γ ⇒ ∆

¬∀-L
¬[x := y]A,Γ ⇒ ∆

¬∀x • A,Γ ⇒ ∆
‡

¬∃-L
¬[x := t]A,Γ ⇒ ∆

¬∃x • A,Γ ⇒ ∆

=-Refl
t = t, Γ ⇒ ∆

Γ ⇒ ∆

¬-R
A,Γ ⇒ ∆

Γ ⇒ ∆,¬A
†

∧-R
Γ ⇒ ∆,A1 Γ ⇒ ∆,A2

Γ ⇒ ∆,A1 ∧A2

∨-R
Γ ⇒ ∆,A1, A2

Γ ⇒ ∆,A1 ∨A2

⊃-R
A1, Γ ⇒ ∆,A2

Γ ⇒ ∆,A1 ⊃ A2

∀-R
Γ ⇒ ∆, [x := y]A

Γ ⇒ ∆,∀x • A
‡

∃-R
Γ ⇒ ∆, [x := t]A

Γ ⇒ ∆,∃x • A

¬F-R
Γ ⇒ ∆,¬F

¬¬-R
Γ ⇒ ∆,A

Γ ⇒ ∆,¬¬A

¬∧-R
Γ ⇒ ∆,¬A1,¬A2

Γ ⇒ ∆,¬(A1 ∧A2)

¬∨-R
Γ ⇒ ∆,¬A1 Γ ⇒ ∆,¬A2

Γ ⇒ ∆,¬(A1 ∨A2)

¬⊃-R
Γ ⇒ ∆,A1 Γ ⇒ ∆,¬A2

Γ ⇒ ∆,¬(A1 ⊃ A2)

¬∀-R
Γ ⇒ ∆,¬[x := t]A

Γ ⇒ ∆,¬∀x • A

¬∃-R
Γ ⇒ ∆,¬[x := y]A

Γ ⇒ ∆,¬∃x • A
‡

=-Repl
[x := t1]A,Γ ⇒ ∆

t1 = t2, [x := t2]A,Γ ⇒ ∆
∗

∗ restriction: A is a literal.

† restriction: A is an atomic formula.

‡ restriction: y is not free in Γ , y is not free in ∆, y is not free in A unless x ≡ y.
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sion from the premises, using the inference rules of that proof system, for each
instance of the rule.

Let the set Γ= of equality axioms be the subset of F(Σ) consisting of the
following formulas:

– ∀x • x = x;
– c = c for every c ∈ F0(Σ);
– ∀x1, y1, . . . , xn+1, yn+1 •

x1 = y1 ∧ . . . ∧ xn+1 = yn+1 ⊃ f(x1, . . . , xn+1) = f(y1, . . . , yn+1)
for every f ∈ Fn+1(Σ), for every n ∈ N;

– p⊃ p for every p ∈ P0(Σ);
– ∀x1, y1, . . . , xn+1, yn+1 •

x1 = y1 ∧ . . . ∧ xn+1 = yn+1 ∧ P (x1, . . . , xn+1)⊃ P (y1, . . . , yn+1)
for every P ∈ Pn+1(Σ), for every n ∈ N.

Then the sequent Γ ⇒ ∆ is provable iff Γ=, Γ ⇒ ∆ is provable without using
the inference rules =-Refl and =-Repl. This can easily be proved in the same
way as Proposition 7.4 from [22] is proved.

In [15], a proof system of LPQ⊃,F formulated as a sequent-style natural de-
duction system is given.

A proof system of CL(Σ) We use the name CL here to denote a version of
classical logic that has the same logical constants, connectives, and quantifiers
as LPQ⊃,F.

In CL, the same assumptions about symbols are made as in LPQ⊃,F and
the notion of a signature is defined as in LPQ⊃,F. The languages of CL(Σ) and
LPQ⊃,F(Σ) are the same. A sound and complete sequent calculus proof system
of CL(Σ) can be obtained by adding the following inference rule to the sequent
calculus proof system of LPQ⊃,F(Σ):1

¬-L
Γ ⇒ ∆,A

¬A,Γ ⇒ ∆

4 Truth and Logical Consequence in LPQ⊃,F(Σ)

The proof system of LPQ⊃,F(Σ) is based on the logical consequence relation
on sets of formulas of LPQ⊃,F(Σ) defined in this section: a sequent Γ ⇒ ∆ is
provable iff the logical consequence relation holds between Γ and∆. This relation
is defined in terms of the truth value of formulas of LPQ⊃,F(Σ). The truth value
of formulas is defined relative to a structure and an assignment. First, the notion
of a structure and the notion of an assignment are introduced. Next, the truth
value of formulas and the logical consequence relation on sets of formulas are
defined.
1 If we replace the inference rule ¬-R by the inference rule ¬-L in the sequent calculus
proof system of LPQ⊃,F(Σ), then we obtain a sound and complete proof system of
the paracomplete analogue of LPQ⊃,F. The propositional part of that logic (K3⊃,F)
is studied in e.g. [16].
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Structures The terms from T (Σ) and the formulas from F(Σ) are interpreted
in structures which consist of a non-empty domain of individuals and an in-
terpretation of every symbol in the signature Σ and the equality symbol. The
domain of truth values consists of three values: t (true), f (false), and b (both
true and false).

A structure A of LPQ⊃,F(Σ) consists of:

– a set UA, the domain of A, such that UA 6= ∅ and UA ∩ {t, f, b} = ∅;
– for each c ∈ F0(Σ),

an element cA ∈ UA;

– for each n ∈ N, for each f ∈ Fn+1(Σ),

a function fA : UAn+1
→ UA;

– for each p ∈ P0(Σ),
an element pA ∈ {t, f, b};

– for each n ∈ N, for each P ∈ Pn+1(Σ),

a function PA : UAn+1
→ {t, f, b};

– a function =A: UA2
→ {t, f, b} such that, for each d ∈ UA,

=A (d, d) = t or =A (d, d) = b.

Instead of wA we write w when it is clear from the context that the interpretation
of symbol w in structure A is meant.

Assignments An assignment in a structure A of LPQ⊃,F(Σ) assigns elements
from UA to the variables from V . The interpretation of the terms from T (Σ)
and the formulas from F(Σ) in A is given with respect to an assignment α in
A.

Let A be a structure of LPQ⊃,F(Σ). Then an assignment in A is a function
α : V → UA. For every assignment α in A, variable x ∈ V , and element d ∈ UA,
we write α(x → d) for the assignment α′ in A such that α′(x) = d and α′(y) =
α(y) if y 6≡ x.

Valuations and models The valuation of the terms from T (Σ) is given by a
function mapping term t, structure A and assignment α in A to the element of
UA that is the value of t in A under assignment α. Similarly, the valuation of
the formulas from F(Σ) is given by a function mapping formula A, structure A
and assignment α in A to the element of {t, f, b} that is the truth value of A in
A under assignment α. We write [[t]]Aα and [[A]]Aα for these valuations.

The valuation functions for the terms from T (Σ) and the formulas from F(Σ)
are inductively defined in Table 2. In this table, x is a meta-variable ranging over
all variables from V , c is a meta-variable ranging over all function symbols from
F0(Σ), f is a meta-variable ranging over all function symbols from Fn+1(Σ)
(where n is understood from the context), p is a meta-variable ranging over all
predicate symbols from P0(Σ), P is a meta-variable ranging over all predicate
symbols from Pn+1(Σ) (where n is understood from the context), t1, . . . , tn+1

8



Table 2. Valuations of terms and formulas of LPQ⊃,F(Σ)

[[x]]Aα = α(x) ,

[[c]]Aα = cA ,

[[f(t1, . . . , tn+1)]]
A

α = fA([[t1]]
A

α , . . . , [[tn+1]]
A

α )

[[F]]Aα = f ,

[[p]]Aα = pA ,

[[P (t1, . . . , tn+1)]]
A

α = PA([[t1]]
A

α , . . . , [[tn+1]]
A

α ) ,

[[t1 = t2]]
A

α = =A ([[t1]]
A

α , [[t2]]
A

α ) ,

[[¬A]]Aα =











t if [[A]]Aα = f

f if [[A]]Aα = t

b otherwise,

[[A1 ∧A2]]
A

α =











t if [[A1]]
A

α = t and [[A2]]
A

α = t

f if [[A1]]
A

α = f or [[A2]]
A

α = f

b otherwise,

[[A1 ∨A2]]
A

α =











t if [[A1]]
A

α = t or [[A2]]
A

α = t

f if [[A1]]
A

α = f and [[A2]]
A

α = f

b otherwise,

[[A1 ⊃ A2]]
A

α =











t if [[A1]]
A

α = f or [[A2]]
A

α = t

f if [[A1]]
A

α 6= f and [[A2]]
A

α = f

b otherwise,

[[∀x • A]]Aα =











t if, for all d ∈ UA, [[A]]A
α(x→d) = t

f if, for some d ∈ UA, [[A]]A
α(x→d) = f

b otherwise.

[[∃x • A]]Aα =











t if, for some d ∈ UA, [[A]]A
α(x→d) = t

f if, for all d ∈ UA, [[A]]A
α(x→d) = f

b otherwise.

are meta-variables ranging over all terms from T (Σ), and A, A1, and A2 are
meta-variables ranging over all formulas from F(Σ).

The following theorem is a decidability result concerning valuations of for-
mulas in structures with a finite domain.

Theorem 1. Let A be a structure of LPQ⊃,F(Σ) such that UA is finite, and let

α be an assignment in A. Then, for all A ∈ F(Σ), [[A]]Aα ∈ {t, b} is decidable.

Proof. This is easy to prove by induction on the structure of A. ⊓⊔

Let Γ be a set of formulas from F(Σ). Then a model of Γ is a structure A of
LPQ⊃,F(Σ) such that, for all assignments α in A, for all A ∈ Γ , [[A]]Aα ∈ {t, b}.
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Logical consequence Let Γ and ∆ be sets of formulas from F(Σ). Then ∆ is

a logical consequence of Γ , written Γ � ∆, iff for all structures A of LPQ⊃,F(Σ),
for all assignments α in A, [[A]]Aα = f for some A ∈ Γ or [[A′]]Aα ∈ {t, b} for some
A′ ∈ ∆.

The sequent calculus proof system of LPQ⊃,F(Σ) presented in Section 3 is
sound and complete with respect to logical consequence as defined above.

Theorem 2. Let Γ and ∆ be finite sets of formulas from F(Σ). Then Γ ⊢ ∆

iff Γ � ∆.

Proof. In the proof of this theorem use is made of the fact that a sound and
complete sequent calculus proof system for LP◦, a logic similar to LPQ⊃,F, is
available in [19]. The differences between the two logics are:

– the proof system of LPQ⊃,F does not include a cut rule and the proof system
of LP◦ includes a cut rule, but the latter proof system has the cut-elimination
property;

– the ¬-R rule and the Repl rule from the proof system of LPQ⊃,F differ from
the ¬-R rule and the Repl rule from the proof system of LP◦, but in either
proof systems the ¬-R rule and the Repl rule from the other proof system
are derived inference rules;

– the logical symbols of LP◦ include the consistency connective ◦ and the
logical symbols of LPQ⊃,F do not include this logical symbol, but formulas
with it as outermost operator can be defined as abbreviations of formulas in
LPQ⊃,F as follows: ◦A stands for (A⊃ F) ∨ (¬A ⊃ F);

– the logical symbols of LPQ⊃,F include F, ⊃, ∧, and ∀ and the logical symbols
of LP◦ do not include these logical symbols, but formulas with them as
outermost operator can be defined as abbreviations of formulas in LP◦ as
follows: F stands for A ∧ ¬A ∧ ◦A where A is an arbitrary atomic formula,
A1⊃A2 stands for (¬A1 ∧◦A1)∨A2, A1 ∧A2 stands for ¬(¬A1 ∨¬A2), and
∀x • A stands for ¬∃x • ¬A.

For each formula of one of the two logics which is defined above as an abbre-
viation of a formula in the other logic, the valuation of the former formula in
the former logic is the same as the valuation of the latter formula in the latter
logic. Moreover, the first two differences mentioned above have no effect on the
sequents that can be proved. Therefore, the sequent calculus proof system of
LPQ⊃,F is sound and complete if, for each logical symbol missing in one of the
logics, the inference rules for that symbol in the proof system of the other logic
become derived inference rules in the proof system of the former logic when the
formulas with that symbol as outermost operator are taken for abbreviations of
formulas as defined above. It is a routine matter to prove this. ⊓⊔

A non-standard, indirect proof of soundness and completeness is outlined above.
This proof outline clarifies why LPQ⊃,F is called ‘essentially the same as’ LP◦ in
Section 1. Moreover, it follows from this proof outline that the admissibility of
the structural inference rules of cut and weakening in LP◦ carries over to LPQ⊃,F.

10



A direct proof of soundness and completeness can be given along the same lines
as in the proof of Theorem 1 from [17].

There are two minor differences between LPQ⊃,F and LP◦ that are not men-
tioned in the proof outline above. The first difference is that a predicate symbol
is interpreted in LP◦ as what is sometimes called a paraconsistent relation (see
e.g. [2]) and in LPQ⊃,F as what may be called the characteristic function of such
a relation. However, this difference is nullified in the valuation of formulas. The
second difference is that in LP◦ signatures are restricted to signatures Σ for
which P0(Σ) = ∅. By consulting the soundness and completeness proofs in [19],
it becomes immediately clear that, as expected, this restriction can be removed
without effect on the soundness and completeness.

Abbreviations From Section 5 on, we use ◦A and A1 → A2 as abbreviations
for formulas in LPQ⊃,F. These abbreviations are defined as follows: ◦A stands
for (A ⊃ F) ∨ (¬A ⊃ F) and A1 → A2 stands for (A1 ⊃ A2) ∧ (¬A2 ⊃ ¬A1). It
follows from these definitions that:

[[◦A]]Aα =

{

t if [[A]]Aα = t or [[A]]Aα = f

f otherwise,

[[A1 →A2]]
A
α =







t if [[A1]]
A
α = f or [[A2]]

A
α = t

b if [[A1]]
A
α = b and [[A2]]

A
α = b

f otherwise,

5 Relational Databases Viewed through LPQ⊃,F

In this section, relational databases are considered from the perspective of
LPQ⊃,F. A relational database can be considered from a logical point of view
in two different ways: either as a model of a logical theory (the model-theoretic
view) or as a logical theory (the proof-theoretic view). Here, the second view-
point is taken. In the definition of the notion of a relational database, use is made
of the notions of a relational language and a relational theory. The latter two
notions are defined first. The definitions given in this section are based on those
given in [21]. However, types are ignored for the sake of simplicity (cf. [12,23]).

Relational languages The pair (Σ,F(Σ)), whereΣ is a signature, is called the
language of LPQ⊃,F(Σ). If Σ satisfies particular conditions, then the language
of LPQ⊃,F(Σ) is considered a relational language.

Let Σ be a signature. Then the language R = (Σ,F(Σ)) of LPQ⊃,F(Σ) is a
relational language iff it satisfies the following conditions:

– F0(Σ) is non-empty and finite;

–
⋃

{Fn+1(Σ) | n ∈ N} is empty;

– P0(Σ) is empty;
–

⋃

{Pn+1(Σ) | n ∈ N} is finite.
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Relational theories Below, we will introduce the notion of a relational theory.
In the definition of a relational theory, use is made of four auxiliary notions,
namely the notions of an atomic fact, a domain closure axiom, a unique name
axiom set, and a completion axiom. These auxiliary notions are defined first.

Let R = (Σ,F(Σ)) be a relational language. Then an atomic fact for R

is a formula from F(Σ) of the form P (c1, . . . , cn+1), where P ∈ Pn+1(Σ) and
c1, . . . , cn+1 ∈ F0(Σ).

Let R = (Σ,F(Σ)) be a relational language. Then the equality consistency

axiom for R is the formula

∀x, x′
• ◦(x = x′) .

Let R = (Σ,F(Σ)) be a relational language and let c1, . . . , cn be all members
of F0(Σ). Then the domain closure axiom for R is the formula

∀x • (x = c1 ∨ . . . ∨ x = cn)

and the unique name axiom set for R is the set of formulas

{¬(ci = cj) | 1 ≤ i < j ≤ n} .

Let R = (Σ,F(Σ)) be a relational language, let Λ ⊆ F(Σ) be a finite set
of atomic facts for R, and let P ∈ Pn+1(Σ) (n ∈ N). Suppose that there exist
formulas in Λ in which P occurs and let P (c11, . . . , c

1
n+1), . . . , P (cm1 , . . . , cmn+1) be

all formulas from Λ in which P occurs. Then the P -completion axiom for Λ is
the formula

∀x1, . . . , xn+1 • P (x1, . . . , xn+1)→
x1 = c11 ∧ . . . ∧ xn+1 = c1n+1 ∨ . . . ∨ x1 = cm1 ∧ . . . ∧ xn+1 = cmn+1 .

Suppose that there does not exist a formula in Λ in which P occurs. Then the
P -completion axiom for Λ is the formula

∀x1, . . . , xn+1 • P (x1, . . . , xn+1)→ F .

Let R = (Σ,F(Σ)) be a relational language. Then the relational structure

axioms for R, written RSA(R), is the set of all formulas A ∈ F(Σ) for which
one of the following holds:

– A is the equality consistency axiom for R;
– A is the domain closure axiom for R;
– A is an element of the unique name axiom set for R.

Let R = (Σ,F(Σ)) be a relational language, and let Λ ⊆ F(Σ) be a finite
set of atomic facts for R. Then the relational theory for R with basis Λ, written
RT (R,Λ), is the set of all formulas A ∈ F(Σ) for which one of the following
holds:

12



– A ∈ RSA(R);
– A ∈ Λ;
– A is the P -completion axiom for Λ for some P ∈

⋃

{Pn+1(Σ) | n ∈ N}.

A set Θ ⊆ F(Σ) is called a relational theory for R if Θ = RT (R,Λ) for some
finite set Λ ⊆ F(Σ) of atomic facts for R. The elements of this unique Λ are
called the atomic facts of Θ.

The following theorem is a decidability result concerning provability of se-
quents Γ ⇒ A where Γ includes the relational structure axioms for some rela-
tional language.

Theorem 3. Let R = (Σ,F(Σ)) be a relational language, and let Γ be a finite

subset of F(Σ) such that RSA(R) ⊆ Γ . Then it is decidable whether, for a

formula A ∈ F(Σ), Γ ⇒ A is provable.

Proof. Because RSA(R) ⊆ Γ , it is sufficient to consider only structures that
are models of RSA(R). The domains of these structures have the same finite
cardinality. Because in addition there are finitely many predicate symbols in Σ,
there exist moreover only finitely many of these structures.

Clearly, it is sufficient to consider only the restrictions of assignments to the
set of all variables that occur free in Γ ∪{A}. Because the set of all variables that
occur free in Γ ∪{A} is finite and the domain of the structures to be considered
is finite, there exist only finitely many such restrictions and those restrictions
are finite.

It follows easily from the above-mentioned finiteness properties and Theo-
rems 1 and 2 that it is decidable whether, for a formula A ∈ F(Σ), Γ ⇒ A is
provable. ⊓⊔

Relational databases Having defined the notions of an relational language and
a relational theory, we are ready to define the notion of a relational database in
the setting of LPQ⊃,F.

A relational database DB is a triple (R,Θ,Ξ), where:

– R = (Σ,F(Σ)) is a relational language;
– Θ is a relational theory for R;
– Ξ is a finite subset of F(Σ).

Θ is called the relational theory of DB and Ξ is called the set of integrity con-

straints of DB .
The set Ξ of integrity constraints of a relational database DB = (R,Θ,Ξ)

can be seen as a set of assumptions about the relational theory of the relational
database Θ. If the relational theory agrees with these assumptions, then the
relational database is called consistent.

Let R = (Σ,F(Σ)) be a relational language, and let DB = (R,Θ,Ξ) be a
relational database. Then DB is consistent iff, for each A ∈ F(Σ) such that A
is an atomic fact for R or A is of the form ¬A′ where A′ is an atomic fact for R:

Θ ⇒ A is provable only if Θ,Ξ ⇒ ◦A is provable.

13



Notice that, if DB is not consistent, Θ,Ξ ⇒ A is provable with the sequent
calculus proof system of CL(Σ) for all A ∈ F(Σ). However, the sequent calculus
proof system of LPQ⊃,F(Σ) rules out such an explosion.

Models of relational theories The models of relational theories for a rela-
tional language R = (Σ,F(Σ)) are structures of LPQ⊃,F(Σ) of a special kind.

Let R = (Σ,F(Σ)) be a relational language. Then a relational structure for

R is a structure A of LPQ⊃,F(Σ) such that:

– for all d1, d2 ∈ UA, =A(d1, d2) ∈ {t, f};
– for all d ∈ UA, there exists a c ∈ F0(Σ) such that =A(d, cA) = t;
– for all c1, c2 ∈ F0(Σ), =A(c1

A, c2
A) = t only if c1 ≡ c2.

Let R = (Σ,F(Σ)) be a relational language, and let A be a structure of
LPQ⊃,F(Σ). Then A is a relational structure for R iff, for all assignments α in
A, for all A ∈ RSA(R), [[A]]Aα ∈ {t, b}. Moreover, let Θ be a relational theory for
R. Then all models of Θ are relational structures for R because RSA(R) ⊆ Θ.
Θ does not have a unique model up to isomorphism. Θ’s predicate completion
axioms fail to enforce a unique model up to isomorphism. However, identification
of t and b in the models of Θ yields uniqueness up to isomorphism.

Let R = (Σ,F(Σ)) be a relational language, and let A be a relational struc-
ture for R. Then we write ∇A for the relational structure A′ for R such that:

– UA
′

= UA;
– for each c ∈ F0(Σ), cA

′

= cA;
– for each n ∈ N, for each P ∈ Pn+1(Σ), for each d1, . . . , dn+1 ∈ UA

′

,

PA
′

(d1, . . . , dn+1) =

{

t if PA(d1, . . . , dn+1) ∈ {t, b}
f otherwise;

– for each d1, d2 ∈ UA
′

, =A
′

(d1, d2) = =A(d1, d2).

Let R = (Σ,F(Σ)) be a relational language, let Θ be a relational theory for
R, and let A be a model of Θ. Then ∇A, i.e. A with t and b identified, is in
essence a relational database as originally introduced in [8].

Theorem 4. Let R = (Σ,F(Σ)) be a relational language, let Θ be a relational

theory for R, and let A and A′ be models of Θ. Then ∇A and ∇A′ are isomor-

phic relational structures.

Proof. The proof goes in almost the same way as the proof of part 1 of The-
orem 3.1 from [21]. The only point of attention is that it may be the case
that, for some P ∈ Pn+1(Σ) and c1, . . . , cn+1 ∈ F0(Σ) (n ∈ N), either
[[P (c1, . . . , cn+1)]]

A
α = t and [[P (c1, . . . , cn+1)]]

A
′

α = b or [[P (c1, . . . , cn+1)]]
A
α = b

and [[P (c1, . . . , cn+1)]]
A

′

α = t. But, if this is the case, [[P (c1, . . . , cn+1)]]
∇A
α = t

and [[P (c1, . . . , cn+1)]]
∇A

′

α = t. ⊓⊔

Theorem 5. Let R = (Σ,F(Σ)) be a relational language, and let A be a rela-

tional structure for R. Then there exists a relational theory Θ for R such that

A is a model of Θ.

Proof. The proof goes in the same way as the proof of part 2 of Theorem 3.1
from [21]. ⊓⊔
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6 Query Answering Viewed through LPQ⊃,F

In this section, queries applicable to a relational database and their answers
are considered from the perspective of LPQ⊃,F. As a matter of fact, the queries
introduced below are closely related to the relational-calculus-oriented queries
originally originally introduced in [9].

Queries As to be expected in the current setting, a query applicable to a
relational database involves a formula of LPQ⊃,F.

Let R = (Σ,F(Σ)) be a relational language. Then a query for R is an
expression of the form (x1, . . . , xn) • A, where:

– x1, . . . , xn ∈ V ;
– A ∈ F(Σ) and all variables that are free in A are among x1, . . . , xn.

Let DB = (R,Θ,Ξ) be a relational database. Then a query is applicable to

DB iff it is a query for R.

Answers Answering a query with respect to a consistent relational database
amounts to looking for closed instances of the formula concerned that are logical
consequences of a relational theory. The main issue concerning query answering
is how to deal with inconsistent relational databases.

Let R = (Σ,F(Σ)) be a relational language, let DB = (R,Θ,Ξ) be a re-
lational database, and let (x1, . . . , xn) • A be a query that is applicable to DB .
Then an answer to (x1, . . . , xn) •A with respect to DB is a (c1, . . . , cn) ∈ F0(Σ)n

for which Θ ⇒ [x1 := c1] . . . [xn := cn]A is provable.
The above definition of an answer to a query with respect to a database does

not take into account the integrity constraints of the database concerned.

Consistent answers The definition of a consistent answer given below is based
on the following:

– the observation that the formula that corresponds to an answer, being a
logical consequence of the relational theory of the database, is also a logical
consequence of one or more sets of atomic facts and negations of atomic facts
that are logical consequences of the relational theory of the database;

– the idea that in the case of a consistent answer there must be such a set that
does not contain an atomic fact or negation of an atomic fact that causes
the database to be inconsistent.

Let R = (Σ,F(Σ)) be a relational language. Then an semi-atomic fact for R

is a formula from F(Σ) of the form P (c1, . . . , cn+1) or the form ¬P (c1, . . . , cn+1),
where P ∈ Pn+1(Σ) and c1, . . . , cn+1 ∈ F0(Σ).

Let R = (Σ,F(Σ)) be a relational language, let DB = (R,Θ,Ξ) be a re-
lational database, and let (x1, . . . , xn) • A be a query that is applicable to DB .
Then a consistent answer to (x1, . . . , xn)•A with respect to DB is a (c1, . . . , cn) ∈
F0(Σ)

n
for which there exists a Φ ⊆ {A′ | A′ is a semi-atomic fact for R} such

that:
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– for all A′ ∈ Φ, Θ ⇒ A′ is provable and Θ,Ξ ⇒ ◦A′ is provable;
– Φ,RSA(R) ⇒ [x1 := c1] . . . [xn := cn]A is provable.

The above definition of a consistent answer to a query with respect to a
database is reminiscent of the definition of a consistent answer to a query with
respect to a database given in [4]. It simply accepts that a database is inconsis-
tent and excludes the source or sources of the inconsistency from being used in
consistent query answering.

Strongly consistent answers The definition of a strongly consistent answer
given below is not so tolerant of inconsistency and makes use of consistent repairs
of the database. The idea is that an answer is strongly consistent if it is an answer
with respect to any minimally repaired version of the original database.

Let R = (Σ,F(Σ)) be a relational language, and let Λ ⊆ F(Σ) be a finite
set of atomic facts for R. Then, following [1], the binary relation ≤Λ on the set
of all finite sets of atomic facts for R is defined by:

Λ′ ≤Λ Λ′′ iff (Λ \ Λ′) ∪ (Λ′ \ Λ) ⊆ (Λ \ Λ′′) ∪ (Λ′′ \ Λ) .

Intuitively, Λ′ ≤Λ Λ′′ indicates that the extent to which Λ′ differs from Λ is less
than the extent to which Λ′′ differs from Λ.

Let R = (Σ,F(Σ)) be a relational language, let Λ ⊆ F(Σ) be a finite set of
atomic facts for R, and let Ξ is a finite subset of F(Σ). Then Λ is consistent

with Ξ iff for all semi-atomic facts A for R, RT(R,Λ) ⇒ A is provable only if
RT (R,Λ), Ξ ⇒ ¬A is not provable. We write Con(Ξ) for the set of all finite sets
of atomic facts for R that are consistent with Ξ.

Let R = (Σ,F(Σ)) be a relational language, let Λ ⊆ F(Σ) be a fi-
nite set of atomic facts for R, let DB = (R,RT (R,Λ), Ξ) be a relational
database, and let (x1, . . . , xn) • A be a query that is applicable to DB .
Then a strongly consistent answer to (x1, . . . , xn) • A with respect to DB is a
(c1, . . . , cn) ∈ F0(Σ)

n
such that, for each Λ′ that is ≤Λ-minimal in Con(Ξ),

RT (R,Λ′) ⇒ [x1 := c1] . . . [xn := cn]A is provable. The elements of Con(Ξ) that
are ≤Λ-minimal in Con(Ξ) are called the repairs of Λ.

The above definition of a strongly consistent answer to a query with respect
to a database is essentially the same as the definition of a consistent answer to
a query with respect to a database given in [1]. It represents, presumably, the
first view on what the repairs of an inconsistent database are. Other views have
been taken in e.g. [14,13,6,5,3].

Decidability The following theorem concerns the decidability of being an an-
swer to a query.

Theorem 6. Let R = (Σ,F(Σ)) be a relational language, let DB = (R,Θ,Ξ)
be a relational database, and let (x1, . . . , xn) • A be a query applicable to DB.

Then it is decidable whether, for (c1, . . . , cn) ∈ F0(Σ)
n
:
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– (c1, . . . , cn) is an answer to (x1, . . . , xn) • A with respect to DB;

– (c1, . . . , cn) is a consistent answer to (x1, . . . , xn) • A with respect to DB;

– (c1, . . . , cn) is a strongly consistent answer to (x1, . . . , xn) • A with respect

to DB.

Proof. Each of these decidability results follows immediately from Theorem 3
and the definition of the kind of answer concerned. ⊓⊔

As a corollary of Theorem 6, we have that the set of answers to a query, the set
of consistent answers to a query, and the set of strongly consistent answers to a
query are computable.

7 Examples of Query Answering

For a given database and query applicable to that database, the set of all answers,
the set of all consistent answers, and the set of all strongly consistent answers
may be different. The examples of query answering given below illustrate this.
The examples are kept extremely simple so that readers that are not initiated in
the sequent calculus proof system of LPQ⊃,F can understand the remarks made
about the provability of sequents.

Example 1 Consider the relational database whose relational language, say R,
has constant symbols a and b and unary predicate symbols P and Q, whose
relational theory is the relational theory of which P (a), P (b), and Q(a) are
the atomic facts, and whose only integrity constraint is ∀x • ¬(P (x) ∧ Q(x)).
Moreover, consider the query x • P (x). Clearly, the set of answers is {a, b}.

The sets of semi-atomic formulas that are logical consequences of the rela-
tional theory and do not cause the database to be inconsistent are {P (b),¬Q(b)}
and all its subsets. We have:

– P (b),¬Q(b),RSA(R) ⇒ P (a) is not provable;
– P (b),¬Q(b),RSA(R) ⇒ P (b) is provable.

Hence, the set of consistent answers is {b}.
The repairs of {P (a), P (b), Q(a)} are {P (a), P (b)} and {P (b), Q(a)}. We

have:

– RT (R, {P (b), Q(a)}) ⇒ P (a) is not provable;
– RT (R, {P (a), P (b)}) ⇒ P (b) is provable;
– RT (R, {P (b), Q(a)}) ⇒ P (b) is provable.

Hence, the set of strongly consistent answers is {b}.
In this example, the set of all answers differs from the set of all consistent

answers and the set of all strongly consistent answers, but the set of all consistent
answers and the set of all strongly consistent answers are the same. The repairs
of the database are obtained by deletion of atomic facts.

17



Example 2 Consider the relational database whose relational language, say R,
has constant symbols a, b, and c and unary predicate symbols P and Q, whose
relational theory is the relational theory of which P (a), P (b), Q(a), and Q(c)
are the atomic facts, and whose only integrity constraint is ∀x • P (x) → Q(x).
Moreover, consider the query x • P (x). Clearly, the set of answers is {a, b}.

The sets of semi-atomic formulas that are logical consequences of the rela-
tional theory and do not cause the database to be inconsistent are {P (a),¬P (c),
Q(a),¬Q(b), Q(c)} and all its subsets. We have:

– P (a),¬P (c), Q(a),¬Q(b), Q(c),RSA(R) ⇒ P (a) is provable;
– P (a),¬P (c), Q(a),¬Q(b), Q(c),RSA(R) ⇒ P (b) is not provable.

Hence, the set of consistent answers is {a}.
The repairs of {P (a), P (b), Q(a), Q(c)} are {P (a), P (b), Q(a), Q(b), Q(c)}

and {P (a), Q(a), Q(c)}. We have:

– RT (R, {P (a), P (b), Q(a), Q(b), Q(c)}) ⇒ P (a) is provable;
– RT (R, {P (a), Q(a), Q(c)}) ⇒ P (a) is provable;
– RT (R, {P (a), Q(a), Q(c)}) ⇒ P (b) is not provable.

Hence, the set of strongly consistent answers is {a}.
In this example, like in the previous example, the set of all answers differs

from the set of all consistent answers and the set of all strongly consistent an-
swers, but the set of all consistent answers and the set of all strongly consistent
answers are the same. Unlike in the previous example, one of the repairs of the
database is obtained by deletion of an atomic fact and the other is obtained by
insertion of an atomic fact.

Example 3 Consider the relational database whose relational language, say
R, has constant symbols a, b, c, d, e, f , and g and unary predicate symbol
P , whose relational theory is the relational theory of which P (a, b, c), P (a, c, d),
P (a, c, e), and P (b, f, g) are the atomic facts, and whose only integrity constraint
is ∀x, y, z, y′, z′ • (P (x, y, z)∧P (x, y′, z′))→y = y′. Moreover, consider the query
y • ∃x, z • P (x, y, z). Clearly, the set of answers is {b, c, f}.

The sets of semi-atomic formulas that are logical consequences of the re-
lational theory and do not cause the database to be inconsistent include
{P (a, b, c), P (b, f, g)} and {P (a, c, d), P (a, c, e), P (b, f, g)}. We have:

– P (a, b, c), P (b, f, g),RSA(R) ⇒ ∃x, z • P (x, b, z) is provable;
– P (a, c, d), P (a, c, e), P (b, f, g),RSA(R) ⇒ ∃x, z • P (x, c, z) is provable;
– P (a, b, c), P (b, f, g),RSA(R) ⇒ ∃x, z • P (x, f, z) is provable.

Because a, d, e, and g are no answers, they cannot be consistent answers. Hence,
the set of consistent answers is {b, c, f}.

The repairs of {P (a, b, c), P (a, c, d), P (a, c, e), P (b, f, g)} are {P (a, b, c),
P (b, f, g)} and {P (a, c, d), P (a, c, e), P (b, f, g)}. We have:
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– RT (R, {P (a, c, d), P (a, c, e), P (b, f, g)}) ⇒ ∃x, z • P (x, b, z) is not provable;
– RT (R, {P (a, b, c), P (b, f, g)}) ⇒ ∃x, z • P (x, c, z) is not provable;
– RT (R, {P (a, c, d), P (a, c, e), P (b, f, g)}) ⇒ ∃x, z • P (x, f, z) is provable;
– RT (R, {P (a, b, c), P (b, f, g)}) ⇒ ∃x, z • P (x, f, z) is provable.

Because a, d, e, and g are no answers, they cannot be strongly consistent answers.
Hence, the set of strongly consistent answers is {f}.

In this example, unlike in the previous two examples, the set of all answers
and the set of all consistent answers are the same, but the set of all consistent
answers differs from the set of all strongly consistent answers. Like in the first
example, the repairs of this database are obtained by deletion of atomic facts.

8 Some remarks about consistent query answering

The definition of a consistent answer to a query with respect to a database given
in Section 6 simply accepts that a database is inconsistent and excludes the
source or sources of inconsistency from being used in consistent query answering.
Several considerations underlying this definition are mentioned in the next two
paragraphs.

Seeing the extensional nature of the atomic facts of a database and the inten-
sional nature of its integrity constraints, it is natural to consider the presence or
absence of atomic facts in a database that causes inconsistency with its integrity
constraints suspect and consequently not to use it in answering a query with
respect to the database. The plain choice not to use the source or sources of
inconsistency in answering a query does not result in additional choices to be
made.

The only accepted alternative to deal with an inconsistent database is to
base the answers on consistent databases, called repairs, obtained by deletion
and/or addition and/or alteration of atomic facts from the inconsistent database
that differ to a minimal extent from the inconsistent database. This alternative
requires rather artificial choices to be made concerning, among other things,
the kinds of changes (deletions, additions, alterations) that may be made to the
original database and what is taken as the extent to which two databases differ.

The definition of a consistent answer to a query with respect to a database
given in Section 6 is reminiscent of the definition of a consistent answer to a
query with respect to a database given in [4]. That paper is, to my knowledge,
the first paper in which consistent query answering in inconsistent databases
is considered. The definition of consistent query answer given in that paper is
based on provability in a natural deduction proof system of first-order minimal
logic, a paraconsistent logic that is much less close to classical logic than LPQ⊃,F.

What is missing in [4] is a semantics with respect to which the presented
proof system is sound and complete. This leaves it somewhat unclear how the
logical versions of the relevant notions (relational database, query, etc.) defined
in that paper are related to their standard version. The Kripke semantics of the
propositional fragment of minimal logic that can be found in various publications
leaves this unclear as well.
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The definition of a strongly consistent answer to a query with respect to
a database given in this section is essentially the same as the definition of a
consistent answer to a query with respect to a database given in [1]. It is, to my
knowledge, the first definition of a consistent answer based on the idea that an
answer is consistent if it is an answer with respect to any minimally repaired
version of the original database. Different views of what is a minimally repaired
version of a database are plausible. Views that differ from the original one have
been considered in e.g. [14,13,6,5,3].

In [4], the definition of a consistent answer is based on the idea that a (usu-
ally large) part of an inconsistent database is consistent and that a consistent
answer is simply an answer with respect to the consistent part of the database.
From the viewpoint taken in [1], this means that only one repair is considered.
Because there is in general more than one repair of a database, this is called a
shortcoming in [7]. However, the implicit assumption that it is necessary to use
the auxiliary notion of a repair in defining the notion of a consistent answer is
nowhere substantiated.

9 Concluding Remarks

This paper builds heavily on the following views related to relational databases
and consistent query answering:

– the proof-theoretic view of [21] on what is a relational databases, a query
applicable to a relational database, and an answer to a query with respect
to a consistent relational database;

– the view of [4] on what is a consistent answer to a query with respect to an
inconsistent relational database;

– the view of [1] on what is a consistent answer to a query with respect to an
inconsistent relational database.

The view of Reiter [21] has been combined with the view of Bry [4] as well as with
the view of Arenas et al [1] and adapted to the setting of the paraconsistent logic
LPQ⊃,F. This has led to one coherent view on relational databases and consistent
query answering expressed in a setting that is more suitable to this end than
classical logic or minimal logic.

The notion of a relational theory can be generalized by allowing its basis to be
a set of Horn clauses and adapting the completion axioms as sketched in [12]. This
generalization gives rise to a generalization of the notion of a relational database
that is generally known as the notion of a definite deductive database. The
definitions of an answer, a consistent answer, and a strongly consistent answer
given in this paper are also applicable to this generalization of the notion of a
relational database. Further generalizion of the notion of an indefinite deductive
database is a different matter.

The presented sequent calculus proof system of LPQ⊃,F, which is sound and
complete with respect of the given three-valued semantics of LPQ⊃,F, is new.
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