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Abstract 

The evaluation of the spatial similarities between two raster maps is traditionally 

based on pixel-by-pixel comparison techniques. These procedures determine the number 

of cells in agreement for each Janduse category and express the overall agreement with a 

boolean global similarity value. The problem with a pixel-by-pixel comparison is that a 

small displacement in pixels will be registered as disagreement even though the land use 

patterns between the maps maybe essentially the same. The issues of unique polygons 

mapping and hierarchical fuzzy pattern matching, where the maps are compared on both a 

local and global leve~ emerge as viable and robust alternatives. The local matchings 

determine the degree of containment of each unique polygon to its spatial counterparts on 

the original maps in terms of fuzzy areal intersections. Local agreement values for the 

unique polygons based on their polygon area containments are calculated from fuzzy 

logical Max-Min compositional algorithms. A global agreement value is derived by the 

fuzzy summation of the local matchings. The uses of these basic methods are discussed 

and further refinements and modeling possibilities are outlined. 
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1.1 Introduction 

Chapterl 

Introduction 

The study of land use dynamics has been an important theme in geographical 

research, with the measurement of differences in land use being fundamental to 

understanding certain socio-economic patterns and processes. The detection of land use 

differences involves estimating the temporal and spatial extents of the regions of land use 

disagreement from a direct comparison of two maps~ aerial photographs~ satellite images, 

or auxiliary information sources (Singh,1989). Generally, spatial models that perform a 

comparison of land use maps are designed to either detect land use change between 

multitemporal maps or to measure the similarities between a predicted map and an actual 

reference map. 

The detection of land use change from a comparison of multitemporal maps is 

based on identifying and measuring the disagreements in the patterns of land use from one 

time period to another. The types of change can range from short term phenomena such as 

snow cover or flooding to long term events such as deforestation or urban fringe 

development (Cracknell and Haye~ 1991 ). From an interpretation of where the land use 

maps are spatially different, a researcher can determine the physical, political, and 

economic factors responsible for the change. Consequently, the comparison of the land 

use maps is often an essential step needed for modeling spatial land use processes. 
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A map comparison similarity analysis is conceptually and operationally identical to 

land use change detection except that the comparison involves atemporal maps. The goal 

of a similarity analysis is to gauge the performance of a Jand use prediction or forecasting 

model, such as a cellular auto~ by comparing its predicted results to a map of actual 

land use. With the degree of similarity between the maps expressed as a quantitative 

agreement value, an analyst is given a idea of the accuracy of the predicted map. 

The simplest way to identifY differences between two land use maps is to 

qualitatively determine the areas of disagreements from a visual comparison of the maps. 

This approach is commonly used for the interpretation of large scale aerial photographs 

(Jensen.l981). An analyst would manually delineate the regions that he has subjectively 

determined to be dissimilar to produce a change or difference layer. Despite its ease of 

implementation. several authors (Jensen. 1981; Adeniyi, 1980) have stated that the visual 

comparison of photos is a slow, tiring process that often results in errors of omission. As a 

result, the preferred methods are those that automatically correlate and compare two maps 

to detect land use differences. 

Since the 1970s, researchers have developed and improved computerized 

techniques for modeling geographical change. Geographical Information Systems (GIS) 

and remote sensing research have consequently led to the development of a number of 

digital change detection algorithms. Although these procedures where primarily developed 

for land use change detection. they are equally suited for a similarity analysis. The basic 

premise of using GIS and remote sensing for change detection or similarity analysis is that 

land use differences will lead to areal disagreements between the maps. A fundamental 
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assumption of any digital change detection method is that there exists a difference in the 

value of a pixel on two dates if the land use converts from one type to another 

(8~1989). 

Many of the change detection procedures have come from the remote sensing 

field. These digital methods of discriminating change involve the pairwise comparison of 

raster land use maps (Lo and Ship~ 1990). In other wor~ two maps are compared on 

a pixel-by-pixel basis to identify areas of contrasting reflectance values or thematic 

attributes. Most of the change detection models discussed in the remote sensing literature 

identifY change as disagreements in spectral reflectance between multitemporal imagery 

(Jensen, 1981; S~ 1989). Two types of procedures for using multispectral reflectance 

data in change analysis are collllllOnly used. The first type utilizes arithmetic operations 

between the same spectral bands of bitemporal images (Gong,1993). The most common 

arithmetic change procedures are image differencing (Singh, 1989; Lo and Ship~ 1990; 

Weismiller et a/.,1911) and image ratioing (Wickware and How~1981; Renez,1985). 

Change component images for each spectral band are created by subtracting or dividing 

the multispectral data of the images. Finally, the component images are classified 

according to boolean threshold values to indicate whether significant or relevant change 

has occurred. 

The second type of multispectral change analysis utilizes statistical image 

transformation models, such as change vector analysis {Mali1a,1980; Johnson,l994; 

Lamblin,l996) and principal components analysis (Byrne et a/.,1980; Ingebritsen and 

Lyon,1985; Gong,1993). Image transformation algorithms analyze the variance in a 
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multispectral dataset to reduce the number of spectral bands to a relatively smaller number 

of change components. This enables the dimensionality of the change detection process to 

be decreased without losing useful information. A land use change map is usually 

generated through the interpretation and thresholding of the change components. 

An important consideration about a multispectral change analysis is that it involves 

the comparison of unclassified satellite images. Alternative procedures exist that identify 

change by comparing independently produced classification layers or thematic maps. They 

are often referred to as post classification comparisons (Wickware and Ho~l981; 

Hodgson et al., 1988; Jensen et a/., 1987). Technically, the comparison algorithm performs 

a pixel-by-pixel crosstabulation of two thematic maps to generate a map and associated 

statistics that indicate regions of change. 

The work discussed in this thesis is concentrated on the use of fuzzy set theory for 

the development of an improved post classification comparison modeL Since the basis of 

the thesis is the comparison of thematic land use maps, the multitemporal change 

procedures are not relevant to the research and are not discussed beyond this chapter. 

However, it should be noted that the methodology presented in subsequent chapters can 

be adapted to compare multispectral data. 

In post classification change detection the accuracy of the results depends on the 

accuracy of the categorical cJassifications and geometric registration of the maps. Because 

the maps are compared on a pixel-by-pixel basis, this method produces poor results if the 

maps are not extremely accurate, both locationally and thematically. In gene~ the 

resultant map produced from the comparison analysis will only be as accurate as the least 
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accurate input map (Hodgson et a/.,1988). Another limitation of a post classification 

comparison is that it can only compare maps that contain boolean categories. Since it can 

not handle the existence of mixed · pixels, the operation of a pairwise comparison often 

requires complex spatial information to be disregarded or simplified. 

The development of a system that can accurately and realistically model land use 

change dynamics requires it to handle the complex nature of spatial data and to be less 

sensitive to the map registration problem. First of all, the association procedure should be 

performed on a regional basis to obtain a more reliable measurement of change between 

the maps. Therefore, it should involve land use polygons instead of individual pixels. More 

importantly, the model should be able to handle data uncertainty rather than simply ignore 

it. 

1.2 Statement of the Objectives 

The main objective of this research is to develop a fuzzy relational land use change 

detection model that can produce a qualitative and quantitative description of land use 

dynamics on a regional scale. 

The first step in achieving this objective is to develop a methodology for 

comparing land use on a polygon to polygon basis. This requires the following tasks: 

(i) determine contiguous groupings of identical land use pixels for each 
map and calculate the area for each polygon 

(ii) perform an unique polygons analysis to identifY which polygons on the 
maps are locationally correlated 



(ili) determine if the land use is similar for the polygons on map two that 
intersect with the groupings on map one. Estimate the boolean areal 
intersection and complement for each polygon on map one. 
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The next step is the development of the fuzzy change detection inference system 

that estimates the possibilities of polygon areal containments between the land use maps. 

Most applications of fuzzy set theory have been based on linguistic interpretation of fuzzy 

sets (Fedrizzi and Kacprzy~ 1986). For this projec4 the inference system will emulate a 

persons' reasoning ability to visually compare maps and intuitively estimate their global 

and local land ~ agreements. The creation of the inference system will involve: 

(i) detennining fuzzy membership functions to represent the qualitative areal 
containment interpretations 

(ii) producing fuzzy areal matching rules based on the Max-Min compositional rule 
of inference and deriving the appropriate fuzzy aggregation and defuzzification 
algorithms to drive the model 

(iii) calculating the local matching values for each polygon on the reference map 
and appraising the applicability ofhierarchical fuzzy areal pattern matching for 
devising a single quantitative agreement value relating the degree of land use 
matching between the maps. 

Finally, the validity of the fuzzy change detection model needs to be measured to 

. . 

determine the significance of the derived global matching values. This requires the 

calculation of Shannon entropy to estimate the degree of uncertainty in the global 

containment estimations. In addition, entropy will detennine the amount of information 

lost by transforming the complexity of a qualitative agreement fuzzy set to a quantitative 

matching value. 



1.3 Thesis Organization 

This thesis is divided into six chapters. The next chapter presents a review of 

(i) traditional map similarity procedures in geography 

(il") the fundamentals of fuzzy set theory 

(ill) previous uses of fuzzy set theory in spatial analytical applicatio~ and 

(iv) attempts to improve land use change detection with fuzzy set theory. 
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Chapter three descn'bes the methodology behind the grouping process and the 

unique polygons analysis, and gives a detailed description of the development and 

structure of the fuzzy inference system. In addition, the algorithms for the global matching 

and entropy analysis will be presented and discussed. 

Chapter four explains how the fuzzy areal matching process works by discussing 

the results for three Jand use datasets. Maps and tables are included to aid in the 

description of the land use difference analysis and to show the advantages of hierarchical 

fuzzy pattern matching over traditional map comparison techniques. 

The final chapter contains a discussion of the matching results and an analysis of 

future research for the expansion of the fuzzy pattern matching process. 



2.1 Introduction 

Chapter2 

Related Research 
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The existence and importance of uncertainty in many real world problems bas been 

recognized by scientists for some time. Traditionally, the analysis of complex systems was 

based on precise conventional mathematical operations that often generated unsatisfactory 

results. A breakthrough occurred in 1965 when Lotti Zadeh proposed his simple but 

effective theory of fuzzy sets. 

Zadeh (1965) devised his theory of vagueness with the formulation of the Principle 

of Incompatibility, which states that as the complexity of a problem increases, the ability to 

analyze it in precise terms decreases. It is generally believed that any model that is able to 

handle the ambiguity of the real world should emulate the human reasoning method of 

using qualitative linguistic expressions to descnbe complex situations and to aggregate 

information. By representing linguistic expressions as membership functions, fuzzy set 

theory controls imprecision by grouping elements into classes that do not have sharply 

defined boundaries (Kande~ 1982). 

As an imprecise science, geography is concerned with the modeling of phenomena 

that are inherently complex and that rarely fit within the confines of standard linear 

models. Fuzzy set theory is ideally suited for geographical analysis because its inexact 

structures contain reasoning mechanisms that can preserve the heterogeneous nature of 

spatial data. More importantly, it allows the geographer to include his qualitative 

interpretations of a subject into the analysis procedure. Openshaw (1987) and Goodchild 
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(1988) have pointed out that the descriptive approach of fuzzy set theory may provide a 

foundation for the development of future spatial analysis procedures that are applicable 

across all the subdisciplines of geography. 

The purpose of this chapter is to descn'be the traditional post classification map 

comparison procedure and to review existing fuzzy geographical research. An introduction 

to the fundamentals of fuzzy sets will be provided before the fuzzy spatial techniques are 

summarized. The research discussed relates to fuzzy applications in GIS and remote 

sensing and is divided into fuzzy spatial similarity analysis and fuzzy land use change 

detection. 

2.2 Traditional Post Classification Comparison of Thematic Maps 

Singh ( 1989) states that the pairwise comparison of maps is the preferred and most 

obvious method for detecting changes or differences between thematic maps. 

Consequently, it has received considerable evaluation in GIS and remote sensing literature. 

Jensen et a/. (1987) assessed wetland changes in South Carolina from change maps and 

statistics produced by a post classification comparison. Wickware and Howarth (1981) 

produced supervised classifications of 1973 and 1976 Landsat MSS data and compared 

the classifications to detect ecological habitat changes in the Peace-Athabasca delta. 

The objective of a post classification comparison is to identifY areas of categorical 

disagreement between two maps by detennining the pixels with a difference in theme. This 

entails overlaying or crosstabulating the maps on a pixel-by-pixel basis to produce a map 

and matrix of site specific differences. The map displays the location and nature of the 
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differences between the maps while the matrix indicates the total amount of categorical 

agreements and disagreements for each category. Wrth the matrix representation, it is 

posSible to interpret wbat the differences are for a certain class from one map to the next. 

To illustrate, refer to the example post classification matrix in Table 2.2.1. The pixels. that 

are common to both maps are located along the main diagonal of the matrix and represent 

areas of no change. All nondiagonal values in the matrix represent land use disagreements 

and can be used to determine the extent of the categorical differences between the maps. 

For example, seven pixels that were spruce on map one were classified as mixed forest on 

map two. 

Table 2.2.1 Example Post Classification Agreement Matrix 

Map Two 
Water Cir.m Spruce Rock MixedFCRSt Teal 

Water ll 0 0 0 0 ll 
Grass 0 10 I 0 I l2 
Spruce 0 2 6 0 7 15 
Rack 0 0 0 3 0 3 

Mixedfms 0 1 4 0 8 13 
T<tal 11 13 ll 3 16 54 

From the information in the matrix, summary agreement statistics can be generated 

to give a measure of areal disagreement. The simplest is the total percentage agreement, 

which is computed by dividing the sum of the diagonal values by the total number of 

pixels. Note that Table 2.2.1 bas a total agreement value of 84o/o. Similarly, a more 

detailed interpretation of map agreement can be obtained from statistics that use all of the 

entries in the agreement matrix. These measures, such as the Kappa coefficient of 
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agreement, are used to derive a single quantitative value of global map agreement 

(Foody,.l992; Congalton,l991; Rosenfield and Fitzpatrick-Lins,1986). A thorough review 

of Kappa and several other global agreement coefficients will be presented in section 4.4 

of this thesis. 

The need for a better post classification change detection or map similarity 

procedure relates to the limitations of a pixel-by-pixel comparison. First of all, the 

procedure is sensitive to image misregistration and the existence of mixed pixels. A pixel­

by-pixel comparison of multitemporal maps will detect any misalignment of one or both of 

the maps as change. In addition, any misclassification of a pixel on either one or both of 

the maps will be detected as a difference in theme although the disagreement is a result of 

the inherent errors in the dataset. Secondly, the comparison techniques will often produce 

results that are significantly different from the actual land use. This is due to their inability 

to account for the inaccuracies in the maps throughout the comparison operation. Spatial 

data sets contain errors of various types, and these thematic attribute errors propagate and 

further reduce the quality of the final product. For example, if the attn"bute accuracies of 

two independent maps are 80 % and 75 % respectively, then the accuracy of the 

comparison map will be only60% (.80 x .75 x 100% = 60 %). 

The fleXIbility offered by a fuzzy representation of spatial data could possibly avoid 

the problems of the traditional comparison procedure. Therefore, the degrees and types of 

categorical differences between maps should be determined by a fuzzy post classification 

comparison. Before the structure of a fuzzy map comparison model can be understood, 

the fundamentals of fuzzy set theory must be explained. 
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2.3 The Fundamentals of Fuzzy Set Theory 

Fuzzy set theory is based on the idea of imprecise membership functions, and was 

developed as a way to deal with the limitations of traditional data classifiers (Kiir, 1988). 

The rigid models consisting of discrete, sharply defined, homogeneous classes ignore the 

heterogeneous aspects of nature such as measurement error, spatial variability, and 

complexity (Burro~l989). Thus, a considerable amount of information is lost when 

sharp edged entities are combined. Fuzzy set theory provides more appropriate classifiers, 

because it models cases whose attributes have soft transitional rather than hard 

boundaries. Therefore, it can deal with the ambiguity and vagueness in mathematical or 

conceptual models of real phenomena (Burrough,l989). 

Zimmerman (1985) explains that fuzzy set theory distinguishes three kinds of 

inexactness: (1) generality (one concept applies to many situations), (2) ambiguity (a 

single concept bas more than one distinguishable sub-concept), and (3) vagueness (sharp 

boundaries are not defined). With the possibility of partial memberships, fuzzy sets are 

generalmltions of bard sets to situations where the class boundaries are soft 

(Kande~l982). 

Mathematically, a fuzzy set A in x is descnbed as a set of pairs 

A= { X, Ua {x)} x e X, (2.1) 

where Ua (x) is the membership grade ofx in A and x E X means that xis found in the 

universe of discourse X. The membership value Ua (x) ranges from zero to one, where one 
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represents a full membership in a set and zero nonmembership. In other words~ the 

transition between full membership and no membership is gradual rather than abrupt. 

Fuzzy sets are often incorrectly assumed to indicate some form of probability. 

Despite the filet that they can take on similar values, it is important to realize tbat 

membership grades are not probabilities but are a set of possibility values (Zade~l987). 

One significant difference is that the summation of probabilities must equal one, but this is 

not a requirement for membership grades. Also~ an event that is assigned a probability of 

occurrence is considered to always have full membership in a set (Dubois and 

Prade, 1979). 

Although a fuzzy set has inexact boundaries the imprecision can be precisely 

represented by a membership function. For example~ a fuzzy set "adolescent age" may be 

represented by Ua (x) as shown in Figure 2.3.1. Thus, the age ofl5 fully belongs to~ but 

the grade of membership decreases as the age differs from 15. 

0 

10 15 

Adolescent Age 

Figure 2 .3 . l Membership of X in the fuzzy set Adolescent Age 
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The selection of the appropriate membership for a fuzzy set is the subjective opinion of the 

researcher (Zimmerman,l985). However, the structure ofthe membership function will 

determine the extent to which the memberships change away from the optimal value 

(Macmillian ,1978). 

2.3.1 Basic Definitioas of Fuzzy Sets Properties 

In this section a number of properties of fuzzy sets are given. The aim is to present 

the terms and notations necessary to understand how fuzzy sets are used to analyze spatial 

information. The foUowing definitions are summarized from the work presented by K1ir 

(1988). 

1) Fuzzy equality states that two fuzzy sets A)J EX are equal, written A= B, iff 

Ua (x) = ub (x) for each x EX. (2.2) 

2) The containment of fuzzy sets is the degree of agreement between their memberships. 

A fuzzy set A E X is contained in a fuzzy set B e X , written A c B, iff 

Ua (x) ~ ub (x) for each x E X. (2.3) 

3) The support of a fuzzy set A in X is the crisp set that contains all the elements that 

have memberships greater than zero: 

supp (A) = {xeX :ua (x) > 0} (2.4) 

4) The height of a fuzzy set is the largest membership grade attained by any element in 

that set , and a fuzzy set is normalized if at least one element has a membership value of 1. 
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5) An cc-cut of a fuzzy set A is the set of elements in X tbat have a membership grade 

greater than or equal to a specified value of oc. This definition is written as ; 

A ex.= {x £X: Ua (x) ~ oc }. (2.5) 

6) The cardinality of a fuzzy set A is the summation of the membership grades of all 

elements in the fuzzy set. Thus 

card=IA[ = Lua(x) (2.6) 
:c~x 

2.3.2 Operations on Furey Sets 

The concept of a fuzzy set makes it possible to develop the framework of fuzzy set 

theory from a basic principle that allows the generalization of crisp operations to fuzzy 

sets known as the Extension Principle (Klir, 1988). It provides a means for any function 

derived for crisp sets to be transformed so that it can also map fuzzy subsets 

(Zade~ 1987). This makes it posSible to extend known algorithms in standard set theory to 

fuzzy variables (Fedrizzi and Kacprzyk, 1986). 

As in conventional set theory, the basic operations in fuzzy set theory are also the 

union, intersection, and complement. The definitions of these fuzzy operators are as 

follows: 

The union of A, B E X, written A v B, is defined as 

Uavh (x) = Max(ua {x), ub (x)) (2.7) 

The intersection of A, B E X, written A A B, is defined as 



The complement of a fuzzy set A E ~ written A', is defined as 

U0 ·(X) =I - Ua for each x E. X 
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(2.8) 

(2.9) 

Linguistically, the complement corresponds to the negation "not", the union to the logical 

connective "or",. and the intersection to the "and" operator (Fedrizzi and Kacprzy~1986)_ 

The use of fuzzy set theory in many fields of science entails the measurement of 

similarities or dependence between fuzzy sets. For example, several classification and 

clustering methods attempt to identifY and match fuzzy patterns to reference data 

(Macmillian, 1978)- As in conventional mathematics, the basic element of a system of 

similarity analysis is a fuzzy relation. According to Bandemer ( 1987}, a fuzzy relation is a 

fuzzy subset of the Cartesian product between two sets A and B. Thus, for the product 

space X l X X 2 = {X l ' X 2 } , X l E x ·l ' X 2 E X 2 ' a fuzzy relation R in the product space is 

a set of ordered pairs: 

(2.10) 

The form of a fuzzy relational equation depends on how the elements of fuzzy sets are 

structured and what is the best way of measuring their association (Buckles and 

Petry,1982). From the Extension Principle,. fuzzy arithmetic operators (addition, 

subtraction, multiplication, and division) combine the fuzzy relations into a single product 

space (Zimmerman,1985). The membership functions of each fuzzy set need to be 
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aggregated to derive an equivalence membership function of the elements between the sets 

(Zade~ 1987). Pedrycz (1992) has shown that the Max-Min composition rule of fuzzy sets 

is the preferred method of determining the equivalency relationship fiuiction. Formally~ the 

Max-Min poSSibility measure is 

u AoB =Max ( Ua (x) A ub (x) ). (2.11) 

Through the composition of the fuzzy functions, a link is established between the fuzzy 

sets that is the maximum association level between them. 

2.4 Spatial Similarity Applications Involving Fuzzy Set Theory 

The notion of a fuzzy set and its implications for spatial modeling was first 

presented in geographical literature with Gale's (1972) paper about uncertainty analysis in 

Geographical Analysis. The paper was concerned with inexactness in behavioral 

geography and had a distinctive message: 

" ... the fact that inexactness exists must be recognized in terms of both its 
implications for classification and as an exploratory concept. Any less 
would undoubtably leave geography without the theoretical foundation it 
originally sought to provide." pp. 34 7 

Until recently, few geographers bad any interest in fuzzy set theory, which was 

partially due to a lack of understanding of the basic fundamentals of the theory 

(Macmillian,l978). Wrth the realization that uncertainty modeling should become a crucial 

component of spatial analysis procedures, fuzzy set theory has gained increasing support, 

especially with researchers using geographical information systems and remote sensing. 
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A number of studies (Cannon et a/.~1986; Wang~1990; Maselli et a/.~1996) 

utilizing fuzzy c-means clustering for remote sensing image classification have shown that 

fuzzy set theory provides a method of dealing with images containing a complex mixture 

of spatial and spectral information. A drawback of the traditional clustering algorithms is 

that a quantity of spectral information is lost when determining the "hard" pixel 

memberships by allocating each object to exactly one cluster. However, elements often 

can not be adequately assigned strictly to one cluster because they are spectrally situated 

between clusters (Cannon et a/.~1986). In these situations~ fuzzy c-means clustering was 

determined to be a more appropriate classifier since it accounted for the class mixtures and 

intermediate conditions that occur in remote sensing imagery (Wang,l990). The task of 

fuzzy clustering is to divide a number of objects into c (2 ~ c < N) soft heterogeneous 

clusters that contains multiple informational memberships (Zimmerman,1985). The 

algorithm assigns each observation to all of the fuzzy clusters~ with the membership values 

decreasing with increased distance from the cluster center (McBratney and Moore, 1985). 

Furthermore, cases are allowed to belong totally, partially, or not at all to a set as long as 

the memberships sum to one. For example, a pixel could be assigned a membership 

combination of 50% deciduous, 30% coniferous, and 20 % grassland by the fuzzy 

clustering approach but would be classified as 100% deciduous by the standard clustering 

procedure. Key et al. (1989) used a fuzzy c-means algorithm to classifY pixels in A VHRR 

imagery for the segmentation of sea ice~ clouds, and ocean in a polar environment. They 

found that the fuzzy classifier was sensitive to the range of albedos and physical 

temperatures encountered in this region due to its ability to classifY the wen defined 
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classes (ocean) as well as the categories that fell into intermediate spectral space (sea ice 

and clouds). Also~ McBratney and DeGruijter (1992) utilized this procedure to classifY 

soil conditions in a rural section of the Netherlands. The results showed that the fuzzy 

grouping technique provided a better overall classification of the study region's main 

pedological structures than a boolean clustering procedure. 

Image interpretation operations based on fuzzy rule based systems have produced 

more accurate results than standard classification approaches (Bionda et a/.,1991). In the 

real world, an expert uses qualitative linguistic terms, such as high, medium or low, as 

rules to descn"be the spectral characters of a ground cover (Gopal and Woodcock,l994). 

These expressions are membership functions in the fuzzy knowledge system and are 

combined using fuzzy relational and compositional equations to generate the rules for the 

knowledge bases. The output from the system would be the maximum possibility class 

value for the combined qualitative interpretation of the scene. Fuzzy sets in this context 

are used to quantify the linguistic values and to obtain a consensus of the expert 

evaluations (Blonda et a/.,1991). 

Fuzzy set theory has been used in GIS applications, most notably in the 

development and manipulation of fuzzy relational databases (Burro~1989; Wang et 

a/.,1990; Kollias and Volio~l991; Sui,1992) and the analysis of uncertainty propagation 

in GIS operations (Veregin,1989). Fuzzy relational databases have been incorporated into 

GIS modeling because they can handle the imprecision in spatial data representation and 

manipulation. They also allow for the individualization of the data by a user (Sui, 1992). 

Many fuzzy relational databases are driven by Semantic Import modeling, which uses an a 
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priori membership function to assign a membership grade to individual tuples of the 

database (Robinso~ 1988). The membership function identifies the extent to which a 

particular area belongs to a class based on user submitted criteria (Wang et aL,J990). The 

system is called Semantic Import because the queries submitted to the model are the users' 

qualitative subjective view of the stored data (Robinson,l988). Consequently, it can 

process queries that express the uncertainty of the linguistic phrases. An example of a 

subjective query would be " retrieve all forest stands that are situated on relatively poorly 

drained soils and fairly flat slopes"_ The fuzzy relational database converts this question 

into a fuzzy logical IF-THEN rule comprised of fuzzy relational and compositional 

operators. This query can rarely be answered by a conventional relational model because it 

requires queries to be expressed in exact values. Therefore, it is obvious that information 

is lost when spatial data is retrieved or combined using simple boolean algebra. 

GIS functions utilizing fuzzy set theory have been able to manipulate uncertainty 

as data are transformed during an analysis procedure (Gopal and Woodcock,1994). 

Spatial data contains a variety of different errors (locational, attributional, etc.) that 

propagate and contaminate clean datasets and reduce the quality of the final map 

(Openshaw,l987). For example, a map overlay of two thematic layers results in the 

creation of a composite map that contains the errors from both input datasets. V eregin 

(1989) has stated that it is poSSible to use fuzzy set theory to compute the uncertainty in 

the output map if the membership values of sites for each category are known for the input 

maps. Instead of using a traditional boolean overlay to combine themes, a fuzzy relational 
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equation (fuzzy union or intersection) could aggregate the spatial information while 

handling the data ambiguity. 

2.4.1 Fuzzy Set Theory and Land Use Change Detection 

A review of the literature involving geographical applications based on fuzzy set 

theory shows that little research has been done on developing an actual fuzzy land use 

change model Several authors (Gong,l993; Gopal and Woodcoc~l994) have expressed 

the need for research involving fuzzy sets for map comparison. Also, Edwards and Lowell 

(1996) suggest that fuzzy set theory should be used to develop a single measure of map 

accuracy, such as a fuzzy Kappa statistic .. However, a number of spatial projects built on 

fuzzy logic could provide a basis for the creation of an appropriate fuzzy change detection 

system. 

Gong (1993) developed a change detection procedure utilizing satellite imagery 

that founded its comparison operations on fuzzy set theory. Initially, a principal 

components analysis was applied to six band-pair difference images (Landsat 1M bands 

one to five and seven) in order to contain the change information into the first few 

principal components. The difference images were created by subtracting the pixels values 

for each band of an earlier image from their counterparts on a later one. Through the 

analysis of the component eigenvalues, it was determined that the first two components 

contained the change information. The first step in the generation of the change images 

involved empirically defining the fuzzy membership functions of change by analyzing each 

principal component difference image and its histogram. From the shape of the histograms, 
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the parameters of the fuzzy membership function of change were derived. Ne~ each pixel 

of the difference component images was assigned a membership value based on where its 

DN value fell on the membership function, thus creating two change images. Finally, a 

fuzzy union (MAX) operator was used to combine the change images into a single change 

image and subsequent change information was extracted from it. 

Edwards and Lowen (1996) conducted research on modeling uncertainties in 

photo interpreted boundaries of forest inventory layers using fuzzy buffers. The problem of 

two interpreters rarely producing the same results from a common set of photos was 

handled by a fuzzy boundary width estimator based on texture variability and 

discrimination. Initially, nine interpreters delineated the forest inventory polygons on three 

artificially created texture layers. The measured boundary widths for the nine interpreters 

were determined by generating proximity maps, where each pixel measured the distance 

from the nearest boundary. The derivation of the fuzzy boundary widths was performed on 

a local basis to account for local texture variability because the interpretation errors 

differed in location and were context dependent. An average proximity boundary mask 

image was produced by averaging the nine proximity widths to acquire a mean measure 

for each boundary. Subsequently, each of the boundary widths was assigned a plus or 

negative depending on which side of the average width it was on. The random error 

between the average and interpreted boundaries was calculated by summing the absolute 

values of the displacement errors, and this became the desired local fuzzy boundary width. 

Once the fuzzy widths were estimated, a final fuzzy forest inventory map was created by 

removing the boundaries of polygons that were affected by local contexts (e.g. slivers and 
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holes). In relation to land use change detection, it was suggested that a fuzzy intersection 

operator (MIN) could be used as an overlay technique to detect real change between 

several multitemporal fuzzy forest species maps. 

Another approach using fuzzy sets for comparing multiple spatial data sources 

consisted of developing a fuzzy method of accuracy assessment of thematic maps (Go pal 

and Woodcock,l994). Fuzzy set theory was used to derive fuzzy membership functions7 

relational equations, and tables to measure the nature, frequency, source, and magnitude 

of errors in thematic maps. The foundation of the model was a five point linguistic 

membership scale (1 :absolutely wrong, 2:understandable but wrong, 3 :acceptable, 4:good 

answer, and 5:absolutely right) that was utilized to choose the most suitable linguistic 

value to descn"be the perceived match between each map class and field sample. Each 

sample site was assigned one of the linguistic evaluations for each of four possible 

landcovers, thus providing for the possibility of multiple memberships and classification 

ambiguity. 

The frequency of errors was modeled with fuzzy union and fuzzy cut relational 

equations. The fuzzy union operator: 

Max (u,c) = { 1 ifuc (x) ~ uc' (x) or 0 otherwise (2.12) 

determined the number of samples sites that were assigned the maximum membership for 

the correct landcover type. A fuzzy a-cut grade of three identified the sites whose 

classification assignment was acceptable. In additio~ it identified the sources of errors by 

analyzing whether a site had multiple memberships (two or more memberships~ three). 
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Summation of the number of matches for all classes represented the global accuracy of the 

error analysis. 

Error magnitude was calculated by a fuzzy Difference functional: 

D(i) = Ux{x)- Max Uc(X), (2.13) 

where u.r(x) is the membership value of a sample and Max Uc(x) is the maximum 

membership for that category. By computing the average of the difference values for each 

category, the quality of the classification for a Iandcover type was measured. 

As a final step, the nature of the errors was computed with both a Confusion 

and an Ambiguity functional: 

Confusion= { ClceC and Uc{x) > ux(x)(X); 

Ambiguity= { ClceC and Uc (x) = u x (x)(X) 

(2.14) 

(2.15) 

The confusion functional identified the set of categories whose memberships were greater 

than that allocated to the map class, while ambiguity identified memberships equal to the 

category membership. This gave an overview of the between-category misclassification 

error and the land use types that accounted for most of the error. Comparison of the 

results to those from a traditional accuracy assessment indicated that the fuzzy analysis 

system was a more appropriate model because the fuzzy multiple memberships prevented 

the loss of the land use compositional information that was found to degrade the standard 

approach. 
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2.5 Conclusion 

From an understanding that data uncertainty and complexity are inherent 

components of spatial information, geographical applications have begun to incorporate 

fuzzy set theory into their analysis processes. Researchers have realized that the boolean 

structure of most spatial models filii when ambiguity and vagueness are encountered. 

Procedures that require the data to be transformed to a normal distribution are in actuality 

imposing inadequacies upon the representation of geographical objects. Thus, important 

information is often lost by restricting spatial elements to bard boundaries. 

A review of the literature bas shown that imprecise results from data retrieval and 

logical modeling can be addressed with fuzzy set theory. Wrth its capability of muhiple and 

partial memberships and the inclusion of qualitative impressions into an analysis, 

geographers have little to lose by abandoning nonfuzzy sets in favor of their fuzzy 

counterparts. Combining fuzzy set theory with spatial modeling increases the latter's ability 

to deal with uncertainty and also promote further applications of fuzzy sets in spatial 

decision processes. 
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The basis for the development of a fuzzy inference system to detect land use 

change is the emulation of human reasoning when comparing multitemporal maps. When 

asked to relate the level of agreement between map~ a person would use linguistic 

expressions, such as "very similar" or "significantly different", to descnbe the perceived 

similarities between them. Initially, a researcher would notice the overall agreement 

between the maps but would eventually recognize localized regions of dissimilarities. 

Consequently, a model that attempts to simulate this visual comparison should be 

implemented on both a local and global level For this thesis, the land use map comparison 

system was modified from the hierarchical fuzzy pattern matching procedure developed by 

Pedrycz and Roventa (1994). The goal of this thesis is to create a model that can handle 

the uncertainty of the data and calculate the local and global degrees of containment 

between two maps. 

In this chapter, the methodology utilizA!d in the fuzzy pattern matching for the map 

comparison analysis is descn"bed in three sections. The first explains how the multiple map 

comparisons are performed on a regional basis with unique polygons mapping. The 

method used is similar to the procedure presented by Bonbam-Carter (1994) and is 

considered a necessary step to avoid the problems of pixel-to-pixel comparisons. The 

boolean areal intersections and complements for each polygon on the input land use maps 
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are calculated from information appended to the attribute table generated during unique 

polygons mapping. These values are used to derive the local matching values for the 

polygons in the dataset. 

The second section explains the process of developing the fuzzy inference system, 

from the implementation of the mathematical tool to drive the map comparison model to 

the selection of an appropriate method of identification of the fuzzy partitioning of the 

input database (Takagi and Sugeno, 1985). The model was designed using Matlab's Fuzzy 

Logic Toolbox (1994) software where fuzzy relational equations, compositional rules, and 

membership functions are selected and assigned to a basic inference shell Kosko (1992) 

states that the development of a fuzzy inference system consists of four steps. Step one is 

the creation of a set of membership functions used to fuzzifY the input data. The actual 

fuzzification of the qualitative interpretation into a membership value of a linguistic 

variable is the second step. This process depends on the relational structure between the 

membership functions. Step three is the development of a rule base to interpret the 

linguistic input in order to generate a qualitative output value. Lastly, this qualitative 

output value is defuzzified by converting it to a crisp value based on a set of output 

membership functions. 

The final section of the methodology involves the computation of a fuzzy global 

similarity statistic through the aggregation of the local agreement values. This overall 

agreement number is an indicator of the general reliability of the derived land use 

difference map. In addition, an assessment of the uncertainties in the differences maps is 

performed by computing the Shannon entropy of the global matching. Entropy relates the 
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degree of uncertainty of the polygon areal pattern matches and determines the reliability of 

the modefs land use disagreement estimations for the study areas. The outcome of a map 

comparison session is a global agreement value with a specific degree of certainty. For 

example, the model could predict with 95% certainty that the overall areal agreement 

between two maps is 90%. 

Figure 3.Ll is a flow chart outlining the steps involved in the local and global 

matching procedures in the hierarchical fuzzy pattern matching model. 

3.2 Unique Polygons Mapping 

The need for a regional similarity pattern analysis technique for multiple maps 

stems from the limitations of pixel pairwise comparisons. A traditional pixel-by-pixel 

overlay procedure fails because it can not preserve the hidden structure of the input maps. 

The resultant data does not identifY the perceptual similarities between the separate land 

use polygons (Allison,l992). For example, Figure 3.2.1 consists of four polygons with 

two different land uses. 

Figure 3.2.1: Land Use Similarity Polygons 
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A conventional measurement of map agreement would combine the pixels of polygons 

2A and 2B to determine a single similarity value for land use two. The aggregation 

of pixels for similar land use polygons prevents the calculation of an agreement value for 

a single polygon. This prolubits the identification of polygons of high dissimilarity due to 

actual land use differences or data uncertainty. To characterize the data most of the 

cmrent map comparison procedures employed in GIS and remote sensing use global 

measurements, such as the Kappa statistic or Cramer's V (Edwards and Lowea 1996). 

Realistically, land use change tends to occur at specific locations because of certain 

political, economic, and physical factors. Thus, a map comparison model should account 

for the local variabilities in the data to obtain a more realistic understanding of land use 

dynamics. A small number of polygons may be responstble for most of the disagreement 

and their identification and isolation could influence the determination of a global value of 

similarity between the maps. 

The identification of the regional categorical differences between two maps is 

based on a polygon-by-polygon overlay operation. To avoid the pixel aggregation problem 

of the standard post classification comparison, it is necessary to delineate the individual 

polygons ofthe input maps and to assign them unique identifiers. More importantly, the 

conversion of the land use maps into unique polygons maps enables the comparison 

process to be performed on a local leveL 

Creation of the unique polygons maps was done using the Group module in the 

GIS software ldrisi {1992). The grouping algorithm determines the contiguous groupings 

of identically valued pixels in a raster map and assigns them unique integer identifiers. The 
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derived groups are comprised of pixels that have the same attribute value and contact each 

other in any of eight possible directions: N, S,. E,. W, NE, NW, SE,. or SW 

(E~1992). 

Unique polygons mapping is performed by overlaying the first grouping map with 

the second, which creates an overlay image and a relational attnbute table. The overlay 

process generates a series of relational polygons from the intersection of both grouping 

maps (Bonham-Carter,1994). A unique polygons map is illustrated in Figure 3.2.2, which 

shows the overlay of map one and map two producing the unique polygons map and 

attribute table. Each polygon on the map is assigned a unique identifier so that the table 

has the same number of rows as there are polygons from the overlay process. The attnbute 

table in Figure 3.2.2 contains six rows since the overlay identified six unique class 

relationships between the maps. For example, the attribute table indicates that unique 

polygon two was created from the intersection of polygon one on map one and polygon 

two on map two. 

The unavailability of a GIS software to perform unique polygons mapping 

necessitated the writing of a pro~ Uniqpoly.bas (see Appendix A), to do the overlay 

and produce the corresponding unique polygons attribute table. A second program, 

Uniqmap.bas (Appendix A), was used to produce the unique polygons map from the 

information in the attnbute table by assigning the corresponding unique attnbute value to 

each of the identified intersection polygons. 

A unique polygons table is ideally suited to model land use change or map 

similarities for several reasons. First of all, each unique polygon in the table indirectly 
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Map l Map 1 

2 

6 

Unique Polygons Attnbute Table 

Unique ID Map I ID Map2 ID 
1 1 l 
2 l 2 
3 l 3 
4 2 2 
5 2 3 
6 2 I 

Figure 3.2.2: Structure of a Unique Polygons Map and Attnoute Table 

represents the degree of containment ofthe polygons on map one in the polygons on map 

two. Secondly, auxiliary data that may be needed to monitor categorical differences can be 

appended to the table as separate columns or fields. It is then a simple matter of 

reclassifYing the unique polygons map with a selected column of the table (Bonham 
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Carter,1994). Lastly, the table can be imported into other software packages to carry out 

specialized modeling operations. 

The degree of containment for each polygon in the attribute table is utilized to 

measure the local matching between polygons on the land use maps. Pedrycz and Roventa 

(1994) point out that the local matching in hierarchical fuzzy pattern matching should 

involve selected properties of the input fuzzy sets. Thereforey the areal agreement between 

the polygons is the basis for the local matchings. This requires the areas of the unique 

polygons and the areas of the intersecting input polygons that make up each unique 

polygon to be appended to the attribute table. 

In the local matching scheme, map one is considered a template or reference map 

ofthe land use characteristics of a study area, and map two is a predicted land use layer or 

an actual land use map at a later date. The attributes and areas of the polygons on map 

two will be the same as those on the template if no differences in theme are evident. Thus, 

a unique polygon entry in the attribute table should record identical areas for both land use 

polygons. The intersection ratio of any two polygons on the maps will be one since map 

two is perfectly contained within map one. For situations where differences in land use 

have occurred, the calculated areal intersection ratio will be the local agreements between 

polygons while the areal complement ratio will represent land use disagreements. It is 

important to note that the areal intersection and complement ratios are only computed for 

the unique polygons on map one since it is the template for the matching process. 

An initial step in calculating the intersection and complement ratios is to add the 

land use data for the input polygons to the attnbute table. Table 3.2.1 is the updated 
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attribute table for Figure 3.2.1 and includes the additional area and land use information. 

The areal intersection ratio is computed by identifYing the rows whose land uses are 

identical for a specific template polygo~ summing the unique areas for these rows .. and 

dividing the summed agreement area by the total area for the polygon on the template. For 

example, refer to the portion of the unique polygons map that represents the agreement of 

map two with the first template polygon. Rows two and three are regions of land use 

disagreement or the complement of unique polygon one. The division of the unique area of 

3.75 by 5 gives a similarity intersection ratio of0.75 for the first template, which implies a 

complement of0.25. Table 3.2.2 contains the intersections and complements ratios for the 

polygons on map one. 

Table 3.2.1 : Example ofUpdated Unique Polygons Attnbute Table for Figure 3.2.1 

Unique Unique Map 1 Map 1 Mapl Map2 Map2 Map2 
ID Area ID Area Land Use ID Area Land Use 
1 3.75 1 5 Urban 1 7.5 Urban 
2 .625 1 5 Urban 2 125 Rural 
3 .625 l 5 Urban 3 1.25 Rural 
4 .625 2 5 Rural 2 125 Rural 
5 .625 2 5 Rural 3 1.25 Rural 
6 3.75 2 5 Rural l 7.5 Urban 

Table 3.2.2: Boolean Local Matching Information for Map One 

Map 1 ID Intersection Complement 
l .75 .25 
2 .25 .75 

It is at this stage of the procedure that it becomes necessary to account for the 

uncertainty in the data. The calculated intersections and complements are boolean values 
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that are computed on the assumption that the unique polygon maps are error free and that 

real world land use data can be confined to crisp borders. As Edwards and Lowen (1996) 

have sho~ areal spatial information is best represented with boundaries containing fuzzy 

widths. A more reliable measurement of the local matching between the maps would 

involve the computation of fuzzy areal intersections and complements. This is 

accomplished by developing a fuzzy matching system based on a researcher's intuitive 

understanding of the data and qualitative interpretation of the global and local agreement 

between the land use maps. 

3.3 Development or the Fuzzy Inference System for Local Matching 

The purpose of the fu7zy inference system is to descnbe the regional similarities 

between land use maps using linguistic terms. This requires a model that can identify a 

person's intuitive perception of a good match between sections of the maps and convert 

that expression into a quantitative output value. An analyst will get a feeling for what he 

believes is the actual local land use agreement of an area from specific criteria (land use 

type, location, etc) and the visual or quantitative representation of the boolean 

intersections between polygons. Instead of the local land use analysis depending on a 

researcher physically interpreting and rating each unique po.lygon relationship, the fuzzy 

matching system assigns land use associations to predetermined agreement membership 

groups. 

As with many of the fuzzy inference systems that model imprecise real world 

processes, the fuzzy inference system for this thesis is based on Mamdani inferencing 
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(Mamdan41976). Mamdani fuzzy inference systems are rule based decision models that 

produce mathematical control statements as output membership functions to handle the 

interactions of the inputs to the system {lang et a/.~1997). The design of this system 

requires the developer to create both input and output membership functions from 

linguistic interpretations of a subject. Therefore~ the designer has to have knowledge of 

what the output will be for each rule7 with the output membership functions being fuzzy 

sets (Matlab Fuzzy Logic Toolbox Man~1994). Through fuzzy relational connectives 

and the compositional rule of inference, Mamdani fuzzy inference systems produce output 

consequences from the output membership functions (Jang et a/.,1997). 

Figure 3.3.1 is a flowchart of the four basic elements of the Mamdani fuzzy 

inference system for the matching of the unique polygons. The crisp input values are the 

calculated areal intersection and complement ratios from the unique polygons mapping. 

Crisp Create Rule Base Crisp 
Membership ... Fuzzification f+ r+ Defuzzification 

Inference -
Value Functions V~!ue 

Figure 3.3.1: Four Stages of Designing a Mamdani Fuzzy Inference System 

The output local matching values depend on the fuzzy relational and compositional 

algorithms that comprise and link the sections of the fuzzy inference network. 

3.3.1 Creation of the Membership Functions 

A successful application of fuzzy set theory for map comparisons depends on the 

appropriateness of the membership functions. Dombi (1990) states that both inductive and 
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deductive approaches have been used to determine membership functions. As a general 

rule, a suitable membership function is subjectively chosen by the user, who is responstble 

for the accuracy of the assigned membership grades (Kollias and Voliotis,l99l). Several 

guidelines should be met during the membership function creation process 

(Burrou~l989). Firstly, the selection of the form and parametric structure of the 

membership functions must be meaningful in terms of the analysis and should resemble the 

practical experiences and opinions of the person developing the inference system. 

Secondly, it is important to choose functions that can define fleXIble membership grades 

and that can be easily calculated. 

The functionality of the fuzzy inference system requires that membership functions 

be created for the input information and the predicted output expressions. The initial step 

in creating the input membership functions is the development of a linguistic scaling of the 

local matchings for the unique polygons from the boolean areal intersection and 

complement ratios. Formally, the semantic expressions are needed as answers to the 

question: " What is the possibility that the land use is similar for a specific localized 

comparison of unique polygons?". A five point scale is generated ranging from "very low" 

to "very high"_ The linguistic values and their descriptions are in Table 3.3 .1.1. 

Table 3.3 .1.1: Input Linguistic Local Matching Interpretations 

Scaling Value Description 
Very Low definite-land use differences;. boolean areal intersection is very low 

Low land use differences very likely; areal intersection is low 
Medium possible land use differences; areal intersections and complements are 

similar 
High land use differences very unlikely; areal agreement is high 

Very High land uses are identical; areal agreement close to perfect 
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From the heterogeneity of the land cover and the believed ambiguity in the areal 

ratios, the most suitable linguistic label is chosen to descn"be the nature of the matching 

between the unique polygons. To transform the crisp intersection and complement 

numbers into linguistic values, membership functions for each of the qualitative local 

matching scales are devised. Figure 3.3.1.1 identifies the shape and parameters of the 

membership functions for the five linguistic scaling expressions for the areal intersection 

input data. The same membership functions also apply to the areal complements since they 

are computed from the intersection values. Two distinct types of membership functions 

are evident: (1) the sigmoidal curve (very low and very high), and (2) the generalized bell 

curve (low, medium, and high). It should be noted that despite their differences all of the 

membership functions have the following properties (Dombi,1990): (1) all are continuous, 

(2) all map an interval [a,b] to [0,1]; u[a,b]-+ [0,1], and (3)all are either monotonically 

increasing, monotonically decreasing, or both. 

The sigmoidal curve membership function is one of the most commonly used 

functions in fuzzy set theory (Eastman,1992). Simpson and Keller (1995) descnbe a 

sigmoidal membership function as a asymmetrical curve with regards to its crossover point 

that assigns values above or below a specific point complete membership or 

nonmembership. A crossover point of a membership function is a point x E. X where the 

membership grade is equal to 0.5 (Jang et a/.,1991). The formula for a sigmoidal curve is: 

SIGMF{X,(A,C] = 1/ (1 + EXP(-A*(X-C)))), (3.1) 
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where A sets the shape of the curve and C is the crossover point (Matlab Fuzzy Logic 

Toolbox Manua41994). The parameters for the sigmoidal curves in Figure 3.3.1.1 are 

found in Table 3.3.1.2. Depending on the sign of A, a sigmoidal curve is inherently open 

Membership function plots 

Low Medium High Very Hgh 

0.5 

0 ~----~~~----~==~~~~~----~~~~--~ 

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
input variable • Area_lnter" 

----------·--·------·-------

Figure 3.3 .1.1 : Membership Functions for Areal Intersection Linguistic Values 

left or right so that memberships monotonically rise or fall in one direction towards a 

plateau of complete membership (Jang et al.,1997). 

Table 3.3.1.2: Sigmoidal Membership Function Parameters 

Function Label A c 
Very Low -65.41 0.091 
Very High 90.81 0.91 

The asymmetrical open structure of a sigmoidal membership function makes it 

appropriate for representing concepts such as "very low" or "very high". In terms of 

localized map comparisons, the sigmoidal curves depict instances where the land use 
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agreement between maps is known with a high degree of certainty. When an input value 

falls within the plateau range of either sigmoidal curve, a person intuitively believes that 

the boolean area measurement represents the actual degree of agreement between the 

maps. 

A generalized beH membership function is a symmetrical closed curve consisting of 

two transitional membership slopes connected by a total membership plateau. Wtth the 

presence of two crossover points, membership grades monotonically rise and full towards 

the plateau and return again to complete nonmembership. Mathematically, a generalized 

bell membership curve is specified as a three element vector by the formula: 

GBELLMF = (X,[A)J,C] = 1/((1 + ABS(X·C)/A)Y'(2*B)), (3.2) 

where A varies the width of the curve at the crossover points, B determines the range of 

the plateau, and C is the placement of the center of the curve (Matlab Fuzzy Logic 

Toolbox Manual, 1994). Table 3.3.1.3 contains the parameters for the three input 

generalized bell functions. It should be mentioned that the shape of the curves and the 

position of the crossover points can be changed by altering any of the three dispersion 

values. 

The generalized bell functions (low, me~ and high) in Figure 3.3 .1.1 represent 

instances where the user senses that the boolean areal information does not accurately 

descn"be the local matching between two maps. A generalized bell function is appropriate 

for these situations because its two transitional slopes enable it to determine if a boolean 

area value underestimates or overestimates the actual local agreement. By shifting the 
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emphasis of gradual membership to the boundaries of the curves, a boolean area value is 

fuzzified if it fiills beyond the lower or upper boundary of the total membership plateau.. 

Table 3.3.1.3: Generalized Bell Membership Function Parameters 

Function Label A B c 
Low 0.14 2.2 0.252 

Medium 0.13 2.2 0.5 
High 0.13 2.2 0.78 

A noticeable characteristic of the membership functions in Figure 3 .3.1.1 is that the 

slopes of the curves overlap. The overlapping of membership functions handles the 

uncertainty in the linguistic expressions and allows values to have multiple memberships in 

the function set (Simpson and Keller,l995). For example, it is difficult to define exactly 

where an analyst's interpretation of low agreement stops and medium begins. The 

linguistic expressions are intuitive statements that are best represented with fuzzy 

boundaries. The degree of overlap is subjectively estimated by the user in order to 

determine the amount of fuzziness desired in the output (Simpson and Keller,l995). 

From an analysis of the data and previous research on Jand use dynamics (White et 

a/.,1997), it was thought to be important to include a third set of membership functions to 

account for the number of pixels comprising the unique polygons. There is a strong 

possibility that many of the identified polygons from the Grouping procedure will consist 

of one or two pixels. The problem that arises is whether· or not a single pixel disagreement 

is actually change or a random art:ifilct in the data. The calculation of a global matching 

value could be adversely affected by assigning the same weight to these small groups and 



the larger unique polygons. In addition, the test results provide evidence that the stability 

and confidence in the derived areal information and local matchings increases as the area 

for the polygon comparison increases. 

Figure 3.3.1.2 displays the pixel group membership functions, both being sigmoidal 

curves. The input data ranges from one to four since the pixel information is divided into 

four distinct categories: (1) one pixel, (2) two pixels, (3) three pixels, and (4) > three 

pixels. Although this discrete input range is different from the scaling for the areal 

information, the membership grades remain continuous and monotonic. 

Membership function plots 

Small Large 

05 

n:------------=-------=----
0 u.:;, 1 

input variable .. Pixel Group" 

Figure 3.3.1.2: Membership Functions for Pixel Groupings 

The parameters for the sigmoidal curves are found in Table 3.3.1.4. The 

transition zone between the curves is confined to the 1. 75 to 2.25 range since preliminary 

results indicate that an acceptable degree of certainty that land use disagreement 

exists requires a minimum grouping of three pixels. Groupings of two pixels could cause 
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problems because of the poSSibility that the classification algorithm randomly situated two 

identically labeled but unrelated cells next to each other. 

Table 3.3.1.4: Pixel Group SigmoidaL Function Parameters 

Function Label A c 
Small -8.85 2 
Large 23 2.1 

The output from the fuzzy inference system is a set of linguistic expressions that 

descnbe the local matchings for the unique polygons. As with the input dat~ the output 

linguistic statements are based on a five point evaluation scale (Table 3.3.1.5) and require 

a membership function for each linguistic value. The output membership set (Figure 

3.3.1.3) consists of two sigmoidal and three Gaussian membership curves. A Gaussian 

membership curve is described by a two element vector with the equation: 

GAUSSMF(X,[S,C] = EXP(-(X-C) 2 I (2*S 2 )); (3.3) 

where Sis the width of the curve and Cis the location of the center of the curve. Table 

3.3 .1.5 contains the parametric information for the five output membership algorithms 

A distinctive feature of the local matching membership set is the amount of overlap 

between the membership functions produced by the widths of the Gaussian curves. There 

is no point in the set where the output local matching value can have single membership in 

a linguistic value. Any derived output value will have multiple membership in the linguistic 

set, which is necessary to account for any uncertainties in the calculated local matchings. 



Table3 .3 .1. 5: Linguistic Labels and Parameters for the Output Membership Functions 

Linguistic Label Function Type A or S c 
Very Poor Sigmoidal -24.41 0.08 

Poor Gaussian 0.1216 0.15 
Good Gaussian 0.1623 0.49 

Very Poor Gaussian 0.1515 0.77 
Perfect Sigmoidal 55.81 0.96 

Memb€rship function plots 
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Figure 3.3.1.3: Local Matching Output Membership Functions 

3.3.2 Fuzzification 

The second step in the development of the fuzzy inference system is the 

fuzzification of the input data. Fuzzification involves applying the membership functions of 

the input variables to their actual values to estimate the degree of areal agreement for each 

unique association. The result from fuzzification is a fuzzy array, a vector of membership 

strengths of a single crisp input value for each membership function (Simpson and 

Keller, 1995). 
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Fu.zzification entails locating the crisp input value on the x axis of the membership 

functions and estimating the corresponding memberships from the y axis. The fuzzy array 

consists of the memberships for each linguistic expression arranged from left to · right. 

Simpson and Keller (1995) descn"be a fuzzy vector as: 

N 

F = ffr ,fl ,[3 , .... ,fn] such that ~ f; ~ 1. (3.4) 

Since fuzzification produces as many vectors as there are input variables, three fuzzy 

arrays were generated for the project. 

To illustrate, assume that the following input numbers are entered into the fuzzy 

inference system: (1) areal intersection ratio= 0.4, (2) areal complement ratio= 0.6, and 

(3) pixel group = 4. Referring to Figures 3.3.1.1 and 3.3.1.3, respectively, the fuzzy 

vectors for the areal values are F inter= (0, 0.44, 0.77~ 0~ 0], F comp= [0, 0.04, 0.73, 0.23, 

0]. Also, Figure 3.3.1.2 indicates that the pixel group value results in a fuzzy vector ofF 

pixel= [0, 1]. Note that the membership strengths do not have to sum to one. which is a 

requirement for probability values (Kiir, 1988). 

3.3.3 Rule Based lnferen.:e 

The essential part of a fuzzy inference system is a set of fuzzy rules that are related 

by means of a fuzzy implication function and a compositional rule of inference (Jang et 

a/., 1997). Fuzzy rules are a collection of linguistic statements that descn"be bow a fuzzy 
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inference system makes a decision about categorizing an input or controlling an output 

(Simpson and Keller91995). The rules are written as If: Then statements in the form: 

If (Input 1 is A) and (Input 2 is B) then (Output is C), 

where A and B are membership functions for the input values and C is a membership 

function defined on an output variable. The premise of the rules descn"bes the relationship 

between the input variables and the firing strength of the rule9 while the conclusion 

determines the characteristics of a membership function for an output variable (Jang et 

a/.,1997). The set of rules in the fuzzy inference system is known as a fuzzy rulebase. 

Wrth fuzzy rulebase reasoning, the fuzzy rules have to be represented by a fuzzy 

implication function. Unlike the rules for traditional knowledge based systems, the rules of 

a fuzzy inference system use linguistic fuzzy sets to quantifY the variables in the rules 

(Pedrycz, 1992). The input to a rule consists of values from linguistic membership 

functions, and the consequent of the rule depends on how the implication process defines 

the associations between the input membership functions. Th~ the fuzzy implication of a 

rule depends on its If-Then connective operator, which expresses how a fuzzy rule is 

delineated by a fuzzy relation (Jang et a/.,1991). For Mamdani fuzzy inference systems, 

the premise variables of the rules are connected with a conjunctive T -norm (Dubois and 

Prade,1979). Jager (1995) descn"bes aT-norm as a fuzzy triangular function that satisfies 

the condition: 

l(a,b) =Min (a,b), (3.5) 
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where Min sets the upper boundary of the function as the intersection of a and b. 

Formally, a T ·norm refers to a logical And connective so that fuzzy rules are written as 

If A and B then C. 

Jager (1995) states that regardless of the implication chosen for the inference 

system the development of the fuzzy rulebase must ensure that the rules exhibit 

consistency and completeness. Consistency of a . rulebase implies that there are no 

redundancies in the premises of the rules. The completeness of the rulebase ensures that it 

does not have blank sections or holes in the knowledge representation. To satisfY these 

requirements, ten rules (Table 3.3.3.1) were created for the rulebase of the local matching 

fuzzy inference system. An inference system consisting of two input variables each 

represented by five membership functions and a third variable with two membership 

functions would normally require 30 rules for complete coverage of the input knowledge. 

This was not necessary for this project because the rulebase only needs the rules where the 

areal intersection and complement ratios are opposites. 

Table 3 .3.3 .1: Rules for the Local Matching Fuzzy Inference System 

Rule# Rule Structure 
1 lf(Area_lntcris Very_Low) aud(An:a_Comp is Vcry_High)and(Pixei_Gmup is Small) tben (Local is Poor) 

2 If(Arca _Inter is Very_ Low) and (Area_ Camp is Very _High) and (Pixel_ Group is Large} tbeo (Loc:al is Very _Pooc) 

3 If(Area_rnrer is Low} and (Area_ Comp is Higb) and (Pixel_ Group is Small) then (Loc:al is Good) 

4 lf(Area_llltcr"is Low) and(An:a_Comp is High) and(Pixei_Group is Large) then (Local is Poor) 

5 lf(Area _Inter is Medium) and (An:a _ Comp is Medium) 8Dd (Pixel_ Group is Small) tben (Local is Good) 

6 If(Area _later is Mediwn) and (Area_ Comp is Medium) and (Pixel_ Group is Large) then (Loc:a1 is Good) 

7 lf(Area_Intcr is Higb) and (Area_ Comp is Low) and (Pixel_ Group is Small) then (Local is Good) 

8 lf(Area _Inter is Higb) and (Atea_ Camp is Low) and {Pixel_ Group is Large) tbcll (Local is Very_ Good) 

9 lf(Area _Inter is Very_ Higb) and (Area_ Comp is Very_ Low) 8Dd(Pixcl_ Group is Small) then (Local is Perti:ct) 

10 lf(Arca _Inter is Very _High) and (Area_ Comp is Very _Low) 8Dd (Pixel_ Group is Large) then (Lcxal is Perfect) 
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Wrtbin. Mamdani inferencing, the truth value or strength of the premise of each rule 

is computed and applied to the conclusion section of each rule (Tanaka et al.,1982). 

This results in a single value being assigned to the output variable of each rule from the 

intersection of the membership functions for the input variables. The critical step in the 

implication process is finding the consequence of each rule by combining its strength and 

output membership function (Jager, 1995). The consequence of a rule is computed by 

clipping an output membership function at the rule strength (Mamdani,1976). Therefore~ 

the output is a membership function with a height equal to the fuzzy support or degree of 

fidfillment of the premise of a rule. For example, Figure 3.3.3.1 is a graphical 

representation of the ten rules in the database of the local matching fuzzy inference 

system. Visual inspection of the output value for each rule shows that the height of the 

local matching curve is equal to the lowest value of either the areal intersection or areal 

complement. 

An important characteristic of the fuzzy inference engine is that it activates several 

fuzzy rules during a consultation (see Table 3.3.3.1). Unlike an expert system, the 

consequence for input data to a fuzzy inference system is rarely obtained from a single 

rule. Since the purpose of the fuzzy inference system is to map the input variables to an 

output subset, the consequence of each activated rule needs to be combined into a single 

output distribution (Jager, 1995). Mamdani inference employs the compositional rule of 

inference for the aggregation of fuzzy rules. More specifically, the inference scheme is 

applied as (Nguyen and Walker, 1997): 
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Figure 3.3 .3 .1: Rulebase and Inference Structure of the Fuzzy Inference System 



so 

M(x,u) =Max( A j (x) Min B j(u)}, j = 1,2, .•. ~ (3.6) 

where Max and Min are the logical "OR" and "AND'' connectives, respectively. 

In Max-Min compositional inference, the combined output fuzzy subset is constructed by 

the union of the fuzzy subsets assigned to a variable by the inference rules. To illustrate, 

the output distnbution in Figure 3.3 .3 .1 is the union of rules six and eight and represents 

the maximum relationship between the consequences of the fuzzy rules. 

The selection of an appropriate compositional rule of inference is important 

because it becomes the algorithm that performs the local matchings and produces the 

output similarity values. Wrth Max-Min composition as the inference rule, the local 

matching for unique polygon Xi is expressed as: 

Lm(Xi) =Max [Min(Area_lnter (Xi), Area_Comp (Xi), Pixel Group( Xi))] (3.7) 

3.3.4 Defuzzifiaation 

To obtain a crisp local matching value, it is necessary to transform the output 

membership function produced by the inference algorithm into a crisp number. That is, the 

fuzzy output distribution is defuzzified. Although numerous defuzzification methods have 

been suggested (Jager,l995; Nguyen and Walker,l997), the centroid of area 

defuzzification is used to calculate the local matching numbers. Justification of the 

selection of this defuzzification procedure is supplied by Jager (1995), who states that 

centroid of area defuzzification is the method of choice when dealing with one dimensional 

output fuzzy sets. The centroid of area calculates the crisp value of the output variable by 
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finding the center of gravity value of the aggregated output membership function (Nguyen 

and Walker,l997). This is computed as follows (Jager,l995): 

Z(B) = f r uh(y)y dy " 
fr u6(y) dy 

(3.8) 

where Z is the centroid of area and u b is the membership value in the output distnbution 

B. 

For example, return to Figure 3.3.3.1. The centroid of area defuzzification gives a 

local matching value of 0.73 for this sample unique polygon. The location of the centroid 

of area of the output distribution is depicted by the red vertical line through the output 

membership function. 

The MATLAB program, Localfis.m, that was used to import the areal data into 

the model and activate the fuzzy inference system is found in Appendix A. 

3.3.5 Global Matching 

A quantitative measure of the accuracy of thematic classifications or the agreement 

between maps is typically expressed as a single value. Global statistics, such as the Kappa 

coefficient of agreemen~ Cramer's V, and Tau, have been successively utilized to compute 

the overall agreement between thematic maps and auxiliary classification information 

(Foody,l992; Ma and Redmond,l995). The imp<>rtance of a single agreement value for 

land use change detection and similarity analysis is that it provides the user with a quick 

interpretation of the land use differences of a study area. 
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The computation of a fuzzy global similarity number that expresses the overall 

agreement between two land use maps involves the aggregation of each of the local 

matchings for the unique polygons. As a first step, the local matching values are appended 

as a new column to the unique polygons attribute table. The logic behind the aggregation 

procedure is that a local matching value is a measurement of areal agreement between two 

land use polygons. By multiplying a local matching number by the area of the unique 

polygo~ an agreement area is calculated. Then, the aggregation of the local matching 

areas relative to the total area of the unique polygons map produces the global similarity 

value. This is computed as : 

_L Lm( x;) Area( X;) 
g - 1=1 1. - 1 2 n. 

k - Total Area ' - ' , .... (3.9) 

Several global similarity procedures that have been used in spatial applications have also 

been used to calculate the similarity between maps for specific land use types. Wrth the 

land use information in the unique polygons attnbute table, the above formula can be 

modified to compute a land use category global agreement value similar to conditional 

Kappa. 

Hirota and Pedrycz (1991) have stated that an aggregation of fuzzy values will 

produce an erroneous global matching value because an aggregation formula has no 

implication support in fuzzy logic. This is not a problem for the above equation because 

the local matchings are converted ftom fuzzy to crisp numbers by the defuzzification 
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algorithm. Since the local matchings numbers and areas are crisp values, the aggregation 

process of the global matching does not violate any rules of fuzzy set theory. 

3.3.6 Estimation of Uncertainty in the Global Matching 

The validity of the fuzzy map comparison model depends on the reliability of the 

derived global matching value~ A researcher must have confidence in the matching results 

before they are used for decision making. Deluca and Termini ( 1979) descnbe how a 

probabilistic measure of certainty is needed for information obtained by global means. In 

an effort to fit the complexity of a fuzzy set into a global classification, information is lost 

to transform fuzzy sets into other fuzzy sets. Therefore~ the validity of a global similarity 

value depends on measuring the amount of information lost in the transformation. 

Accordingly, Hirota and Pedrycz ( 1991) relate how Shannon entropy can be used 

to evaluate the certainty of the matching of two fuzzy sets. Zadeh ( 1969) descnbes 

Shannon entropy as the average amount of information needed to have no uncertainty that 

a fuzzy event will occur. Referring to pattern matching, entropy would descnbe the 

uncertainty that map A matches map B. The higher the value of entropy, the more 

uncertain the result of matching. By introducing a certainty measurement into the results 

from the fuzzy inference syste~ the matchings are expressed as " A matches B to degree 

C". 

The uncertainty of global matching between maps is modified from the shannon 

entropy measurements proposed by Hirota and Pedrycz (1991). Let the individual local 

matching numbers be expressed as a k , then the probability of map A matching map B is : 
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N 

P1c =(ak)nak/ LLmn 
n=l 

(3.10) 

N 

where nak is the number of template polygons with the similarity value ale and L Lmn is 
n=l 

the summation of all local matching values for a template layer. Then the Shannon entropy 

is calculated as: 

fC 

H =-L (ak P~c) log (ale P~c) + ((1- ale) Pk) log((l- ak) P~c)- (3.11) 
fC=l 

Before the uncertainty measurements are computed, it is necessary to normalize the 

entropy values since they are not restricted to the same [0~ 1] interval as the global 

matchings. Normalization of the entropy numbers requires the calculation of the maximum 

entropy for each matching value with: 

' ~K 2 h(ak) -Hmax= tOg _ 

=l 

(3.12) 

From the normalized entropy values,. the grade of uncertainty for a global match is 

computed as 

E=H/Hmax (3.13) 

and the certainty,C, of matching is equal to 
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C=l-&. (3.14) 

3.4 Conclusion 

It was shown how a fu:zzy inference system can detect land use differences with 

hierarchical fuzzy pattern matching. By emulating human reasoning when comparing 

multiple maps~ fuzzy relational modeling utiJizing linguistic membership functions can be 

used to derive local and global matching values. Qualitative interpretations of the areal 

agreement between two land use maps from unique polygons mapping are the basis for 

determining the regionalized and overall characteristics of thematic differences between 

the maps. The advantage of a fuzzy land use map comparison model over the traditional 

techniques is the ability to handle uncertainties in the dataset by allowing the polygons of 

the land use maps to have fuzzy boundaries. 
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The focus of this chapter is the discussion of the land use change and map 

comparison results from the fuzzy inference system for three experimental datasets. Two 

of the datasets consist of land use prediction maps from cellular automata, and the third is 

comprised of multitemporal forest inventory maps. The fuzzy pattern matching results for 

the datasets are presented in four sections. Since fuzzy local matching emulates human 

reasoning when comparing multiple land use maps, the first section descn"bes the visual 

interpretation of the maps and the derivation of a linguistic agreement statement. The 

qualitative expressions of map similarity should support and approximate the fuzzy global 

matching values for each dataset. 

The purpose of fuzzy pattern matching is to estimate the differences between land 

use maps in terms of local polygonal matchings. Thus, the second section analyzes the 

local matches and mismatches to determine the degree and nature of the land use 

agreement between the maps of the datasets. 

From the methodology given in the previous chapter, the calculation of the global 

matching values and associated entropy measurements for the datasets are discussed in 

section three. In additio~ the utility of the fuzzy global matching values and the ability of 

the fuzzy matching technique to perform map comparisons are determined from a 

comparison with traditional two map global similarity statistics. 
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The last section discusses the advantages of fuzzy land use pattern matching over 

traditional boolean comparison techniques for both map similarity analysis and land use 

change detection. 

4.1.1 DeKription of the Datasets 

The data sources for: this thesis consist of two sets of atemporal urban land use 

maps and a set of multitemporal forest inventory maps. The fuzzy inference system 

compares atemporal maps for a map similarity analysis and multitemporal maps for land 

use change detection. 

Dataset one, which will be referred to as Cincl~ is comprised of simulated and 

actual land use maps of Cincinnati, Ohio. The actual land use map is derived from the 

work of Passonneau and Wurman (1966) on land use information for cities in the United 

States and is the template or reference layer in the matching process. The simulated map 

was produced by an urban dynamics celluJar automata based model developed by White et 

a/. (1997). From a set of quasi-deterministic transition rules, the simulated map was 

generated by ten iterations of the cellular mode~ with an antecedent land use map as the 

initial configuration. Both maps are 80 rows by 80 columns rasters at a pixel resolution of 

250 meters. 

Dataset two, called Cinc2, contains the same maps as Cine 1 except that the 

simulated map is transposed 90 ° counterclockwise. The purpose of the transposition was 

to evaluate the performance of the matching procedure when comparing maps that are 

visually dissimilar. 
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The two land use maps in dataset three, called Forest 1, are classified Landsat TM 

images that were acquired on July 29,1985 and August 3,.1991,. respectively. The images 

were georegistered with less than 0.5 pixel RMS to the UTM grid on NTS map sheet 

12H/04 producing a pixel resolution of 30 meters. A maximum likelihood algorithm was 

utilized to classifY the images into forest inventory types based on field information. 

However, the forest inventory maps used in this thesis are subscenes containing 334 rows 

by 222 columns that were extracted from the original imagery and are centered on a 

region to the Northwest ofPasade~ Newfoundland. For the matching process, the 1985 

map is the template, and the 1991 map is the matching layer. 

4.2 Linguistic Evaluations of Map Similarities 

Depending on the complexity of the datasets, human reasoning enables a 

researcher to get an immediate impression or feeling for the degree of similarity between 

two land use maps. Consequently, human intuition plays an important role in determining 

land use agreement when maps are visually compared. The basis of the local matching 

from the fuzzy inference system is to reproduce and utilize this qualitative intuition to 

obtain an overall agreement statement for the maps. This enables the performance of the 

model to be determined from how well the linguistic agreement statement approximates 

and supports the global matching value for a dataset. 

Figure 4.2.1 represents the land use maps for Cincl, where the left map is the 

template layer. The river, railway, and roads areas on both maps are identi~ but several 

small sections of residential and commercial land use disagreement are noticeable at the 
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periphery of the city. Therefore, the qualitative interpretation of the agreement between 

the maps is that "map two is very similar to the template". 

Visual inspection of the maps in Cinc2 (Figure 42.2) for land use agreement 

indicates that "map two is considerably different from the template". Most areas of the 

maps, especially the river and transportation systems, are in total disagreemen~ and only 

several small residential and unclassified polygons are similar .. 

The land use maps in Figure 42.3 show that the forest inventory classes have 

remained predominantly unchanged from 1985 to 1991. Regions of forest change, which 

include the no data and cleared categories~ comprise a small section of the data set. 

Linguistically, the land use agreement can be expressed as "map two is fuirly similar to the 

template". 

4.3 Local Matching Results 

The local matching values from the fuzzy inference system are the membership 

values of the polygons on map two relative to a template map. Therefore, the higher the 

local matching value the greater the poSSibility that a polygon on map two is contained 

within a template polygon. Referring to analysis of land use differences, a low local 

matching value of0.3 or less for a polygon represents land use disagreement between the 

maps. 

The local matching values for Cincl are illustrated in Figure 4.3.1, which indicates 

a relatively high degree of agreement between the two maps for most areas. The low 
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matching values generally consist of smaller polygons that are dispersed throughout the 

study area. 

It is expected that a comparison of similar land use maps would identifY more land 

use matches than mismatches. Along the lines of a traditional comparison matrix, the 

incidences of land use agreement can be measured by a table of frequency of matches and 

mismatches for each land use category. Similar to the procedure presented by Gopal and 

Woodcock (1994), a fuzzy cut a of 0.70 is used to measure the frequency of local 

matches. Formally, 

Local Match~ a ) = {1 
if uc ~ ~-7 

0 otherwtse 
(4.1) 

A land use polygon on a second map is similar to a template polygon if its local matching 

membership grade is 2=: 0.70. 

Table 4.3.1 displays the results for Cincl using the fuzzy threshold agreement 

value. The first column shows the land use type, and the second column displays the total 

number of polygons for each map category. The matches and mismatches are given as 

numbers of polygons in columns three and four while the last column shows the 

percentage of land use agreement for each land use class. 

The similarity percentages show that the rivers and transportation systems are in 

perfect(lOO%) agreement, but the results for the other categories suggest that substantial 

land use disagreement is evident. substantial land use disagreement is evident. With 130 

matches and 240 mismatches, it is expected that the land use maps should be 

considerably different. This discrepancy is due to the pixel resolution of the data The 
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maps in Cincl have a resolution of250 meters, resulting in most of the polygons in the 

template layer consisting of one or two pixels. These small template polygons account for 

most of the mismatches between the maps even though they represent a small portion of 

the study area. 

Table 4.3.1: Local.Matchings for Land Use Polygons ofCincl 

LandUseType If ofPoly2ons Match Mismatch Eval. ofSimilarity 
Unclassified 80 19 61 23.75% 
Commercial 79 32 47 40.5% 

lndustrial 106 35 71 33.01% 
Residential 95 34 61 35.SO/o 

River 2 2 0 1000/o 
Railway 6 6 0 1000/o 
Roads 2 2 0 1000/o 
Total 370 130 240 61.871'/o 

The matching results are further analyzed by fitting a trend curve to the points of a 

scatterplot (Figure 4.3.2) of mean polygon size and local matching. It is important to note 

that it was necessary to logarithmically transform the original mean polygon size values for 

each dataset to normalize their distribution and to enhance comparability with the local 

matching values. The trend curve was fitted to the points by the robust locally weighted 

regression smoothing (Lowess) technique of Cleveland (1979). Barringer et a/.(1994) 

descn"be Lowess as a nonparametric iterative method of smoothing the points in a 

scatterplot where the fitted value is a polynomial fit to the data using a weighted least 

squares algorithm. The smoothing procedure can be descnbed as 
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where g is a smooth function and Ei are random variables with mean 0 and constant scale 

(Clevelan~ 1979). 
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The assumption of smoothness allows points in the neighbourhood of (Xi , Yi) to be used in 

I\ 

forming of the fitted value y i· The weights are a function of the distance between a point 

and the center of a smoothing kernel and a neighbour point and the size of the residuals 

from the previous iterations (Clevelan~l979). Therefore, the weights decrease as the 

distance between the points and the size of the residuals increases. Smoothing of a 

scatterplot refers to the formation of new points, which is dependent on the 

neighbourhood radius of the smoothing kernel (Barringer et al., 1994). The statistical 

software SPSS (1995) was used to produce the Lowess curves for the datasets, which 



67 

were fitted to 99 % of the data points with three iterations of weighting adjustments and 

smoothing. 

A Lowess curve is appropriate for analyzing the matching relationship because it is 

robust to the effects of outliers and can be used to identifY clear trends in highly variable 

datasets. The Lowess curve in Figure 4.3.2 predominantly trends upwards and indicates a 

positive causal relationship between mean polygon size and local matching. Thus, the 

matchings (~ 0.7) tend to represent land use agreement for larger polygons, which 

explains why the total area of agreement for 130 matches is greater than the area of 

disagreement for 240 mismatches. 

The matchings evaluations presented in Table 4.3.2 show that the smaller number 

of matched polygons accounted for 85.98% ofthe template area. In addition, 188 of the 

240 mismatches (Table 4.3.3) were for one or two pixel polygons that combined occupy 

only 4.73% of the template map. 

Table 4.3.2: Evaluation ofMatches and Mismatches forCincl 

Definite Matches Definite Mismatches 
130 240 

32.43% of polygons 67 .5?0.4 of polygons 
85.98% of total area 14.02% oftotal area 

Table 4.3.3: Matching Results for Template Polygons forCincl comprised oft and 2 Pixels 

221 of370 polygons are l pixel 41 of 370 polygons are 2 pixels 
152 are mismatched; 36 are mismatched; 

3.45% of the total area 1.28 % of the total area 
69 are matched 5 are matched 
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The local matchings for most of the template polygons in Cinc2 are low (Figure 

4.3.3) because the second land use map was dehllerately made to be different from the 

template. The areas of high matching are limited to several sections of residential and 

unclassified land use in the center of the template. Table 4.3.4 contains the matches and 

mismatches information for Cinc2 .. The residential and unclassified are the only categories 

that bad some degree of matching success. Wrth the transposition of map two~ the river 

and transportation systems are in complete disagreement (0%) and industry is poorly 

matched (10.4%). 

Table 4.3.4 : Local Matchings for Land Use Polygons ofCinc2 

LandUseType # of Polygons Match Mismatch Eval. ofSimilarity 
Unclassified 80 38 42 47.5% 
Commercial 79 3 76 3.80% 

Industrial 106 11 95 10.4% 
Residential 95 41 54 43.16% 

River 2 0 2 0 
Railway 6 0 6 0 
Roads 2 0 2 0 
Total 370 93 277 15.41% 

The smoothing trend in the scatterplot of mean polygon size and local matching 

(Figure 4.3.4) indicates that the effect of pixel resolution on the matching process supports 

the visual interpretation of differences between the maps. The Lowess curve is negative up 

to a mean polygon size of three when it becomes neutral for the remaining polygon sizes. 

This suggests that there is no overall discernible relationship between the variables 

although the regions that are in agreement represent small template polygons. It is possible 

that large areas could be both mismatched and matched, and the mismatches could occupy 

approximately the same portion of the template as the matches. Table 4.3.5 gives a true 
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indication of the matching process with 77.55% of the template polygons having a 

matching value< 0.70. In additio~ 204 of the 277 mismatched polygons consist of one or 

two pixels (Table 4.3.6) and account for 4.73% of the total area of the template layer. 

Although fewer in number~ the other 73 larger polygons represent a considerable portion 

(72.82%) of the total mismatched area of the template. 
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Figure 4.3.4 Lowess Curve of Mean Polygon Size versus Local Matching for Cinc2 

Table 4.3.5: Evaluation of the Matches and Mismatches ofCinc2 

Defmite Matches Definite Mismatches 
93 277 

25.14% of the polygons 74.86% of the polygons 
22.45% of total area 11.55% of total area 



Table 4.3.6: Matching Results for TempJate Polygons for Cinc2 comprised of One and 
Two Pixels 

221 of370 P<!_lygons are l pixel 41 of370 polygons are 2 pixels 
168 are mismatched; 36 are mismatched; 

3.45% of the total area 128% of the total area 
53 are matched 5 are matched 
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The local matchings for Forestl indicate that little land use change has occurred 

from 1985 to 1991 (Figure 4.3.5). A majority of the matcbings range from 0.70 to I, 

representing a high degree of containment of the 1991 map within the 1985 template layer. 

The identified areas of change are found at regions where the land use could not be 

determined by the classification algorithm. These "no data" polygons are situated at 

different sections of their respective maps and will be mismatched. The potential problem 

is that these low matching regions may actually be similar but are identified as change 

because of a fault of the classification procedure. It is beyond the scope of this thesis to 

develop a method to handle this problem so the local matching values will be accepted as 

the true template matching results for the dataset-

The matching information in Table 4.3_7 shows that there is a high degree of 

polygonal land use pattern agreement between the maps. All of the land use categories, 

except cleared and no data, have similarity percentages greater than 83.0%. Unlike the 

previous datasets, the matched template polygons outnumber the mismatched polygons. 

For example, 321 of the 402 template polygons (see Table 4.3.8) matched their 

counterparts on the 1991 map for a 81.4% overall areal agreement between the maps. 

This difference in matching results may be attributed to the 30 meter pixel resolution of 
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the land use maps in Forestl. The smaller scale of the template resulted in most of its 

unique polygons containing more than two pixels. Table 4.3.9 shows that 101 of the 401 

polygons consisted of one or two pixels, of which 15 were mismatched. 

Table 4.3.7: Local Matchings for Land Use Polygons ofForestl 

Land Use Type # ofPolygons Match Mismatch EvaL of Similarity 
No Data 20 2 18 LO.O% 

Water 30 28 2 93.3% 
Cleared 21 4 17 19.1% 

Non-Forested 118 105 13 88.9% 
bF 60 53 7 88.3% 

Mbf 15 62 13 82.7% 
MO 56 49 1 87.5% 

Spruce 10 10 0 100.00/o 
Deciduous 12 8 4 66.~/o 

Total 402 321 81 70.7% 

Table 4.3.8: Evaluation of the Matches and Mismatches ofForestl 

Definite Matches Definite Mismatches 
321 polygons 81 polygons 

79.6% of the polygons 20.4% of the polygons 
81.4% oftotal area 18.6% oftotalarea 

Table 4.3.9: Matching Resuhs for Template Polygons for Forest! comprised of One 
and Two Pixels 

62 of 402 polwoos are 1 pixel 39 of 402 polyaons are 2 pixels 
6 are mismatched; 9 are mismatched; 

0.48 %of the total area 0.60 % of the total area 
56 are matched 30 are matched 

The effect that a decrease in pixel resolution had on the relationship between mean 

polygon size and local matching is shown on Figure 4.3.6. The data points in the 

scatterplot have a distinguishable positive orientation, and the trend in the ·local matching 

Lowess curve increases monotonically, but at varying rates, as the mean polygon size 
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increases. The trend shows that the larger polygons on the maps are in agreement and that 

the mismatched areas are generally comprised of small template polygons. This is due to 

the pixel group membership functions being sensitive to scale. 
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Figure 4.3.6 Lowess Curve ofMean Polygon Size versus Local Matching for Forestl 

A local matching value will depend on the perceived possibility that a single pixel 

disagreement could be random mismatching or actual land use change. At low resolutions, 

such as 30 meters, the possibility that a single pixel polygon disagreement is a random 

mismatch increases. The fuzzy inference system handles this uncertainty by computing 

a slightly higher local matching value than would nonnally be determined for a 

mismatch. This would classifY the template polygon as moderately instead of poorly 
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matched. However, a single pixel polygon disagreement for a large pixel resolution dataset 

is more likely to represent actual land use change than random disagreement. As the pixel 

resolution increases, the model will compute a local matching value indicative of definite 

change. For datasets whose land use maps are relatively similar, this could lead to fewer 

identified mismatches for the lower pixel resolution. ~mplate. 

4.4 Global Matching Evaluation 

As with the traditional similarity statistics, the computation of the global matching 

value is area based. This is due to the fact that it represents the degree of global areal 

containment of a map within a template layer. One advantage of the fuzzy pattern 

matching model over the standard approaches is that Shannon entropy is used to measure 

the reliability and validity of the global matching value. Consequently, a comparison with a 

number of common similarity statistics will indicate how the global matching process bas 

performed and whether there is any advantage with applying a fuzzy approach to an 

overall land use agreement analysis. 

Most boolean similarity statistics are derived from coincidence or comparison 

matrices. Bonham-Carter (1994) states that the coefficient of areal agreement and 

Cramer's V are commonly used for comparing multiple class maps because of their ease of 

calculation. For maps that contain the same number of classes, the Kappa and Tau 

coefficients of agreement have been utilized (Rosenfield and Fitzpatrick-Lins,l986; Ma 

and Redmond, 1995). 
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Taylor (1977) descnks the coefficient of areal association (CAA) as a simple 

measurement of areal agreement derived from the intersection of two maps. The 

intersection identifies areas of maps that are similar, and the coefficient of areal association 

measures the observed proportion of agreement between the maps. The diagonal values in 

the coincidence matrix represent the areal association between the classes, and their 

aggregation relative to the total area of the maps gives an evaluation of the overaH areal 

agreement. Formally, the coefficient of areal association is computed as: 

CAA = ~ Area;j I Total Area. (4.2) 
i=l 

where Areaij is the diagonal value ij in the coincidence matrix.. 

Cramer's V is a similarity measure that is derived from the chi square (X 2 ) 

statistic, and is used to measure the strength of associations between maps.It should be 

noted that despite the importance of X 2 in the calculation of Cramer's V, X 2 by itself is 

inappropriate for representing the areal similarity between maps. Chi square is computed 

from a table of counts which requires an exhaustive mapping rather than a sampling of 

areas (Goodchild, 1998). It is used to test the statistical significance of associations while 

Cramer's V measures the strength of associations in the coincidence matrix. Nevertheless, 

X 2 can provide an exploratory and descriptive measure of spatial correlations between 

maps if the analyst recognizes these limitations. 

For the chi square statistic, the overall similarity between two maps is based on the 

observed and expected areal categorical agreements in the coincidence matrix. Bonham 

Carter (1994) defines chi square as : 
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x 2(D= f. t (Ohserved(if)-Expected(i* j))
2 

( 4_3) 
~r r-r ~credQ*f) 

where T is the coincidence matrix. 

The observed similarity element Tij is the agreement value between the ;th class of map B 

(rows in T) and thej1h class of map A (columns ofT). The expected areal similarity value 

Ti*j for the ;th row andj1h column. is computed as: 

T 
1i.T.j 

i*j= --, 
T .. 

(4.4) 

where Ti. is the row total ofT, T.j is the column total ofT, and T •• is the grand total 

summed over T. A similarity measure derived from chi square is Cramer's V: 

(4.5) 

Cramer's V ranges from 0 (no correlation) to 1 (total correlation). 

The Kappa coefficient of agreement is a similarity measurement used to compare 

two maps that contain the same number of classes and whose class themes are identical. 

Rosenfield and Fitzpatrick-LiDs (1986) descn"be Kappa as a statistic that measures the 

agreement between attributes of two maps and corrects for the expected amount of chance 

agreement. 

Kappa bas been used extensively in remote sensing for accuracy assessment of 

classified satellite imagery. The post classification comparison is performed by a 

crosstabulation of two maps to generate a comparison matrix and associated statistics that 

indicate regions of change (Singh, 1989). From the comparison matrix, an observed areal 
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proportion and expected proportion matrix are defined The observed area proportions p;; 

are the diagonal values in the observed proportions matrix determined from Pii = TiiiT •• . 

The expected area proportiOns Qii are the diagonal values in the expected proportions 

matrb4 and are found with Qii =Pi. I P .j~ The Kappa coefficient is defined as: 

N N 

~Pii-~Qu 
K = _i=..-..1----'--i=....:...t _ 

N 

1-LQ;; 
i=1 

(4.6) 

The calculated Kappa value lies typically on a scale between 0 and 1 (total agreement) 

with 0 representing agreement that is no better than chance (Bonham Carter,l994)~ 

The Tau coefficient of agreement is similar to Kappa in that it uses the information 

in a coincidence matrix to measures the improvement of a classification over a random 

assignment of pixels to groups. Despite the similarities, Tau bas several advantages over 

Kappa. F~ it can incorporate either equal or unequal a priori probabilities of group 

membership into the agreement calculatio~ whereas Kappa uses the a posteriori 

probabilities. Secondly, Tau avoids underestimating the overall similarity accuracy because 

the probabilities are independent of the error matrix (Ma and Redmond,1995). The 

probabilities are computed from an independent source before the error matrix is 

generated. For thematic maps, the independent source is the known or estimated 

proportion of the total area of the map occupied by a specific 1and use. For example, a 

researcher may know that a study area is comprised of 200/o urban, 40% water, 10% 

grassland, and 300/o forest. In this case, the a priori probabilities are .20, .40, .10, and .30, 

respectively. 



According to Klecka (1980)~ Tau is calculated as 

Po-Pr 
T -

1-Pr 
(4.7) 

M M 
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where P 0 (percentage agreement)= ~P;; (4.8), P ,.(random agreement)= ~(Pi+)Pi 

( 4.9), M is the number of groups, Pi is the a priori probability and Pi+ is the margfual 

group total in the proportions error matrix. 

4.4.1 Evaluation of Boolean venus Fuzzy Global Similarity 

The global matching procedure is initially evaluated by detennining if the linguistic 

agreement statements support the global matching values for each dataset. Technically, 

fuzzy pattern matching translates a visual interpretation of agreement between two maps 

into a single global agreement value. Therefore, the linguistic agreement statement should 

qualitatively make sense in descnbing the global matching value if the matching procedure 

bas performed correctly and accurately. For example, the matching process has failed if a 

global matching value of 0.1 is computed for maps that are visually very similar. Note that 

this activity is only a preliminary indicator of the comparison results, and it should· not be 

used to measure the performance of the model Recall that the linguistic agreement 

statements for Cinc1, Cinc2, and Forestl are filirly similar, considerably different, and very 

similar. From Table 4.4.1, the global matching values are 0.71, 0.35, and 0.78, 

respectively. Although highly subjective, each of the linguistic agreement statements is an 

acceptable and sensible description of their associated global matching value. For example, 
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a label offirirly similar fits a 0.71 global matching value, which validates the performance 

of the matching process for Cincl. 

Table 4.4.1 : Boolean and Fuzzy Global Similarity Statistics 

Dataset Fuzzy Global Fuzzy Boolean Boolean Boolean Boolean 
Matching Certainty Kappa CAA Cramer's V Tau 

Cincl 0.71 0..95 0.64 0.75 0.82 0.70 
Cinc2 0.35 0.97 0.09 0.37 0.12 0.27 

Forestl 0.78 0.97 0.76 0.81 0.79 0.78 

A quantitative and more accurate measurement of the performance of the global 

matching procedure for each dataset can be determined from the certainty measurement 

for the matching value. For example~ Table 4.4.1 indicates that the global matching of the 

predicted map to the template layer for Cine 1 has a certainty of 0.95 while the certainty of 

matching for both Cinc2 and Forest! is 0.97. A certainty value is similar to a probability 

confidence interval in that it indicates how well the global matchings represent the actual 

agreement between two maps. With the certainties all~ 0.95, the accuracy and reliability 

of the global matchings are assured. 

Furthermore, the reliability of the global matching values can also be estimated 

from comparisons to a number of standard boolean similarity measures. For the first 

compariso~ notice that the global matching values are less than the Cramer's V values for 

Cincl and Forestl (See Table 4.4.1) and greater than Cramer's V for Cinc2. These 

differences may be attn"buted to the fact that Cramer's V is computed from the chi square 

statistic. Several authors (Bonham-Carter,l994; Davis,l990) explain how chi square and 
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its associated statistics are best suited for an exploratory measure of multiple map 

correlation because they are dependent on area units. When converting to a smaller unit 

(e.g. km2 to m 2 }, chi square will increase in proportion to the increase in area unit. 

Therefore, the Cramer's V values are questionable as accurate measures of map similarity. 

For the second comparison analysis, the global matchings fiill between the 

calculated Kappa and CAA numbers. For example!> the global matching value for Cine l is 

0.71, which is between the Kappa valueof0.64 and the CAA of0.75. This is the expected 

or desired result because of the problems with both Kappa and CAA. Foody (1992) found 

that Kappa consistently overestimates chance agreement and consequently underestimates 

map agreement. Congalton et al. (1983) state that the CAA is an unreliable measurement 

of map similarity because it overestimate the agreement between maps by not accounting 

for chance agreement. Based on this information, a preliminary requirell¥.!nt of an 

acceptable global similarity procedure is that its output value for a particular map 

comparison full between the computed Kappa and the CAA values. 

The Tau coefficients and global matchings both satisfY the above requirement. In 

addition, the Tau values of0.70, 0.28, and 0.78 are very similar to the global matcbings 

values of0.71, 0.35, and 0.78 (see Table 4.4.1). Ma and Redmond (1995) descn"be how 

the use of Tau over Kappa and CAA is justified for its ability to incorporate probabilities 

into the calculations which avoids overestimating the random agreement between maps. 

However, the authors failed to consider that Tau depends on a pixel-by-pixel comparison 

to obtain the observed agreements for the map categories. Misregistration of one or both 

of the maps could decrease the computed agreement value. By accounting for locational 
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and attnbute uncertainties in the computation of the local matching~ the fuzzy global 

matching procedure, which derives the overall. agreement from the aggregation of the local 

matchings, is clearly more appropriate and flexible than the boolean methods for the 

analysia c•f map similarity. Unlike the boolean approach, chance agreement and 

misregistration problems are handled by the overlap of the output membership functions 

for the local matchings. A global matching value may be viewed as a fuzzy coefficient of 

areal agreement since each local matching is estimated from an intersection of land use 

polygons .. 

4.5 Fuzzy venus Boolean Land Use Comparison Results 

The use of fuzzy pattern matching for land use change detection and map similarity 

analysis will depend on the purpose of the map comparison procedure. Generally, the 

boolean procedures are sufficient for a map comparison analysis and may be preferred for 

their ease of understanding and implementation. Fuzzy pattern matching becomes a viable 

alternate map comparison technique when the complexity of the data and the matching 

process increases beyond the capability of the structure of the boolean approaches. 

Therefore, the structure of the map agreement procedure will depend on complexity of the 

maps and the objectives of the project. This complicates the direct comparison of the 

agreement results from the boolean and fuzzy models. Beyond the comparison of global 

agreement values as presented in Section4.4.1, it is difficult to quantifY the advantages of 

fuzzy pattern matching over the boolean approaches. Consequently, a visual interpretation 
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of the differences between the fuzzy and boolean agreement maps is the basis of the 

discussion of the benefits of fiuzy pattern matching as a map comparison technique. 

Figures 4.5.1 and 4.5.2 show the fuzzy and boolean land use similarity maps for 

Cine 1 and Cinc2~ respectively. Map B of both figures is a boolean agreement map 

produced by reclassifYing a crosstabulation map into discrete agreement and disagreement 

categories. The fuzzy land use agreement poSSibility layers (Map A) were created by 

reclassifYing the local matching maps according to the band width of the output 

membership functions (see Table 4.5.1). Recall that the parameters of the output 

membership functions are subjectively chosen by the developer. Similarly~ the labels 

assigned to the five possibility classes in Table 4.5.1 are subjective linguistic descriptors of 

what a researcher believes is the degree oflocal matching between two maps. 

Table 4.5.1 Local Matching PoSSibility Threshold Values 

Possibility Class Lower Threshold Value Up~ Threshold Value 
Very Definite Agreement 0.91 LOO 

Definite Agreement 0.66 0.90 
Likely Agreement 0.31 0.65 

Definite Disagreement 0.061 0.30 
Ve!Y Definite Disagreement 0.0 0.06 

A noticeable diff~rence between the fuzzy and boolean land use agreement maps is 

the gradual transition of similarity from very definite agreement to very definite 

disagreement on the fuzzy map. It is possible that an analyst may have difficulty 

interpreting the meaning of the fuzzy labels whereas the distinction between the boolean 

agreement and disagreement classes is straightforward. Although the labels may appear 

similar, the discrimination between the fuzzy classes is based on the certainty of matching. 
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For example~ the placement of the linguistic hedge '~ery" before the descriptor '"definite'~ 

for the very definite agreement class signifies a reduction in the fuzziness and uncertainty 

associated with a local matching event. Thus, there is a higher degree of certainty of land 

use agreement for regions classified as very definite agreement as compared to areas of 

definite agreement. It may be argued that the choice of labels and threshold values for the 

fuzzy classes will vary from developer to developer which complicates the interpretability 

of fuzzy maps. Regardless of the possible differences that could exist, the underlying 

characteristic of any fuzzy land use agreement map is that the classes are separated and 

interpreted by the perceived certainty of matching 

The primary advantage of a fuzzy agreement map is that it contains more 

information and gives a more realistic interpretation of the land use characteristics of a 

dataset. The fuzzy agreement information would permit the user to concentrate on specific 

characteristics of the results, such as whether a specific land use type accounts for most of 

the very definite disagreement areas. Since datasets one and two were produced by a 

cellular automata Jand use prediction mode~ an analyst can use the information about the 

very definite and definite disagreement areas to recahbrate the model to produce better 

prediction results. This may be difficult or impossible with boolean results because the 

boolean approaches often lose agreement information when producing dichotomous 

similarity categories. 

A second advantage of the fuzzy agreement map is that it retains the form of the 

template layer. This gives a better visual impression of where land use differences are 

situated spatially. For example, the areas of very definite agreement on Figure 4.5.1 
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represent the river and transportation system of the study area. However, the boolean map 

consists of a jumbled intermixture of disagreement and agreement areas that make it 

difficult to relate the result to the original land use maps. It is evident that the discrete 

classification from the boolean model has simplified the land use similarity results. 

The comparison of the forest inventory maps in Forestl demonstrates how well 

fuzzy land use pattern matching detected forest succession during the six year study 

period. It should be mentioned that forest regeneration and succession are complex and 

complicated processes that are often difficult to model with traditional boolean techniques. 

This is partially due to the inability of such techniques to represent intermediate growth 

patterns. Unless a major event, such as an insect infestation or a forest fire, bas occurred, 

the patterns of change in forest inventory over six years will tend to be sporadic and 

fragmented (Meades and Moores, 1989). It is unlikely that a complete natural 

transformation from one forest inventory type to another will occur in such a short time 

span. Even if a fire has taken place, the affected area will experience intermediate primary 

succession to some degree. 

The sensitivity of the fuzzy pattern matching model to complex growth patterns 

was determined by concentrating the change detection analysis on the cleared and non­

forested categories. These forest inventory types were considered to be the ones most 

likely to produce mixed succession and regeneration results. The boolean classification 

(Figure 4.5 .3) identifies the discrete change and no change classes for each forest 

inventory type but fails to find areas of mixed change. Thus, the intermediate change 
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information is lost because the boolean approach constrains and siinplifies the change 

detection process. 

The transitional range of change on the fuzzy land use poSSibility map (Figure 

4.5.4) shows that the fuzzy model detected intermediate and definitive change patterns. 

Several areas of intermediate change exist for the non-forested category and are classified 

as likely change non-forested. These are regions where the matching process bas 

determined that approximately half of a template polygon is contained within the 1991 

map. Consider the large polygon of likely change non-forested in the Northwest comer of 

Figure 4.5.4. The boolean model subdivides this region into areas of definite change and 

no change. This suggests that entire sections have undergone a complete land use change 

while other areas have remained unchanged. It is unrealistic that a boolean boundary could 

separate where forest succession bas taken place. In contrast, the likely change 

classification on the fuzzy map indicates that gradual forest infilling has occurred, but 

there bas not been a complete transformation in forest inventory type. Therefore, the fuzzy 

map contains more information about the change characteristics of the study area and 

presents a more appropriate interpretation of dynamics of forest species succession. 

A further advantage of using fuzzy change posstbilities rather than boolean 

categories is that there are fewer one pixel agreements and disagreements on the fuzzy 

map. With the resolution of the input data being 30 meters, the fuzzy inference system is 

sensitive to the possibility of random disagreements between the maps while the boolean 

model identifies every pixel-by-pixel disagreement as change. 
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An important note must be stated about the resuhs from the above section.. Recall 

that the fuzzy agreement maps were reclassified from the membership functions for the 

purpose of comparing the local matching results to the boolean land use comparison maps. 

For projects that may be developed for land use change prediction or other forecasting 

purposes, Jand use agreement should be displayed as a continuous range of change 

possibilities. In Figure 4.5.5!t for example, the visualization of the change poSSibilities for 

cleared and nonforested is based on a gradation in the intensity and hue of the color for 

the classes. The poSSibility of change for either class is highest for the darker polygons and 

decreases as the color lightens. By representing change as a range of poSSibilities, Figure 

4.5.5 still contains the intermediate change information for dataset three but avoids the 

complications and limitations of reclassifYing the matching results into discrete agreement 

classes. 

4.6 Conclusion 

Fuzzy hierarchical pattern matching was successfully adapted to the analysis of 

thematic differences between 1and use maps. The ability of fuzzy membership functions to 

address the uncertainty concerns of spatial data shows that fuzzy change detection is a 

viable and tlextble alternative to the traditional boolean map comparison procedures. 

The results from this chapter provide evidence that a fuzzy map comparison 

analysis can identifY and preserve various types and magnitudes of land use differences 

between maps. Consequently, land use agreement possibility maps were produced for each 

dataset. The transitional progression from total agreement to total disagreement enables a 
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poSSibility map to present a more realistic interpretation of land use differences to the 

viewer. Unlike the boolean approaches, the fuzzy model does not lose relevant land use 

similarity information. 

The global matching procedure was found to outperform several traditional 

similarity statistics. Also, the global values supported the linguistic interpretations of land 

use change or map similarities for each dataset- Certainties for the global matchings 

provide a measure of confidence that these values represent the actual overall pattern of 

land use difference between two land use maps. 



5.1 Discussion ofResults 

ChapterS 

Discussion and Conclusion 

94 

Historically, the comparison of thematic maps has been the basis for many land use 

change detection procedures. Traditional pixel-by-pixel comparison map comparison 

techniques are suspect because of posstble map registration and error propagation 

problems. In addition, these boolean similarity operations can not adequately account for 

the uncertainty and complexity inherent in spatial information. A fuzzy regional polygon­

by-polygon comparison methodology mitigates these difficulties or problems. 

The basis of hierarchical fuzzy pattern matching is the emulation of the human 

reasoning method of expressing the perceived degree of similarity between two maps as a 

linguistic statement. This qualitative estimation of map agreement is the underlying factor 

in the development of the fuzzy inference system and the measurement of the performance 

of the matching process. The parameters of the fuzzy inference system that are selected by 

the developer are those that produce resuhs that best approxirr.ate the linguistic agreement 

statement. For the datasets used in this thesis, a qualitative interpretation of map 

agreement from a visual comparison of maps is tairly straightforward because the maps in 

the datasets are small and contain only a few land use classes. For example, an analyst sees 

that the transportation systems are identical in the maps of Figure 4.3.1 and expects the 

local matching results to preserve this observation. 
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Theoretically, the same fuzzy pattern matching methodology can be applied to 

larger maps and remote sensing images consisting of many thematic classes. A potential 

problem that could arise is that a person's ability to linguistically descn"be the agreement 

between maps can decrease as the complexity of the maps increase. The visual comparison 

of two maps comprised of many small irregular polygons can become a complicated tas~ 

especially at the local matching level Without a good mental evaluation of the agreement 

between the maps, an analyst is constrained in monitoring and fine tuning the fuzzy 

inference system to produce reliable matching results. Thus, the validation of the matching 

procedure is based less on expert knowledge and more on the Lowess regression and 

matches and mismatches analysis. At this point in the research, the effect that the use of 

large intricate layers will have on the matching process is unkno~ but it is a filctor that 

needs to be addressed in future manifestations of the model. 

In its present form as a fuzzy areal comparison technique, hierarchical fuzzy 

pattern matching is a viable alternative to the boolean map comparison procedures. 

However, an important filet to consider is that the purpose of the local matching process 

can be altered by expanding the fuzzy model beyond the areal comparison of maps. The 

fuzzy inference system can be restructured to include membership functions for the 

matching of complex polygonal properties, such as elongation and fractal dimension. 

These additional variables could aid in the explanation and description of the differences 

between maps. For example, an increase in fractal dimension from one year to the next 

may be the result of an increase in the complexity of the land use pattern of a region due 

to urban expansion. Therefore, the general benefit of the fuzzy pattern matching model is 
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that its fleXIbility could enable the researcher to supplement his knowledge and 

understanding of the processes of land use change. Therefore, the acceptance of 

hierarchical fuzzy pattern matching as a practical map comparison procedure should take 

into account that it is applicable to a wider range of research than what was presented in 

this thesis. 

5.2 Conclusions 

Results from the analysis reported in this thesis support the following conclusions: 

(i) fuzzy land use change possibility maps provide a better interpretation of the 
land use agreement characteristics of a dataset than do boolean maps. The 
transitional change categories portrayed on a fuzzy map contain more change 
information and better represent the complex and intermediate change 
conditions. In additio~ fuzzy maps give a better visual representation of where 
change has occurred spatially by retaining the form of the template layers. For 
example, a researcher can identify the railway, roads, and river as the areas of 
very definite no change on Map A of Figure 4.5.1, but these land use features 
are indistinguishable from the boolean change patterns on Map B. 

(n") the pixel scale membership functions in the fuzzy inference system make the 
fuzzy land use pattern matching sensitive to scale. Compared to the boolean 
results, the fuzzy model identified fewer one pixel disagreements as the 
resolution of the datasets increased from 250 to 30 meters. 

(ill") the fuzzy local polygon-by-polygon land use comparison is less affected by 
possible map registration problems because the fuzzy inference system 
indirectly fuzzifies the boundaries of the polygons. 

(iv) the global matching results outperform a number of commonly used overall 
similarity . statistics. By accurately accounting for random agreement, fuzzy 
global matching can be seen as a reliable method for combining local matching 
results into a single measure of two map similarities. 

(v) From the overall resuhs of this researc~ it can be concluded that hierarchical 
fuzzy pattern matching can be successfully employed to detect both map 
similarities and land use change in thematic land use layers. 
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5.3 Future Research 

The purpose of hierarchical fuzzy land use pattern matching is to determine the 

degree of simi1arity between two maps of the same scale. Theoretically, the comparison 

procedure could be performed on maps with slightly different scales (e.g. a I :50000 land 

use reference map and a 30 meter classified Landsat TM image) by fuzzifYing the 

boundaries of the polygons_ A consideration for further research could involve estimating 

the range of differences in scale that maps can have before the matching results are 

unacceptable. By verifYing the flexibility of the model, a researcher would get an 

indication of what spatial information can be used for a comparison procedure. 

A concern with the development of the fuzzy inference system is whether the 

chosen inference rule and defuzzification algorithm are the best ones to use for the pattern 

matching procedure. Jang (1997) suggested the use ofMax-Min inference and centroid of 

area defuzzification because of their ease of understanding and implementation. Although 

both are widely used, they are not easily subjected to mathematical analysis (Klir,. 1988). 

Greater mathematical tractability and the optimum inference structure for the model could 

be achieved from different combinations of inference rules and defuzzification procedures 

The best combination would be the one that produces the highest certainty value for the 

global matching. 

Research is required into the implementation of optimization techniques to obtain 

the best structure for the fuzzy inference system. It is possible that the local matching 

results are inaccurate because the shape of the membership curves and the amount of 

overlap between the function are less than optimal Currently, there is no practical way of 
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ensuring that the membership functions provide a complete and consistent coverage of the 

input and output domains. A solution is to replace the fuzzy inference system with an 

adaptive neuro-fuzzy inference system (ANFIS), which is an adaptive network that is 

functionally equivalent to a fuzzy inference system. The connective updating capabilities of 

the ANFIS enable a system to automatically shape its membership functions by training 

them with input data. Technically, an ANFIS uses backpropagation, a common neural 

network training algorithm, for bi-directional learning to fine tune the fuzzy inference 

system by reducing an error measurement between the predicted results and the output of 

the training set. This procedure progressively reduces the disagreement between the 

predicted output and the desired output given by the training set. This process continues 

until the training error reaches a predetermined learning error threshold (Jang et a/.,1991). 

The local matching results from an ANFIS with an optimized input-output structure may 

be better representations of the patterns of agreement between land use maps. 

In its present fo~ the hierarchical fuzzy pattern matching model is constrained by 

its concentration on the uncertainty problem of comparing two maps. An important factor 

that needs to be addressed in future research is the spatial dependency that exists between 

the land use maps. This would involve calculating measurements of the spatial 

autocorrelation between the template and comparison polygons and representing these 

values as membership functions in the fuzzy inference system. The inclusion of spatial 

autocorrelation into the fuzzy areal map comparison could expand the similarity analysis 

beyond the direct comparison of polygons to a comparison of the surroundings of the 

template polygons. This would be similar to a remote sensing analysis of texture or 
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context on muhitemporal images. By enabling the model to be sensitive to spatial 

dependencies, the map comparison could be performed on highly segmented and 

fragmented land use patterns that are comprised of a complex intermixture of unique 

polygons. 

The work presented in this study was based on the analysis of land use similarities 

between two maps. Ideally, the model needs to be expanded to deal with more complex 

problems, such as the comparison of a sequence of maps for a time series analysis. A fuzzy 

time series comparison would have to be a "one step ahead" process of matching 

successive maps to the template layer. This would require a multiple input-one output 

fuzzy inference system, where several of the inputs are the results from previous matching 

sessions. Consider the steps required for a change detection analysis involving three maps 

(a template and two later maps). Initially, the fuzzy inference system performs a 

comparison between the template and the map at time t+ 1. As the matching sequence 

moves ahead, the local matching results from the first comparison are added as an input 

variable to the fuzzy inference system before the map at time t+ 2 is matched to the 

template. This is essential because the previous matching results are expected to have a 

moderating effect on the time series analysis since they should not be significantly different 

from the preceding findings (Bintley, 1987). An important point to consider is that by 

adding input variables to the fuzzy inference system the dimensionality of the system is 

increased as additional membership functions and rules are added. The increased 

complexity of the network can make the system structure difficult to interpret and 

understand and can increase the computational intensity of the forecasting analysis. It may 
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be necessary to use an ANFIS for the time series analysis to ensure that membership 

functions and rulebase are optimized after each new input is added to the system. 

Despite the possible changes resulting from future researc~ the structure of the 

hierarchical fuzzy pattern matching model discussed in this thesis presents the researcher 

with a flexible way of handling spatial uncertainty in a map comparison procedure. Even in 

its present fo~ hierarchical fuzzy pattern matching produces results that warrant it 

consideration as a sound and plausible model for both similarity analysis and land use 

change detection. 
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Appendix A 

Unique Polygons Mapping and Fuzzy Inference System Programs 



Program 1: Unigpotv.bas 

• This program identifies the unique intersections between two land use maps 

Dim g 1, g2, grpmap 1, grpmap2, pixels, id as Integer 
Open "Landmaps.txt" For Input as #1 
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• Landmaps.txt is a file that contains the first map in column 1 and the second map in column 2 
• Note: Idrisi ascii images are run length encoded files that store the attnbutes for the pixels in a 
• single column that is(# of rows*# ofcolunms) in length 
• 4 Steps to create Landmaps.txt 
• 1) ensure that the Idrisi maps are in integer ascii format; use CONVERT module if necessary 
• 2) import the Idrisi maps into a spreadsheet and append the maps into adjoining columns in a 

new file 
• 3) sort the file according to column 1 ascending then column 2 ascending 
• 4) save as the file as an ascii text file called Landmaps.txt 

Open "uniqinfo.dat" For Output as #2 

Input "Enter the number of pixels in the Land Use Maps:", pixels 

Input #1, gl, g2 
id = 1 
Print #2, id; g 1; g2 

For I= 1 to (pixels- 1) 
Input # 1, grpmap 1, grpmap2 
If gl <> grpmap 1 or g2 <> grpmap2 Then 
id = id + 1 
Print #2, id; grpmap 1; grpmap2 
gl =grpmap1 
g2 =grpmap2 

End If 
Next I 
Close #l 
Close #2 
End 



Program 2 : U niqmap.bas 

• this program creates an unique polygons map 

Dim grpidl,grpid2J,unql,unq2,unqid,mapid, pixels as integer 

Open "map l.img'' for input as # 1 
Open "map2.img'' for input as #2 
Open "Uniqmap.im.g'' for output as #3 

• ensure that both maps are in integer ascii format 

Input "Enter the number of pixels in the Land Use Maps:", pixels 

For I = 1 to pixels 
Input #1, grpidl 
Input #2,grpid2 
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Open ''uniqinfo.dat" for input as # 4 ' this is the polygonal information file from Uniqinfo.bas 
While Not EOF(4) 

Input #4, unqid,unql,unq2 
Ifunql = grpidl and unq2 = grpid2 then 
mapid = unqid 

Endif 
Wend 

Close #4 
Print #3, mapid 

Next I 
Close #1 
Close #2 
Close #3 
End 



Program 3: Localfis.m 

• This program imports the areal information into the fuzzy pattern 
• matching model and activates the local matching fuzzy inference 
• system 

load areainfo.dat 

• areainfo.dat is an ascii text file that contains the areal intersection, 
• areal complement, and. pixel grouping size for each unique polygon of the 
• template map 

tid= fopen('localmap','w') 

• localmap is the resulatant local matching map 

fismat = readfis('intcomp'); 

• intcomp is the local matching fuzzy inference file 
• the script for intcomp is not listed because it is in byte 
• binary format 

num = length(areainfo); 
fork= l:num 
a= areainfo(k,:); 

output= evalfis(a,fismat) 

• the evalfis function performs the local matching 

fprintftfid,'%6.3f\n',output); 
end 
status=fclose( fid); 
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