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Remote Sensing, Hydraulic Modeling, and Fuzzy Logic
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Santa Barbara, CA, 93106; e-mail: carl@geog.ucsb.edu;

good@geog.ucsb.edu

(Received 24 January 2004; in final form 6 April 2004 )

Improved techniques are needed to characterize complex fluvial systems and

monitor ecologically important, yet highly vulnerable riverine environments. This

paper explores potential alternatives to traditional mapping of in-stream habitat

and presents fuzzy set theory as a means of departing from the rigid, Boolean,

object-based framework. We utilize hydrodynamic modeling, remotely sensed

data, and fuzzy clustering to obtain classifications that allow for continuous

partial membership and gradual transitions among habitat types. Methods of

assessing cluster validity are available, but data quality is a crucial consideration.

Crisp, vector-based representations can be derived from raster fuzzy classifica-

tions by applying a threshold to maximum membership values. This process

results in conditional objects separated by ambiguous transition zones, and a

compromise must be reached between the proportion of the channel assigned to

polygons and the certainty with which this assignment can be made. Spatial

patterns of classification uncertainty can also be used to identify areas of

confusion, infer boundaries of variable width, and highlight areas of increased

habitat diversity. Hydraulic modeling and remote sensing complement one

another and, together with field work, could provide a more realistic

representation of the fluvial environment.

Keywords: rivers; remote sensing; hydraulic modeling; fuzzy classification;

indeterminate boundaries; uncertainty

1. Introduction

Fluvial systems vary continuously across a range of spatial and temporal scales as

dynamic erosive and depositional processes establish the physical habitat template

for aquatic biota (Ward 1989, Knighton 1998, Wohl 2000). Characterizing this

complexity poses a considerable challenge to scientists and resource managers
seeking concise, meaningful representations of channel morphology and in-stream

habitat. This task takes on added importance due to the heightened biodiversity

of riparian corridors and the sensitivity of riverine landscapes to disturbance

(Malmqvist and Rundle 2002, Ward et al. 2002). This combination of ecological

significance and vulnerability mandates consistent, quantitative, and spatially

explicit characterization of fluvial environments (Newson and Newson 2000).

Conventional stream classification methods, however, suffer from several

fundamental limitations (Poole et al. 1997, Goodwin 1999, Roper et al. 2002).
Typical approaches include process-oriented categorizations (Whiting and Bradley

1993, Montgomery and Buffington 1997), visual qualitative schemes (Bisson et al.
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1982, Hawkins et al. 1993), and Rosgen’s (1994) popular descriptive framework. In

practice, field mapping of in-stream habitats ‘‘retain(s) a strong flavour of

qualitative ambiguity’’ (Burrough 1996, p. 18) due to imprecise formulation of the

entities to be mapped. As a result, these techniques have been criticized for their

inherent subjectivity, a basic flaw that ‘‘seriously compromises (their) repeatability,

precision, and transferability’’ (Poole et al. 1997, p. 879) and casts doubt upon the

mere notion of classifying streams (Goodwin 1999).

Having expressed their dissatisfaction with the traditional approach to habitat

unit classification, Poole et al. (1997) recommend that stream monitoring programs

‘‘must instead focus on direct, repeatable, cost-efficient, and quantitative measures

… spanning several scales of resolution’’ (p. 879). On a local level, for example,

hydrodynamic models can be used to simulate flow patterns determining the

suitability of in-stream habitat for various organisms (Ghanem et al. 1996,

Lamouroux et al. 1998, Crowder and Diplas 2000). Remote sensing provides a

more synoptic perspective, and previous research has demonstrated the feasibility of

mapping in-stream habitats from digital image data (Wright et al. 2000, Legleiter

et al. 2002, Marcus 2002, Whited et al. 2002, Marcus et al. 2003, Legleiter 2003).

Advantages of remote sensing include expanded geographic coverage, allowing

rivers to be examined on a watershed rather than a reach scale, and consistent,

quantitative description of fluvial environments through image classification

procedures (Marcus 2002).

Both ground-based and remote approaches to characterizing in-stream habitat

have been limited by their rigid adherence to a Boolean, object-based data model

(Burrough 1996, Fisher 1996, Fisher 1998). This conventional approach does not

provide an adequate representation due to the internal heterogeneity of habitat

units, the subjectivity of boundary delineation, and the lack of an accepted

classification scheme. Fuzzy set theory provides an alternative descriptive frame-

work that accommodates such uncertainty by allowing individual entities to exhibit

continuous partial membership in more than one class, which, in a spatial setting,

allows for zones of gradual transition (Burrough 1989, Burrough and Frank 1996).

Burrough (1989) states that the use of fuzzy sets is ‘‘appropriate … whenever we

have to deal with ambiguity, vagueness and ambivalence in … conceptual models of

empirical phenomena,’’ adding that ‘‘fuzziness is often a concomitant of complex-

ity’’ (p. 479). Given the intricate process interactions controlling channel

morphology and the inadequacies of conventional stream classification methods,

fuzzy representations of in-stream habitat present an appealing alternative. The

quantitative data obtained via hydraulic modeling and/or remote sensing also allows

for more rigorous treatment of uncertainty.

In this paper, we apply fuzzy set theory and spatially explicit metrics of

classification uncertainty to a new domain – the identification and delineation of

aquatic habitats in shallow stream channels. From a GIScience perspective, these

fluvial environments pose a number of unique challenges: 1) a narrow, elongate

geometry; 2) a scale-dependent range of dynamic behavior in space and time; 3) a

compelling need to address underlying geomorphic and ecologic processes; and 4) a

paucity of suitable data sources and classification systems for characterizing habitat

conditions. For the stream ecologist or resource manager, we propose that an

innovative, fuzzy approach could circumvent the subjectivity of conventional

habitat classification and provide a richer representation that more faithfully honors

the complexity of the fluvial environment. In the following sections we use
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hydrodynamic simulations, remotely sensed data, and fuzzy classification techniques

to explore potential alternative representations of in-stream habitat and characterize

spatial patterns of classification uncertainty.

2. Methods

2.1 River2D Hydrodynamic Model

The River2D model used in this study was developed at the University of Alberta

and is freely distributed over the internet (Steffler and Blackburn 2002). Data

requirements include: 1) channel bed topography; 2) an estimate of flow resistance,

expressed in terms of the roughness height ks; 3) parameters describing transverse

eddy viscosity; and 4) boundary conditions, typically an inflow discharge and an

estimated water surface elevation at the lower end of the reach. An important, often

challenging aspect of two-dimensional hydraulic modeling is the generation of a

finite element mesh to discretize the model domain. An iterative computational

scheme is then invoked to obtain steady state solutions of the depth-averaged

governing equations of fluid flow (Miller and Cluer 1998). Flow depth and

downstream and transverse velocity components are estimated at each mesh node

and other quantities can be derived from these basic results (Steffler and Blackburn

2002). This study utilized survey data from a 625 m reach of the Kananaskis River

in Alberta, Canada, distributed with the River2D model; this regulated river is the

site of ongoing research on in-stream flow requirements for habitat maintenance

(Katopodis, 2003). Following the procedure outlined by Blackburn and Steffler

(2002), a hydrodynamic simulation was performed for a typical base flow discharge

of 2 m3/s to obtain estimates of flow depth, velocity magnitude, Froude number,

and shear velocity at each mesh node. These data were then extracted on a 1 m grid

with a total of 12699 nodes.

2.2 Remotely Sensed Data and Image Processing

Airborne imagery of the Lamar River, a fifth-order stream in northeastern

Yellowstone National Park, Wyoming, USA, was acquired by a pair of sensors: the

Probe-1 hyperspectral and ADAR multispectral instruments. This stream has been

the site of prior research into remote mapping of fluvial environments and detailed

descriptions of the study area are provided in Marcus et al. (2003) and Legleiter

(2003). Both data sets featured the fine spatial resolution required for small

mountain streams, but provided different levels of spectral detail and radiometric

precision (Table 1). Whereas the Probe-1 data were acquired on an experimental

basis and are somewhat exceptional for their combination of fine spatial and

spectral resolution, the ADAR instrument is operated commercially and is more

typical of the data that resource managers might obtain in practice.

Given this study’s focus on in-stream habitat, both images were masked to include

only the active channel. The Probe-1 hyperspectral image was transformed using a

common data reduction and noise removal technique - the minimum noise fraction

(MNF; Boardman and Kruse 1994) – prior to image classification. The Probe-1

Lamar River scene was also subdivided into two subsets to contrast different stream

segments: a 245 m-long lower reach and an upper reach approximately 365 m in

length, corresponding to the ADAR image analyzed in this study.

In support of the Probe-1 overflight, a two-person team mapped in-stream habitat

on the Lamar River using the Bisson et al. (1982) classification scheme popular
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among resource management agencies. These field maps consisted of discrete

channel-spanning polygons representing seven classes: eddy drop zones, high- and

low-gradient riffles, glides, runs, rough-water runs, and pools; detailed descriptions

of these units are available in Ladd et al. (1998) and Legleiter et al. (2002). Habitat

units were mapped to hard copies of the imagery to facilitate co-registration and

comparison with image-based classifications (Marcus 2002). Although buffering

habitat polygons can improve classification accuracy by up to 15% (Legleiter et al.

2002, Legleiter 2003), in this study every pixel was assigned to a class to examine the

uncertain transitional zones between adjacent units. Training sites selected from the

field maps were used to produce maximum likelihood supervised classifications

(Richards and Jia 1999) for both the original seven units mapped in the field and a

simplified scheme consisting of eddy drop zones, riffles, a single run/glide category,

and pools. The accuracy of these classifications was assessed using error matrices

(Congalton and Green 1999) and mapped using uncertainty indices (Zhu 1997, 2001).

2.3 Fuzzy Partitions and the Fuzzy c-Means Algorithm

The basic premise of fuzzy set theory is that a space of objects (e.g., the pixels of an

image) can be partitioned into a series of fuzzy sets by assigning to each individual

entity a ‘‘grade of membership’’ (Kandel 1986, p. 3) in each of the sets. These fuzzy

membership values range between 0 (no membership) and 1 (type specimen) and

specify the degree to which each individual can be regarded as belonging to a specific

fuzzy set. Defining the membership functions of fuzzy sets thus takes on critical

importance, and, under the data-driven similarity relation model used in this study,

the value of the membership function depends on the classification method used

(Burrough, 1989).

The fuzzy c-means (FCM) algorithm described by Bezdek et al. (1984) has proven

especially popular and has been used to produce land-cover maps from remotely

sensed data (Zhang and Stuart 2001). The method is based upon the concept of a

fuzzy c-partition U, which subdivides a data set comprised of n observations into

a collection of c(n fuzzy subsets, called clusters. The degree to which the kth

observation is a member of the ith cluster is expressed in terms of a fuzzy

membership value mikg[0,1]. Each individual observation has a membership in each

of the c clusters, with values close to 1 indicating a high degree of similarity between

the observation and the center of a particular cluster. Beginning with a randomly

generated c X n initial partition U0, the FCM algorithm proceeds by minimizing a
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Table 1. Characteristics of the remote sensing instruments used in this study.

Sensor Probe-1 ADAR

Type Hyperspectral Multispectral
Spatial resolution (IFOV) 1 m 0.75 m
Number of bands 60* 4
Spectral range 437.6–1301.7 nm* 450–860 nm
Spectral resolution 16–20 nm 60–110 nm
Radiometric resolution (range) 12 bit (0–4095) 8 bit (0–255)
Image acquisition date August 3, 1999 October 7, 1999

*The Probe-1 instrument actually features 128 bands extending into the shortwave-infrared
portion of the spectrum (2500 nm), but only the first 60 bands were considered in this study
due to the strong absorption of infrared light by a water column (Bukata et al. 1995).

4 C. J. Legleiter and M. F. Goodchild



generalized least-squared error functional

Jm U , vð Þ~
Xn

k~1

Xc

i~1

mikð Þmd2
ik, ð2Þ

where U is the fuzzy c-partition, v denotes a vector of cluster centers in p-

dimensional space (p is the number of variables), m is a weighting exponent that

controls the degree of fuzziness (typically between 1.5 and 3), and dik is the distance

between the kth observation and the ith cluster center. Given values of c and m, the

algorithm iteratively assigns observations to clusters and recalculates cluster centers

until Jm achieves a local minimum (Bezdek 1981, Bezdek et al. 1984).

In this study, the FCM algorithm was implemented in MATLAB using a

Euclidean distance metric. Three data sets, consisting of four variables each, were

used to produce a series of fuzzy partitions: 1) flow depth, velocity magnitude,

Froude number, and shear velocity from the River2D hydrodynamic model of the

Kananaskis River; 2) brightness values in the blue, green, red, and shortwave-

infrared bands of the ADAR imagery of the Lamar River; and 3) the first four

MNF-transformed bands derived from the upper and lower subsets of the Lamar

River Probe-1 scene. All observations (pixels or hydraulic model grid cells) were

input to the FCM algorithm and unsupervised fuzzy classifications were generated

for all combinations of the number of clusters (2(c(10, in increments of 1) and

weighting exponent (1.1(m(2.5, in increments of 0.1), for a total of 135 FCM

classifications of each data set.

2.4 Indices of Cluster Validity

Because the FCM technique will generate a fuzzy partition for any number of

clusters c and any weighting exponent m, each (c, m) pair represents a unique

algorithm. The fuzzy membership values obtained thus depend on the choices of c

and m, but in many cases neither the appropriate number of clusters nor a suitable

weighting exponent is known beforehand (Gath and Geva 1989). Even if there is

some rationale for particular choices of c and m, a means of assessing the quality of

the clusters generated by the FCM algorithm is necessary (Bezdek 1981).

Several decades of research in the fields of pattern recognition and numerical

taxonomy have produced a variety of heuristic indices of cluster validity that can

guide selection of optimal fuzzy c-partitions (Bezdek 1981, Bezdek and Pal 1992, Pal

and Bezdek 1995, Zahid et al. 1999, Halkidi et al. 2001). Some of these criteria utilize

only the final fuzzy c-partition U while other validity functions incorporate the

geometric structure of the original data to identify partitions that consist of compact

(internally cohesive), separate (mutually distinctive) clusters (Gath and Geva 1989,

Zahid et al. 1999). ‘‘Thus, although the environment is fuzzy, the aim of the

classification is generation of well-defined subgroups’’ (Gath and Geva 1989,

p. 774), and the ‘‘most valid’’ c-partition is thus the ‘‘least fuzzy’’ (Bezdek 1981,

p. 98). In the context of natural resource mapping, this basic heuristic is appropriate

because the ambiguity and vagueness of fuzzy classifications are not readily

accommodated by a cartographic legacy devoid of such inexactness (Fisher 1998).

In this study, a collection of eight cluster validity indices (Table 2) were utilized to

evaluate the effects of the c and m parameters, infer an optimal number of in-stream

habitat classes, and determine an appropriate degree of fuzziness. For detailed

descriptions and derivations of these cluster validity criteria the interested reader is
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referred to the original publications; Zahid et al. (1999), Pal and Bezdek (1995), and

Halkidi et al. (2001) provide useful summaries.

2.5 Defuzzification and a-cuts

Although fuzzy clustering provides valuable data on the uncertainty associated with

the assignment of an observation to a class, traditional categorical maps are often
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Table 2. Cluster validity criteria used to evaluate fuzzy classification results obtained using
different numbers of clusters c and various weighting exponents m.

Cluster Validity Criterion
(reference) Summary Description

Partition Coefficient PC
(Bezdek 1981, Bezdek et al.
1984)

The value of PC is inversely proportional to the overall
average overlap between pairs of fuzzy subsets. For c
clusters, 1/c(PC(c)(1 and PC(c)51 implies that the
partition U is a hard (crisp or Boolean) partition.
Conversely, a value of PC(c)51/c implies that U5[1/c] and
that membership is spread evenly over all classes (maximal
fuzziness).

Partition Entropy PE
(Bezdek 1981, Bezdek et al.
1984)

The value of PE is inversely proportional to the degree to
which membership is spread across clusters. For c clusters,
0(PE(c)(log(c), with PE(c)50 indicating a hard partition
and PE(c)5log(c) implying that U5[1/c] such that
membership spread evenly over all classes.

Xie-Beni (1991) cluster
validity function XB

Incorporates both the original data X and the fuzzy
c-partition U. Smaller values of XB indicate a partition with
clusters that are compact and separate from one another.
The optimal c-partition minimizes XB.

Fukuyama-Sugeno cluster
validity function FS
(Zahid et al. 1999)

Combines the FCM functional Jm with a second term
describing the separation between cluster centers and the
overall mean of the data set. Smaller values of FS indicate a
partition with compact, separate clusters, and the optimal
c-partition minimizes FS.

Fuzzy hypervolume FHV
(Gath and Geva 1989)

Calculates a fuzzy covariance for each cluster and computes
the volume of p-dimensional space occupied by these
clusters. Small values of FHV indicate compact clusters and
thus better fuzzy c-partitions.

Average partition density
DPA (Gath and Geva 1989)

Computed using FHV above and the sum of central
members, which takes into account only those data within a
specified statistical distance of the cluster center. A fuzzy
density is calculated for each cluster and then averaged over
all clusters. Higher values of DPA indicate better c-partitions,
and a partition with both dense and loose clusters is
considered good due to the dense substructures.

Partition density PD (Gath
and Geva 1989)

This criterion expresses the overall partition density
according to the intuitive, physical definition of density.
Higher values of PD indicate compact, separate clusters and
better c-partitions.

Separateness-compactness
index SC (Zahid et al. 1999)

This criterion incorporates both the partition U and the data
X using fuzzy union and intersection operations. Higher
values of c indicate good cohesion within clusters and a
small overlap between pairs of clusters; maximizing SC
provides a well-defined fuzzy c-partition.

6 C. J. Legleiter and M. F. Goodchild



required in practice (Zhang and Stuart 2001). Fuzzy membership values quantify the

similarity of the in-stream habitat at each location to each of the clusters, which can

be visualized as a series of fuzzy surfaces. A crisp classification can be derived by

assigning each observation to the cluster in which it exhibits the highest grade of

membership, a process which has been referred to as ‘‘a kind of defuzzification’’

(Zhang and Stuart 2001, p. 182). This simple maximization operation, itself a form

of maximum likelihood classification, was used to obtain crisp classifications of the

remotely sensed data and hydraulic model output. The maximum fuzzy membership

values were also retained as a measure of the association of each pixel with the class

to which it was assigned.

Vector representations were derived following the fuzzy-fuzzy object model

developed by Cheng et al. (2001) for features that have a vague thematic description,

an uncertain spatial extent, and, potentially, some degree of spatial overlap with one

another – an appropriate description of the in-stream habitats mapped in this study.

Boundaries can only be ascribed to fuzzy surfaces to produce discrete objects under

a specific set of conditions, specified as thresholds called a-cuts (Kandel 1986), that

the maximum fuzzy membership value of a pixel must meet or exceed (Cheng et al.

2001). This process has been described as a ‘‘transformation between attribute

uncertainty in the raster domain and boundary uncertainty in the vector domain’’

(Zhang and Stuart 2001, p. 182) and can be used to translate fuzzy surfaces into

categorical maps consisting of objects meeting a predetermined a-level of certainty

separated by gaps representing zones of uncertainty, called epsilon bands (Zhang

and Stuart 2001). In this study, conditional in-stream habitat polygons were derived

from fuzzy classifications by applying a series of a-cuts. The corresponding epsilon

bands provided an indication of the extent, location, and overall abundance of

boundary zones between habitat units.

2.6 Spatial Variability of Classification Uncertainty

For both supervised, crisp classifications and unsupervised, fuzzy clustering of in-

stream habitat, the confidence with which pixels could be assigned to classes was

expected to vary spatially. Indices of classification uncertainty developed in the

context of soil classification (Zhu 1997, 2001) were used to examine these spatial

patterns and identify areas of the channel that were not typical of any single class.

Zhu (2001) draws a distinction between two types of classification uncertainty.

Exaggeration uncertainty describes the error incurred by assuming that an

observation has full membership in a class and quantifies the dissimilarity between

the entity and the class to which it is assigned. Ignorance uncertainty summarizes the

membership values of an entity in the classes other than that to which it has been

assigned and is proportional to the fuzziness of the entity. Classification uncertainty

indices are based upon similarity vectors Ss
c that describe the membership of the

entity at each location s in each of the c classes. For the FCM classifications, fuzzy

membership values provided the similarity vectors, and Zhu’s (2001, p. 341)

procedure was used to calculate similarity vectors for supervised classifications of

the Lamar River Probe-1 scene.

Having obtained similarity vectors, each pixel is assigned to the class to which it is

most similar; this is equivalent to the defuzzification procedure described above and

has also been called ‘‘hardening’’ (Zhu 2001, p. 335). An entropy measure Hs is then
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used to estimate the ignorance uncertainty associated with this hardening:

Hs~{
1

loge c

Xc

i~1

S0
si

� �
loge S0

si
� �� �

, ð3Þ

where i indexes the c classes and S0
si denotes the i

th element of a similarity vector that

is normalized to sum to one. The entropy Hs ranges between 0 and 1, with a value of

0 indicating that the entity at s has full membership in the class to which it was

assigned (zero ignorance uncertainty) and a value of 1 implying that the entity

exhibits an equal degree of membership in all c of the classes (complete ignorance

uncertainty). The exaggeration uncertainty associated with the hardening of a

classification is defined as

Es~ 1{Sg
s

� �
, ð4Þ

where Ss
g is the similarity between the entity at location s and the class g to

which it is assigned. These two indices were computed for each in-channel location

and used to produce maps displaying the spatial variation of classification

uncertainty.

Identifying those areas of the channel where classifications were least certain

could also be used to infer boundaries of variable width (Burrough 1996). To

explore this possibility, the maximum and second highest fuzzy membership values

at each location were compared using difference and ratio forms of Burrough’s

confusion index:

CIdiff~1{ maxfuz{maxfuz2ð Þ or CIratio~maxfuz2=maxfuz:

3. Results

3.1 Crisp, Supervised Classification of In-stream Habitat: Lamar River Probe-1
Scene

Traditional classifications of in-stream habitat were produced by applying a

maximum likelihood procedure to the first ten MNF-transformed bands of the

masked Probe-1 imagery using training data derived from field maps of the Lamar

River. Both 4- and 7-unit classifications were generated, and an accuracy assessment

including all pixels not used as training sites resulted in low overall accuracies of

64.7% and 47.5%, respectively (Table 3). Although Marcus et al. (2003) obtained

85.5% accuracy by applying a 2 m buffer to field map polygons, the reduction in

accuracy incurred when transitional boundary zones between habitat units are not

excluded suggests that conventional image classification procedures might be

inadequate for characterizing the full continuum of fluvial form. Supervised

classifications are only as valid as the training sites from which they are derived, and

sophisticated technology can not resolve the ambiguity among similar in-stream

habitats. Low overall accuracies could thus be the inevitable consequence of

applying a subjective field classification scheme to polythetic natural phenomena

characterized by indeterminate boundaries (Burrough 1996). These complications

render the Boolean, object-based data model inappropriate, and poor accuracies

could result from the inadequacy of the representation rather than a deficiency in

the remotely sensed data or classification algorithm.
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3.2 Fuzzy c-means Classifications

Given these concerns with the crisp field maps and image classifications, a series of

fuzzy classifications were generated using a fuzzy c-means algorithm implemented in

MATLAB. Figure 1 presents an example from the River2D hydraulic model of the

Kananaskis River, illustrating the spatial distribution of fuzzy clusters. In this raster

representation of in-stream habitat, each 1 m2 area of the channel was assigned a

membership value in each of the four clusters, corresponding to the images in
Figure 1. This allowance for partial membership in multiple classes provided a

marked improvement over conventional object-based habitat maps. Rather than

forcing the river continuum into a finite set of rigid classes separated by abrupt

boundaries, these fuzzy partitions enabled a more faithful depiction of gradual

transition zones. The fuzzy clusters illustrated in Figure 1 were spatially continuous,

compact, and hydraulically reasonable. Phase-space plots of modeled flow depth

and velocity (Figure 2) could be used to interpret cluster centers in ecologically

meaningful terms. Similar fuzzy classifications were also produced from the ADAR
multispectral and Probe-1 hyperspectral imagery of the Lamar River.

3.3 Assessment of Cluster Validity

Anticipating the sensitivity of the clustering algorithm to the number of clusters c

and weighting exponent m, FCM classifications of each data set were generated
using various (c, m) combinations and eight cluster validity functions were used to

evaluate the effects of these two parameters (Table 4). Typically, the minimum or
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Table 3. Confusion matrices and accuracy assessment statistics for 4- and 7-unit supervised
maximum likelihood classifications of the Lamar River Probe-1 scene (first ten MNF bands).
Habitat unit abbreviations: EDZ5eddy drop zone; HGR5high-gradient riffle; LGR5low-
gradient riffle; RW run5rough-water run.

Image Classification

Field-Mapped In-Stream Habitat

TotalEDZ Riffle Run/Glide Pool

EDZ 590 710 1798 8 3106
Riffle 57 6940 3710 40 10747
Run/Glide 133 3070 20936 48 24187
Pool 22 2057 4164 496 6739
Total 802 12777 30608 592 44779

Overall Accuracy564.7% (28962/44779); Kappa Coefficient50.3682

Image
Classification

Field-Mapped In-Stream Habitat

TotalEDZ HGR LGR Glide Run RW run Pool

EDZ 586 93 527 794 298 127 9 2434
HGR 14 1057 761 144 393 100 12 2481
LGR 43 823 4387 1929 596 320 26 8124
Glide 93 289 594 7713 1230 416 35 10370
Run 15 273 562 2498 6055 638 46 10087
Rwrun 44 356 1673 1981 1487 1029 24 6594
Pool 7 265 1117 1826 736 298 440 4689
Total 802 3156 9621 16885 10795 2928 592 44779

Overall Accuracy547.5% (21267/44779); Kappa Coefficient50.3465

Alternative representations of in-stream habitat 9



In
te
rn
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
G
e
o
g
ra
p
h
ic
a
l
In
fo
rm

a
ti
o
n
S
c
ie
n
c
e

g
is
5
1
0
6
9
.3
d

1
7
/1
1
/0
4

1
1
:1
5
:0
3

T
h
e
C
h
a
rl
e
s
w
o
rt
h
G
ro
u
p
,
W
a
k
e
fi
e
ld

+
4
4
(0
)1
9
2
4
3
6
9
5
9
8
-
R
e
v
7
.5
1
n
/W

(J
a
n
2
0
2
0
0
3
)

1
0
0
6
5
9

Figure 1. Fuzzy c-means classification of the Kananaskis River derived from the River2D
hydrodynamic model. Transparency of images is scaled to the fuzzy membership value.
Weighting exponent m52.

Figure 2. Phase-space plot of cluster centers from a fuzzy c-means classification of the
River2D hydrodynamic model results (weighting exponent m52). Cluster numbers
correspond to the images in Figure 1.
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maximum of a cluster validity function is assumed to correspond to a ‘‘good’’

partition (Table 2 and references therein), but many of these criteria exhibited

monotonic trends with increasing numbers of clusters (Halkidi et al. 2001); their

asymptotic behavior as mR1 (a hard partition) or as mR‘ (infinitely fuzzy) also

limited the utility of some indices (Pal and Bezdek 1995).

Nevertheless, cluster validity functions can be used to guide selection of c and m

parameters under appropriate circumstances. For example, the separateness-

compactness index SC (Zahid et al. 1999) can be computed for various (c, m)

pairs to produce a three-dimensional surface (left panel, Figure 3). Transects across

this surface can then be used to infer an appropriate level of fuzziness m for a

specified number of clusters or, for a given weighting exponent, to determine an

optimal number of clusters c. In the case of the ADAR imagery, for a four-unit

classification the SC index attains a maximum for the fuzziest possible partition

(m52.5), suggesting that most pixels will have membership values relatively evenly

distributed across the four clusters. For a fixed m value of 2 (the default in many

FCM implementations), SC is maximized for three clusters. Of course these results

are also a function of the input data set, and could be due to insufficient spectral

detail for discriminating among in-stream features (Wright et al. 2000, Legleiter et al.

2002). In practice, cluster validity criteria like the SC index are best used as a guide

to supplement field experience and prior knowledge of the stream under study.

In
te
rn
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
G
e
o
g
ra
p
h
ic
a
l
In
fo
rm

a
ti
o
n
S
c
ie
n
c
e

g
is
5
1
0
6
9
.3
d

1
7
/1
1
/0
4

1
1
:1
5
:0
9

T
h
e
C
h
a
rl
e
s
w
o
rt
h
G
ro
u
p
,
W
a
k
e
fi
e
ld

+
4
4
(0
)1
9
2
4
3
6
9
5
9
8
-
R
e
v
7
.5
1
n
/W

(J
a
n
2
0
2
0
0
3
)

1
0
0
6
5
9

Figure 3. Separateness-compactness cluster validity index (Zahid et al. 1999) for fuzzy c-
means classifications of the Lamar River derived from ADAR multispectral imagery, plotted
as a function of the number of clusters c and the weighting exponent m in the FCM algorithm.
Higher values of the SC index tend to indicate better fuzzy partitions. This criterion can be
used to select an appropriate degree of fuzziness for a specified number of classes (upper right)
or an optimal number of classes for a fixed weighting exponent (lower right).
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3.4 a-Cuts and Classification Hardening

Although fuzzy classifications appeared to provide a more realistic, more uncertain

representation of the fluvial environment, a traditional crisp classification is often

desirable for purposes of display and summary. Fuzzy clustering results were

hardened by assigning each pixel to the cluster in which its membership value was

highest and vector maps preserving the spatial pattern of classification uncertainty

were obtained by applying a-cut thresholds. Only those pixels with maximum fuzzy

membership values exceeding the specified a were retained in these crisp

classifications, and those that did not meet this criterion became gaps (i.e., epsilon

bands) in the hardened image. Figure 4 provides an example from the upper Lamar

River Probe-1 scene, with the width of the epsilon bands clearly increasing for

higher a-levels. Higher a thresholds mandate a greater degree of classification

certainty and areas of the channel that cannot be allocated to any single class with

that level of confidence remain unclassified. A tradeoff must therefore be made

between the certainty with which pixels can be assigned to classes and the

proportion of the channel to be retained in a crisp classification.

This compromise will also depend upon the input data set and the c and m

parameters used in the FCM algorithm. Figure 5 plots the proportion of the channel

that would be excluded from a crisp classification created by applying various a-cut
thresholds to each of the four stream reaches examined in this study. These results

suggest that, for a given a threshold, data acquired by the 4-band ADAR sensor

could be more readily assigned to crisp classes than the Probe-1 hyperspectral

imagery, with the River2D hydraulic model intermediate (Table 5). The contrast

between the upper and lower subsets of the Probe-1 Lamar River scene indicates
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Figure 4. a-cuts and resulting crisp classification of the Lamar River derived from Probe-1
hyperspectral imagery. Portions of the channel with maximum fuzzy membership values less
than a indicate zones of uncertainty. Weighting exponent m51.5.
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that fuzzy c-partitions and derived a-cut classifications are highly site- (and data-)

specific. This observation raises the important point that these numerical procedures

are entirely data-driven and thus highly sensitive to data quality. In the ADAR

scene, for example, the concentrated variability of membership values along shallow

channel margins might have been due to portions of the bank included in the stream

mask. The linear geometry of rivers dictates that a sizable fraction of pixels will be

mixed, particularly for narrow channels or low-flow conditions. Practical
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Figure 5. a-cut comparisons of the four stream segments examined in this study, using fuzzy
c-means classification with 4 clusters and a weighting exponent m of 1.5. These curves
illustrate the proportion of the channel that would be excluded from a crisp classification
created by taking an a-cut at the corresponding maximum fuzzy membership value threshold.

Table 5. Results of defuzzification at different a-cut thresholds for each data set (c54
clusters, weighting exponent m51.5). Table lists the proportion of channel with maximum
fuzzy membership values exceeding the specified a. Those areas excluded from the resulting
crisp classification represent ambiguous, complex, or gradational portions of the channel.

a Cut Threshold River2D Model Probe-1: Upper Probe-1: Lower ADAR

0.75 0.8081 0.7438 0.6156 0.8563
0.8 0.7708 0.6925 0.5394 0.8213
0.85 0.723 0.6272 0.4522 0.7775
0.9 0.6613 0.5413 0.3567 0.7167
0.95 0.5693 0.3907 0.2298 0.6187
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application of fuzzy logic in the context of stream classification thus requires

familiarity with the limitations of the available data.

For a given data set and FCM algorithm (c and m parameters), graphs like

Figure 5 can be used to determine the appropriate a threshold for assigning a user-

specified proportion of the channel to crisp classes. Conversely, given a proportion,

the plot could be used to estimate the level of uncertainty that would be introduced

by allocating that fraction of the channel to discrete classes. Graphs like Figure 5

thus indicate how much of the channel cannot be allocated to any single class at the

specified a level, potentially an important piece of information. These unclassified

areas might contain several habitat types, features unlike those found elsewhere in

the channel, or variability at a scale finer than the spatial resolution of the digital

imagery or finite element mesh. In any case, the heterogeneity, uniqueness, and/or

complexity of these zones of ambiguity make them, in a sense, the most interesting

portion of the stream. From an ecological perspective, these areas might also be the

most valuable, perhaps representing stream segments with a greater diversity of flow

conditions and substrate characteristics. The ability to identify and monitor these

critical habitats thus represents a significant potential advantage of fuzzy

approaches to stream classification.

3.5 Spatial Patterns of Classification Uncertainty

Transitional zones of increased habitat diversity can also be inferred from maps of

classification uncertainty. Crisp, maximum likelihood classifications of the Lamar

River Probe-1 scene, based on the field-mapped in-stream habitats, were used to

calculate Zhu’s (1997, 2001) classification entropy and exaggeration uncertainty

indices (Figure 6). Although the assignment of individual 1 m2 pixels to classes was

a marked improvement over the channel-spanning polygons of the field map, these

results, together with low overall accuracies (Table 3), suggested that a rigid

Boolean model might be inappropriate. Uniformly high exaggeration uncertainty

implied that most pixels were only weakly similar to the class to which they were
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Figure 6. Maximum likelihood supervised classification of the upper reach of the Lamar
River Probe-1 scene and associated spatial patterns of classification uncertainty.
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assigned, and high classification entropy indicated that much of the channel could

be considered a partial member of several habitat types. These results suggested that

constraining the remotely sensed data to a discrete collection of arbitrarily defined

classes and assigning each pixel to only one of these categories failed to fully

capitalize on the information content of the imagery and/or to characterize the full

spectrum of habitat conditions.

Fuzzy classifications allowing for continuous variation of membership among

clusters and across space thus appeared to provide a more realistic representation of

the complex fluvial environment. Burrough’s (1996) observation that boundaries

‘‘concentrate confusion in the smallest zone possible’’ (p. 27) also implied that maps

of classification uncertainty could be used to identify the most ‘‘confused’’ areas of

the channel and, presumably, boundaries among habitat units. An example is given

in Figure 7, where uncertainty indices calculated from a fuzzy classification of the

lower reach of the Lamar River are displayed as three-dimensional surfaces. Those

portions of the channel exhibiting the greatest degree of classification uncertainty

can thus be visualized as topographic highs, whereas areas that could be relatively

confidently assigned to individual clusters appear as valleys. Extending this analogy,

the distinct ridge visible at the lower right of the classification entropy and

exaggeration uncertainty images could be interpreted as a relatively sharp boundary

separating distinctive habitat features. At the upper end of the reach (far upper left

on the images), however, the presence of a high plateau suggests that this zone of

flow convergence could contain a variety of habitat conditions. The degree to which
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Figure 7. Spatial variation of classification uncertainty on the lower reach of the Lamar
River, with areas exhibiting the greatest uncertainty represented by topographic highs. Fuzzy
c-means classification derived from Probe-1 hyperspectral imagery, with c54 clusters and
weighting exponent m51.5. Flow direction is toward the lower right of each image, and the
reach is approximately 245 m long.
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the stream can be bounded thus appeared to be highly spatially variable in its own

right.

For applications where vector-based representations are desired, boundaries

could thus be obtained by isolating high values of these uncertainty measures. An

important advantage of this approach is the allowance for boundaries of variable

width, wider where the environment is more heterogeneous or complex and

narrower where adjacent habitat types are relatively distinct from one another.

Although the mere notion of imposing boundaries on complex natural phenomena

like the Lamar and Kananaskis Rivers introduces a certain degree of subjectivity,

raster-based, fuzzy representations of these phenomena allow these boundaries to be

produced in a defined, internally consistent manner while retaining quantitative

information on the associated uncertainty.

4. Discussion

4.1 Limitations of the Technique

Although a fuzzy representation of in-stream habitat appeared to possess several

important advantages, this approach introduces a unique suite of problems as well.

Foremost among these is that of data quality. The fuzzy c-means algorithm, like any

unsupervised clustering procedure, will be highly sensitive to flaws in the data. For

the ADAR multispectral image examined in this study, the definition of the mask

for the active channel of the Lamar River appeared to be problematic, and the

algorithm, seeking numerical structure rather than physical meaning, highlighted

mixed pixels along the bank rather than habitats within the stream. Any other

sources of error, such as instrument noise, will be transferred to the clustering results

and diminish their interpretability. In this sense, a potential advantage of more

advanced hyperspectral instruments lies in the redundancy of the information they

provide, which allows for noise removal techniques like the MNF transform. In any

case, users must be not just conscientious but paranoid about the data they deliver

to fuzzy clustering algorithms.

Granting that premise, remotely sensed data are perhaps not the ideal tool for

implementing fuzzy classification of in-stream habitats. As Poole et al. (1997) have

emphatically noted, efforts to inventory and monitor streams should be based on

‘‘direct, repeatable, … quantitative measures’’ (p. 879), and remote sensing is, by

definition, not direct. Although previous research has demonstrated the feasibility of

mapping fluvial environments from image data, the underlying physical processes

governing the remotely sensed signal remain poorly understood. The upwelling

spectral radiance from a stream channel is a complex function of depth, surface

turbulence, substrate characteristics, suspended sediment, and perhaps other factors.

Establishing theoretically sound linkages between this integrated spectral response

and ecologically relevant properties of the channel thus becomes a priority for future

research.

Given this inherent limitation of remotely sensed data, the River2D hydro-

dynamic model was perhaps the most useful data set. Though closely linked to the

habitat characteristics of interest, hydraulic modeling is a complicated endeavor in

its own right. Intensive field survey data are required to adequately characterize

channel topography, and the selection of appropriate flow resistance and eddy

viscosity parameters is typically an exercise in trial and error (Miller and Cluer
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1998). Perhaps more importantly if long-term or large-scale management is a

primary objective, modeled reaches are typically less than 100 m in length (Crowder

and Diplas 2000). Ultimately, a combination of fieldwork, modeling, and image

processing will likely prove most powerful.

4.2 Recommendations and Future Research Directions

While remote sensing, hydraulic modeling, and fuzzy logic all have the potential to

advance our understanding of fluvial processes and the aquatic habitat they create,

field work must remain a central component of any stream research program. Fuzzy

classifications of remotely sensed data will achieve their greatest utility when used to

complement ground-based measurement campaigns. Such an effort would be truly

synergistic. Field personnel could provide biologically meaningful interpretations of

the algorithmically generated clusters, with the remotely sensed data being used to

direct efficient sampling strategies. Specifically, maps of classification uncertainty
could be used to identify heterogeneous or complex areas of the channel, which

ground crews could then examine in greater detail. In this manner, intensive

measurements performed at certain critical locations could then be extrapolated

to longer reaches and even entire watersheds on the basis of spectrally-driven

classifications.

The ideas presented here remain in a developmental stage, and additional research

will be required before these techniques can be implemented in practice. If remote

sensing is to become a useful tool for characterizing aquatic habitat, physically-

based models describing the interaction of light with an irregular water surface, an

optically complex water column, and a heterogeneous substrate, must be developed.

Incorporating spatial information is a related goal, and geostatistical methods could

be used to produce continuous maps of depth and substrate characteristics from
ground-based point measurements and remotely sensed data. If accurate estimates

of water depth can be obtained from imagery of sufficient spatial resolution,

remotely sensed data could conceivably act as an input to hydraulic modeling.

5. Conclusion

Dynamic fluvial systems cannot be adequately represented by conventional, object-

based data models and this study presented fuzzy set theory as an alternative to this

rigid framework. We utilized hydrodynamic modeling and remotely sensed data to
explore different methods of characterizing aquatic habitat in the Lamar and

Kananaskis Rivers. These environments are problematic for GIScience due to their

linear geometric configuration, scale-dependent dynamic behavior, closely coupled

physical and biological processes, and by the lack of a widely accepted ontology.

Our comprehensive approach included ground-based mapping, supervised image

classification, fuzzy clustering, and quantitative assessment of both cluster validity

and spatial patterns of classification uncertainty. Introducing these techniques to the

fluvial environment constitutes an innovative application of GIScience and an
advance in stream studies.

Partitions generated by the fuzzy c-means algorithm allowed for partial

membership in multiple classes and gradual transitions between adjacent habitat
types, an important advantage relative to crisp field map polygons and supervised

image classifications. Cluster validity indices can guide selection of an appropriate
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number of clusters and/or degree of fuzziness, but data quality must be a crucial

consideration in any numerical clustering procedure. Crisp, vector representations

can be derived from raster fuzzy classification results by establishing a threshold

maximum membership value. Higher thresholds will result in smaller, more

homogenous conditional objects separated by more extensive zones of ambiguity,

and a compromise must be reached between the proportion of the stream retained in

a crisp classification and the uncertainty involved in assigning pixels to a single class.

Spatial patterns of classification uncertainty highlight ambiguous transitional areas

that might contain a greater diversity of habitat conditions and can be used to infer

natural boundaries of variable width.

At present, because hydrodynamic modeling directly quantifies the flow

conditions determining habitat suitability for various organisms, it is perhaps more

valuable than remotely sensed data for reach-scale studies. The synoptic perspective

afforded by remote sensing constitutes an important advantage, however, and we

suggest that a synergistic combination of field work, modeling, and image

processing will ultimately be most useful. Although the application of these

techniques to in-stream habitat mapping remains in a developmental stage, fuzzy

classification and spatially explicit, quantitative assessment of uncertainty can

be used to provide a more realistic alternative representation of the fluvial

environment.
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