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Further developments of a fuzzy set map comparison 
approach 

Abstract: 

Fuzzy set map comparison offers a novel approach to map comparison (Hagen 2003). The 

approach is specifically aimed at categorical raster maps and applies fuzzy set techniques, 

accounting for fuzziness of location and fuzziness of category, to create a similarity map as well 

as an overall similarity statistic: the Fuzzy Kappa. To date, the calculation of the Fuzzy Kappa (or 

K-fuzzy) has not been formally derived and the documented procedure was only valid for cases 

without fuzziness of category. Furthermore, it required an infinitely large, edgeless map. This 

paper presents the full derivation of the Fuzzy Kappa; the method is now valid for comparisons 

considering fuzziness of both location and category and does not require further assumptions. 

This theoretical completion opens opportunities for use of the technique that surpass the original 

intentions. In particular, the categorical similarity matrix can be applied to highlight or disregard 

differences pertaining to selected categories or groups of categories and to distinguish between 

differences due to omission and commission. 
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1. Introduction 

The methods presented in this paper are in essence an extension to the methods presented in 

(Hagen 2003). That paper introduced a method for comparing categorical maps taking into 

account both proximity relations and the fact that some pairs of categories are more similar than 

others. Proximity relations are generally not taken into account in map comparison methods as 

most methods are based on analysis of the contingency table, which summarizes cell-to-cell 

agreement and disagreement (Foody 2002). The fuzzy set map comparison belongs to a less 

prominent, but growing, tradition of considering geographical coherence in the assessment of 

map similarity. Approaches that do so address the presence and overlap of features (Power et al. 

2002, Remmel & Perera 2002), local composition and configuration (Csillag & Boots 2004), 

apply swap heuristics (Ehlschlager 2000, Fewster & Buckland 2001) or compare maps that are 

rescaled to different resolutions (Costanza 1989, Pontius 2002). The approach in (Hagen 2003) is 

different all together, but takes most after the swap and multi-resolution methods, as differences 

found at a location may be mitigated by categories found in the neighbourhood. 

The current paper has three main parts: in first instance the full derivation of the Fuzzy Kappa is 

introduced. This derivation fills the theoretical gap that remained in the original paper. Next the 

use of the categorical similarity matrix is discussed and applications of the matrix are detailed 

that were not originally intended or documented. The next section demonstrates the advances 

made, by re-examining the datasets of the original paper. All analysis presented in this paper is 

performed using the Map Comparison Kit software, which is freely available on the Internet 

(RIKS 2004).  

2. Full derivation of the Fuzzy Kappa statistic 

In a (crisp) categorical map each cell belongs to one category. In the fuzzy set map comparison, 

an interpretation of the map is made, indicating in the form of a vector how similar the cell is to 
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each of the categories found on the other map. This vector is now called the interpretation vector. 

A cell can be similar to multiple categories at the same time and the sum of all its similarity 

values may be larger than 1. Thus, if we consider similarity to be a degree of belonging, the 

interpretation vector is a fuzzy set (Zadeh, 1965).  

The interpretation vector is based on two ideas, fuzziness of location and fuzziness of category. 

By fuzziness of location is meant that a cell is principally defined by the category found there, but 

to a lesser extent it is also defined by the categories found in its neighbourhood. This means that a 

cell is similar to the categories found in its proximity. By fuzziness of categories is meant that the 

distinction between some categories is not sharp and hence some categories are more akin to each 

other than others. Here the concept of fuzziness is stretched to mean similarity even though that is 

something else. For instance, the categories ‘broad leaved forest’ and ‘pine forest’ are sharply 

distinct, but for many purposes they can be considered similar. 

As the interpretation vector is a fuzzy set, fuzzy set theory becomes available and we could use 

fuzzy similarity measures to express the agreement between the cells at one location in a pair of 

maps. For instance, a typical min-max similarity measure could be applied on the two 

interpretation vectors. This approach is not followed however, because it would introduce an 

unnecessary indirection, as by their definition the interpretation vectors already address similarity 

directly. (It would also be incorrect because the elements in the vectors refer to different 

categories.) Thus, by direct use of the interpretation vectors, two indications for local similarity 

are found; 1) the element of the interpretation vector of the location in the first map that refers to 

the category found in the second map and 2) its counterpart; the element of the interpretation 

vector of the location in the second map, that refers to the category found in the first map. These 

two indications of local similarity are combined into a single similarity value. For this, the fuzzy 

logic AND operation is used. Practically, this means that the local similarity the lesser of the two 

indications of local similarity. 
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Besides similarity per cell, also an overall statistic of agreement is calculated. This statistic is 

called the Fuzzy Kappa, as its definition is analogous to the Kappa statistic. It gives the average 

similarity corrected for similarity to be expected given the total area taken in by each category 

and is based on probability and not fuzzy set theory. The motivation to discount for the expected 

similarity is to prevent the overall similarity statistic from bias towards maps with uneven 

frequency distributions. Another bias, which is not corrected for, is towards maps with 

fragmented landscapes. As maps are more fragmented, neighbourhoods become more diverse and 

thus it becomes more likely to find a ‘mitigating’ category in the neighbourhood. This has the 

consequence that Fuzzy Kappa values for pairs of maps that are highly clustered may be lower 

than intuitively expected, as reported by Wealands et al. (2004) 

The calculation of average and expected similarity is given in the following two sections. 

Subsequently the calculation of the Fuzzy Kappa is detailed. 

1.1. Calculation of the overall similarity 

The raster maps to be compared are not necessarily rectangular and may also contain gaps. 

Moreover, the two maps that are to be compared (map
A
 and map

B
) do not need to cover the exact 

same area, and only for the area they both cover, similarity values are calculated. The non-

overlapping parts of the maps do play a role in the comparison, because these parts influence the 

neighbourhood configuration of cells that are being compared as well as the frequency 

distribution of categories over the maps.  

Thus, we have two sets of locations (for map
A
 and map

B
) lying on a regular grid as expressed 

below: 
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where Vi 
2
 and V

A
i = V

B
i= Vi  i  n. This means that all cells are specified by a row and 

column number and that the locations are sorted to the effect that the first n elements of locs
A
 and 

locs
B
 coincide. The third set of locations, locs, is the intersection of the former two. A local 

similarity will be calculated for all cells present in locs. 

Every cell on map A and B is occupied by one of the categories present in their respective 

legends. Let C
A 

and C
B 

be the sets of categories present in the legends of map
A
 or map

B
. For the 

sake of notational simplicity the cell categories are considered identical to their index number in 

C
A
 and C

B
: 
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where r and s are the number of categories present in the legends of map
A
 and map

B
.  

The functions m
A
 and m

B 
(equation 3) read the category found respectively in map

A
 and map

B
 

given a location. Thus, m
A

l is the category found at location l in map
A
: 
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The comparison of the two maps at a cell is based upon the configuration of the neighbourhood of 

that cell in both maps. The neighbourhood of a cell consists of all cells within a certain distance 

from that cell, including the cell itself. The defining radius is constant over the maps, but not 

necessarily the same for both maps. The neighbourhood configuration of a cell consists of two 

vectors: Vector N contains all the categories found in the neighbourhood. Vector D contains the 

corresponding distances to the central cell of the neighbourhood. The relations are expressed in 

equations (4) and (5) below: 
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where ul and tl are the size of the neighbourhood for map A and B at location l. The size of the 

neighbourhood differs from location to location due to the edges of the map. The first cell in the 

neighbourhood is by definition the central cell, thus d
A

l,1 = d
B

l,1 = 0, n
A

l,1 = m
A

l  and n
B

l,1 = m
B

l. 

The influence of neighbouring locations diminishes with distance according to a function F 

(equation 6). This function is not necessarily the same for both maps, but always returns the value 

1 for the central cell and returns a value between 0 and 1 for all other neighbouring cells, as 

follows: 
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The comparison method also takes into account that some categories found in the legends of 

map
A 

and map
B
 are more similar to each other than others. This is expressed by an index of 

similarity between 0 and 1 for each combination of categories. Categorical similarity is thus 

expressed as matrix M in equation 7: 
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where Mi,j [0,1]  . The row-index of the matrix relates to the categories found in map
A
 and 

the column index to those in map
B
. Categorical similarities are assumed bi-directional, meaning 

that the similarity of category a in map
A
 to category b in map

B
 is identical to that of category b in 

map
B
 to category a in map

A
 and its value is Ma,b. 

For every location two interpretation vectors are calculated, Sl
A
 and Sl

B
. These vectors express for 

both maps how similar that location is to all categories found in the other map. For one category, 
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this equals the maximum contribution to the similarity over all locations in the neighbourhood, 

taking into account both the categorical similarity and the distance decay function. Equation 8 

formulizes this relation: 
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where a and b are indices to C
A
 respectively C

B
.  

Equation 9 calculates the overall similarity of the cell, Sl, by taking the minimum similarity of 

map
A 

to the category found in map
B
 at that location and vice versa: 

  , ,
min ,B A

l l

A B

l l m l m
S sim sim  (9) 

The map similarity is calculated as the average similarity over all cells, as in equation 10: 
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1.2. Calculation of the expected overall similarity  

Equation 11 defines the probability of a cell on map
A
 to be taken in by category a according to the 

frequency of occurrence of a on A:  
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where δx,y = 1 when x = y and 0 otherwise. The p
B

b 's are defined analogously. 

Based on this definition of the probabilities regarding the category occupying a cell in 

map
A 

and map
B
, we can now calculate the expected value of S for the comparison area.  

The local similarity, as expressed in equation 9, only depends upon the neighbourhood 

configuration found in map
A
 and map

B
. Considering that the distance vectors Dl are fixed, then 
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the similarity only depends on the categories found at the different offsets in the neighbourhood. 

This means that, as the number of neighbourhood configurations is limited, the number of 

possible local similarity values is too. The vector Zi contains all possible neighbourhood 

occupancies for cell l (equation 13). The number of possible combinations (z) follows from the 

number of cells in the neighbourhoods (tl and ul) and the number of categories present in the maps 

(r and s) as below: 

 l lt u
z r s   (12) 
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The vectors Pi (equation 14) and Xi (equation 15) give respectively the probability and local 

similarity value that correspond to each neighbourhood configuration. 
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In other words, Pi is the probability distribution of the outcome of the similarity values which are 

in the vector Xi, and thus the expected local similarity can be calculated as the sum product of 

probability and similarity (see equation 16). 
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Equation 17 calculates the expected similarity as the average expected similarity over all cells. 
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The number z can be quite large and for many practical purposes the straightforward 

implementation of the equations presented here will not be possible. Substantial efficiency gains 

in the calculation can be made by taking opportunity of the fact that there are large groups of 

neighbourhood configurations that lead to an identical similarity value. 

1.3. Calculation of the Fuzzy Kappa 

The Fuzzy Kappa is calculated in the same manner as the (crisp) Kappa, as shown in equation 17: 
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The calculation detailed in this paper can be time consuming. An approximation can be made by 

assuming that all offsets found in the neighbourhood are present on the map for all locations. In 

that case the expected value of similarity is constant over the map and thus only needs to be 

calculated once. In practice this means that for equations 13 to 16 the subscript l is cancelled and 

that t = t
max

 and u = u
max

. 

2. Extended application of the categorical similarity matrix 

Hagen (2003) proposed to use the categorical similarity matrix for the purpose of taking into 

account that some categories are more similar to each other than others. When, for instance, the 

categories ‘pine forest’ and ‘broad leafed forest’ are more similar to each other than to the 

categories ‘urban’ and ‘agricultural land’, then the matrix of table 1 may be applied. A second 

example considers categories of an ordinal nature; this example is given in table 2.  

One new use of the category matrix is to temporarily set two or more categories equal. Thus the 

matrix functions as a tool for ‘on the fly’ reclassification. The similarity matrix of table 3 

signifies that the difference between ‘pine forest’ and ‘broad leafed forest’ are ignored in the 

comparison.  
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Another use of the categorical similarity matrix is to assess the similarity of a single category. 

Following Monserud & Leemans (1992) all categories except the category being considered are 

set as being identical to each other. Table 4 gives the similarity matrix for this comparison 

regarding the category ‘Urban’. Comparing maps per category can serve different purposes for 

instance it may be necessary to rank the different categories according to the degree of similarity 

in order to prioritize further actions. Knowing to what extent differences between maps are 

related to individual categories may also help to understand the nature of the differences.  

Applying asymmetrical categorical similarity matrices gives the option to separately consider 

differences due to omission and commission or appearing and disappearing. The terms omission 

and commission have a meaning in the context of accuracy assessment, whereas appearing and 

disappearing relate to comparison of maps for different moments in time. Differences (errors) due 

to commission of a category are locations where the category is placed where it should not be 

(false positives) and differences due to omission are those where the category is not found, but 

where it should be (false negatives). In practical situations the implications of differences due to 

omission and commission may be quite different. For instance, models dedicated to the early 

detection of problem areas (e.g. fire, desertification, pollution) may, under the precautionary 

principle, be used with a high tolerance for errors due to commission and a small tolerance for 

errors due to omission. When used in a later stage (e.g. once resources are being allocated) this 

tolerance may be reversed. The similarity matrix given in table 5 is used to assess the fuzzy 

difference resulting from commission of the category urban (in map
B
 relative to map

A
); this is 

achieved by considering only those cells dissimilar where ‘Urban’ is found in map
B
 and not in 

map
A
. The transposed matrix (table 6) registers differences due to omission instead.  

An asymmetrical categorical similarity matrix can express differences in the weighting of 

omission and commission. The similarity matrix in table 7 gives such a matrix where omission is 

weighted stronger than commission. When exploring differences between two maps, such a 
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setting would rarely have merit, because if omission and commission have a distinct meaning it is 

more worthwhile to consider them in two separate maps than to confound them in a single one. 

However, when applied in an automated procedure, such as the automatic calibration by 

Straatman et al. (2004) it is necessary to express similarity in a single statistic and better results 

may be obtained when different types of error are weighted differently. 

The table may also be used to compare maps with unequal legends. The categorical similarity 

matrix can be either crisp (table 8) or fuzzy (table 9). Finding the appropriate correspondence 

between the two categorical definitions is not a straightforward task and is essentially subjective. 

Fritz and See (2004) developed a methodology to construct a categorical similarity matrix on the 

basis of a questionnaire filled out by experts who judge the similarity from different perspectives. 

3. Results 

To demonstrate the functioning of the different categorical similarity matrices, we apply them on 

the same datasets as Hagen (2003). The first data set is a synthetic one, constructed specifically to 

demonstrate the functioning of the fuzzy set map comparison. 

Comparison of the maps in the synthetic dataset (figure 1) yields the result given in figure 2, 

where grey levels indicate similarity (as in all subsequent greyscale maps). In order to obtain a 

better understanding of the nature of the differences figures 3a to 3d give an oversight of the 

differences per category. Figures 3e to 3h give the differences due to commission (in map
B
 

relative to map
A
) and figure 3i to 3l those due to omission. Table 10 gives the Fuzzy Kappa 

values resulting from the comparison, as well as regular Kappa values calculated according to 

Monserud & Leemans (1992). It becomes clear that by considering proximity the order of the 

categories when sorted according to similarity changes. The similarity matrices that underlie the 

analysis for the whole map (figure 2) and for the category ‘City’ (figures 3b, 3f and 3j) are found 

in tables 11a to 11d. For the other categories the similarity matrices are analogous.  
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The detailed similarity maps and statistics give information that cannot be derived directly from 

figure 2. In particular, we find that, according to table 10, the strongest contribution to the 

difference is made by the presence of ‘River’ in map
B
 where it is not present in map

A
. Observing 

figure 3k it becomes clear that this is explained by the additional branch in the upper left area of 

the map. Furthermore, we learn that the maps are most similar with respect to the ‘City’ category. 

The similarity map of figure 3b clarifies that for this category there is only one cell in the lowest 

class of similarity.  

The second dataset (figure 4) is taken from practice. It consists of a land use map generated by a 

model and another which is considered ‘ground truth’. The particular model is of the Constrained 

Cellular Automata (CCA) type (White et al. 1997) applied for the study of the urban development 

of Dublin, as part of the Moland project (White et al. 2000). Comparison of the two maps yields a 

similarity map (figure 5) and a Fuzzy Kappa of 0.905 which is considered satisfactory, because it 

means that the CCA model outperforms the null-model (Hagen 2003).  

The influence of differences pertaining to the category ‘Road and rail networks and associated 

land’ is considered a disturbance in the comparison, because it signifies a difference in the maps 

that the model is not expected or intended to prevent; The CCA model takes note of roads and 

railways in the calculation of accessibility, but takes them as exogenous input from separate 

network layers and does not predict their development. To investigate the impact of the 

disturbance, the difference with respect to this category is considered by temporarily setting all 

other categories equal to each other. Maybe more significantly, the similarity remaining when 

ignoring this source of difference is calculated, by temporarily setting the category ‘Road and 

rail…’ equal to all other categories. The results (figure 6) indicate that dismissing the contribution 

of ‘Road and rail…’ has a distinct visual impact on the distribution of the differences because the 

dominant linear elements disappear from the similarity map. Thus, we have gained more insight 

into the structure of the original similarity map. Despite the strong visual impact, the overall 
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statistics are hardly affected; at the three-digit accuracy supported by the software, the Fuzzy 

Kappa does not change.  

The categories ‘Residential discontinuous sparse urban fabric’ and ‘Industrial areas’ are of 

particular interest, because the model is aimed at their development and these categories 

displayed a severe change over the model period. Therefore, these two categories are examined 

separately. Considering the category ‘Residential…’ (figure 7) it appears that the differences due 

to omission are more serious than those due to commission. This is an indication that new 

residential cells are too often placed close to existing ones (minor differences due to commission) 

and too few new clusters are generated (major differences due to omission). This confirms the 

notion that, from a modeller’s perspective, correctly ‘seeding’ new urban areas is more difficult 

than ‘growing’ existing areas.  

An automated procedure might take this into account by weighting differences due to commission 

less than those by omission. This would mean that the procedure ‘prefers’ the combination of 

large errors due to commission and small errors of omission over the opposite and would thus 

lead to parameters more aimed at ‘seeding’ than at ‘growing’. Admittedly, this is a speculative 

preposition and future research will need to point out the merit of applying asymmetrical 

similarity matrices in this manner. Figure 8 gives the results of weighting omission respectively 

commission stronger, analogous to table 7 but with 0.8 as the intermediate value. It demonstrates 

that by using different weights, other areas are highlighted as being most dissimilar.  

The observation with regards to ‘Industrial areas’ (figure 9) is similar to that of ‘Residential…’; 

however an additional observation is made here. Specifically in the northern part of the map it 

appears that the spatial distribution of clusters of omission is similar to that of the clusters of 

commission, indicating that although cell-to-cell the maps are clearly different (even when 

applying a tolerance for small spatial differences), the model does capture significant aspects of 

the spatial structure of industrial location.  
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4. Conclusion 

Hagen (2003) offered a promising approach to the comparison of categorical maps taking into 

account fuzziness of location and fuzziness of category. The approach could be considered 

unfinished because it could not be readily applied to all cases for which it was intended. The 

current paper fills the theoretical gap, making it possible to calculate the Fuzzy Kappa for all 

cases.  

Additionally it is pointed out that the similarity matrix has significance beyond the original 

intentions. Not only can the matrix be used to set similarities between categories; additionally, it 

can be used to single out or weigh categories or groups of categories in the comparison; In the 

evaluation of the land use model we disregard differences related to road and rail, not because 

this category is similar or identical to others, but instead because we consider this type of 

difference not relevant to our analysis. 

Also the distinction between differences due to omission and commission can be investigated via 

the similarity matrix. Thus, the fuzzy set map comparison not only offers insight into the severity 

and spatial distribution of differences, but also the nature of these differences.  

The similarity matrix offers a practically unlimited number of comparison settings. There is little 

point in calculating all of these every time a pair of maps is compared. Therefore, the aim of the 

method, as implemented in the Map Comparison Kit, is to illuminate differences and similarities 

found in a pair of maps through interactive, explorative use. It also means that although the 

methods are explicitly defined and repeatable, the idea of objective map comparison is a fiction. 

Comparison is based upon the subjective interpretation of maps, which is expressed firstly by the 

selection of the methodology and secondly by the parameter settings (if any) that are applied. 
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The fact that in the second dataset we recognize structural similarity with regards to industrial 

location and clustering that is not reflected in the statistics makes the case for further research 

towards structure based map comparison. 
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TABLES 

map A ↓: map B→ pine… broad… urban agri… 

pine forest 1 0.5 0 0 

broad leaved forest 0.5 1 0 0 

urban 0 0 1 0 

agricultural land 0 0 0 1 

 Table 1. An example similarity matrix, where pine and broad leaved forest are 

similar to each other. 

 
map A ↓: map B→ high…. medium…. low…  agri… forest 

high density residential 1 0.4 0.2 0 0 

medium density residential 0.4 1 0.4 0 0 

low density residential 0.2 0.4 1 0 0 

agriculture 0 0 0 1 0 

forest 0 0 0 0 1 

Table 2. An example similarity matrix  where, the residential categories have a 

ordinal relation 

 
map A ↓: map B→ pine… broad… urban agri…  

pine forest 1 1 0 0 

broad leaved forest 1 1 0 0 

urban 0 0 1 0 

agricultural land 0 0 0 1 

 Table 3. An example similarity matrix, where pine and broad leaved forest are 

considered equal in the comparison 

 
map A ↓: map B→ pine… broad… urban agri…  

pine forest 1 1 0 1 

broad leaved forest 1 1 0 1 

urban 0 0 1 0 

agricultural land 1 1 0 1 

 Table 4. An example similarity matrix, where the category urban is considered 

separately. 

 
map A ↓: map B→ pine… broad… urban agri…  

pine forest 1 1 0 1 

broad leaved forest 1 1 0 1 

urban 1 1 1 1 

agricultural land 1 1 0 1 

Table 5. An example similarity matrix, where only commission of the category urban 

is considered 
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map A ↓: map B→ pine… broad… urban agri…  

pine forest 1 1 1 1 

broad leaved forest 1 1 1 1 

urban 0 0 1 0 

agricultural land 1 1 1 1 

Table 6. Example similarity matrix, where only omission of the category urban is 

considered  
 
map A ↓: map B→ pine… broad… urban agri…  

pine forest 1 1 0.5 1 

broad leaved forest 1 1 0.5 1 

urban 0 0 1 0 

agricultural land 1 1 0.5 1 

Table 7. An example similarity matrix, where only the category urban is considered 

and omission weights stronger than commission  
 
map A ↓: 

map B→ 

high dens. 

residential 

medium dens. 

residential 

low dens. 

residential 

agriculture forest 

pine forest 0 0 0 0 1 

broad leaved 

forest 

0 0 0 0 1 

urban 1 1 1 0 0 

agricultural 

land 

0 0 0 1 0 

Table 8. An example similarity matrix for the comparison of two maps with non-

identical legends and a crisp translation key 

 
map A ↓: map 

B→ 

high dens. 

residential 

medium dens. 

residential 

low dens. 

residential 

agriculture forest 

pine forest 0 0 0 0.3 1 

broad leaved 

forest 

0 0 0 0 1 

urban 1 1 1 0 0 

agricultural 

land 

0 0 0.5 1 0 

Table 9. An example similarity matrix, for the comparison  of two maps with non-

identical legends and a fuzzy translation key. In this example the distinction between 

‘low density residential’ and ‘agricultural land’ cannot always be made and the 

definition of ‘pine forest’ in map A partially overlaps ‘agriculture’ in map B. 

 

A↓B→ 
Overall similarity 

(Fuzzy Kappa) 

Disappearance 

(Fuzzy Kappa) 

Appearance 

(Fuzzy Kappa) 

Overall similarity 

(Kappa) 

Open 0.366 0.355 0.379 0.380 

City 0.616 0.592 0.644 0.556 

River 0.399 0.461 0.344 0.332 

Park 0.485 0.544 0.446 0.184 

Table 10. Per category comparison results 

 



 -20- 

A↓B→ Open City River Park 

Open 1 0 0 0 

City 0 1 0 0 

River 0 0 1 0 

Park 0 0 0 1 

Table 11a. Similarity matrix underlying 

results in figure 2 

A↓B→ Open City River Park 

Open 1 0 1 1 

City 0 1 0 0 

River 1 0 1 1 

Park 1 0 1 1 

Table 11b. Similarity matrix underlying 

results in figure 3b 
A↓B→ Open City River Park 

Open 1 1 1 1 

City 0 1 0 0 

River 1 1 1 1 

Park 1 1 1 1 

Table 11c. Similarity matrix underlying 

results in figure 3f 

A↓B→ Open City River Park 

Open 1 0 1 1 

City 1 1 1 1 

River 1 0 1 1 

Park 1 0 1 1 

Table 11d. Similarity matrix underlying 

results in figure 3j 
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COLOR FIGURES 

   
Figure 1a Figure 1b  

Figure 1. Synthetic dataset  

 

 
 

  
Figure 4a Figure 4b 

Figure 4a. Ground truth map of Dublin in 1998 

Figure 4b. Simulated map of Dublin in 1998 
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BW FIGURES 

 

 
Figure 2. Fuzzy similarity, grey levels indicate local similarity, Fuzzy Kappa = 

0.495 

 

 
Figure 5. Fuzzy similarity 

 



 -23- 

 Overall Disappearance Appearance 

‘Open’ 

 
Figure 3a 

 
Figure 3e 

 
Figure 3i 

‘City’ 

 
Figure 3b 

 
Figure 3f 

 
Figure 3j 

‘River’ 

 
Figure 3c 

 
Figure 3g 

 
Figure 3k 

‘Park’ 

 
Figure 3d 

 
Figure3h 

 
Figure 3l 

Figures 3 Disagreement per category and split into disagreement due to appearance 

(omission) and disappearance (commission).  
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Figure 6a Figure 6b 

Figure 6a. Fuzzy similarity of ‘Road and rail networks and associated land’ 

Figure 6b. Fuzzy similarity ignoring ‘Roads and rail networks and associated land’ 

 

   

Figure 7a Figure 7b Figure 7c 

Figure 7. Difference with respect to the category ‘Residential discontinuous sparse 

urban fabric’. Overall (a), Omission (b) and Commission (c) 

  
Figure 8a Figure8b 

Figure 8. Difference with respect to the category ‘Residential discontinuous sparse 

urban fabric’, where omission (a) respectively commission (b) is weighted stronger. 
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Figure 9a Figure 9b Figure 9c 

Figure 9. Difference with respect to category ‘Industrial areas’. Overall (a), 

Omission (b) and Commission (c) 

 

 


