
The GeoViz Toolkit: Using component-oriented coordination
methods for geographic visualization and analysis

Frank Hardisty and Anthony C. Robinson
GeoVISTA Center, Department of Geography, The Pennsylvania State University, University
Park, PA, USA

Dutton e-Education Institute, College of Earth and Mineral Sciences, The Pennsylvania State
University, University Park, PA, USA
Frank Hardisty: hardisty@psu.edu

Abstract
In this paper we present the GeoViz Toolkit, an open-source, internet-delivered program for
geographic visualization and analysis that features a diverse set of software components which can
be flexibly combined by users who do not have programming expertise. The design and
architecture of the GeoViz Toolkit allows us to address three key research challenges in
geovisualization: allowing end users to create their own geovisualization and analysis component
set on-the-fly, integrating geovisualization methods with spatial analysis methods, and making
geovisualization applications sharable between users. Each of these tasks necessitates a robust yet
flexible approach to inter-tool coordination. The coordination strategy we developed for the
GeoViz Toolkit, called Introspective Observer Coordination, leverages and combines key
advances in software engineering from the last decade: automatic introspection of objects,
software design patterns, and reflective invocation of methods.

Keywords
Software design; coordination; geographic visualization

Introduction
The GeoViz Toolkit (GVT) is a geovisualization environment that lets users easily create
and modify custom palettes of coordinated exploratory and analytical tools. GVT users can
build a custom geovisualization application by adding new views interactively, requiring no
understanding of programming languages or technical details. Exploratory views such as
scatter plots, choropleth maps, cartograms, and parallel coordinate plots (as illustrated in
Figure 1), are augmented with spatial statistics tools like a spatial autocorrelation explorer,
and cluster detection methods from Proclude (Conley et al. 2005) to help users develop and
evaluate hypotheses. Behind the scenes, a sophisticated coordination architecture ensures
that views can be added or taken away while retaining datasets, and visual characteristics
like color and classification settings.

In the following sections we describe relevant prior work, the software architecture and
design of the GVT with special attention to the Introspective Observer Coordinator,
advantages that this coordination strategy enables, and an example real-world application
using the GVT. We conclude with thoughts on our future plans for GVT development,
dissemination, and evaluation.

NIH Public Access
Author Manuscript
Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

Published in final edited form as:
Int J Geogr Inf Sci. 2011 January 1; 25(2): 191–210. doi:10.1080/13658810903214203.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Our interest in developing a new, user-friendly geovisualization environment is inspired by a
wide array of previous work to develop geographic visualization and information
visualization systems. Earlier examples of full-featured geovisualization application
development environments include Descartes (Andrienko et al. 1999) and its successor,
CommonGIS (Andrienko et al. 2002), which were designed to automatically suggest tools
and representations based on user tasks and available data, and GeoVISTA Studio which
implements a visual programming interface that allows sophisticated users to assemble
applications using a data-flow paradigm. The GVT project is in large part derived from
Studio. An extension to the GVT designed to support collaboration, called GeoJabber, is
described in a recent paper (Hardisty 2009). A wide range of other geovisualization projects
have included Studio components, including the VIT (Chen 2006) and ESTAT (Robinson
2007a) projects, which contain novel multivariate analysis techniques, as well as the VIS-
STAMP (Guo et al. 2006) and ICEAGE (Guo 2003) projects, which are notable for allowing
interaction with highly multivariate data spaces. These Studio tools were preceded by other
GeoVISTA work on combining statistical and geographic views. (Edsall 1999) The
Improvise system (Weaver 2004) also provides highly-coordinated visualization facilities, as
well as meta-visualization views. The GAV Toolkit (Jern et al. 2007) provides a set of
geovisual analysis tools. The GAV Toolkit’s functions and appearance echo the earlier
systems referenced above. Source code for the GAV Toolkit is currently unavailable for us
to make direct comparisons to the GVT. These environments offer multiple, coordinated
views that feature dynamically-linked interaction behaviors that allow users to highlight,
select, and brush spatio-temporal data. GeoVISTA Studio is an open source toolkit that
provides the means to construct custom geovisualization applications using views and
coordination mechanisms implemented as discrete JavaBeans (Gahegan et al. 2002). In
practice, Studio works best for expert users who have a solid understanding of Java
programming (Gahegan et al. 2008).The GVT is in many ways an evolutionary step beyond
the GeoVISTA Studio application construction environment. The design philosophy for the
GVT was to take the components developed for GeoVISTA Studio and wrap them in a
coordination mechanism that allows non-expert users to simply select the views they desire
and create a custom application.

The aforementioned geovisualization application construction environments draw from
information visualization application construction environments like like the InfoVis Toolkit
(Fekete 2003), the Visualization Toolkit (VTK) (Azevedo et al. 2000), and prefuse (Heer et
al. 2005) provide libraries of ready-to-use components that can be assembled and extended
by software developers. Additional motivation for our work on the GVT is to couple
coordinated, interactive geovisual representations with advanced spatial analysis techniques.
In previous research (our own and completed by others) we have learned that many of the
users who might want to work with geovisualization software would like to see visually-led
exploratory approaches augmented with quantitative spatial analysis methods to confirm or
reject hypotheses they generate (Rinner 2007, Robinson 2007b). We also draw upon related
software development efforts that have successfully coupled interactive geovisual
representations with spatial analysis methods like the Space-Time Analysis of Regional
Systems (STARS) toolkit (Rey et al. 2006) and GeoDA (Anselin et al. 2006).

Common Software Architectures for Geographic and Information Visualization
Environments

Information visualization and EDA strategies rely increasingly on use of two or more
software applications to achieve desired functionality. Examples include the linking of
ArcView® with XGobi (Cook et al. 1997), Snap-together Visualization (North et al. 2000),
and Orca (Sutherland et al. 2000). To be fully effective, these systems need to support
cross-application object selection with linking, and a consistent appearance, as well as

Hardisty and Robinson Page 2

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



linking of statistical attributes (Unwin 1999). This means, for example, that it should be
possible to examine data in a map, a parallel coordinate plot, and a spreadsheet, while
linking important visualization behaviors across program components, even when these
components were developed independently.

Linking and brushing (Joining different views on a set of information by visually
highlighting the same objects on different views) can be traced back to (Fisherkeller et al.
1974) and (Newton 1978). Initial applications to geospatial data were proposed by (Carr et
al. 1987) and (Monmonier 1989) and applied subsequently in many applications, e.g., (Cook
et al. 1996, Dykes 1997, Haug et al. 1997, Andrienko et al. 1999, Andrienko et al. 2007).
These studies provide evidence that coordinated views for information visualization and
query (focused on standard linking and brushing) are effective tools for access and analysis
of complex information (Edsall et al. 2001).

Strategies for visual coordination across applications (as well as views) beyond linking and
brushing have been implemented using a pipeline metaphor in several scientific
visualization packages (e.g. AVS (Advanced Visual Systems)(Homer et al. 1994), IBM Data
Explorer (Abram et al. 1996)). Scientific visualization environments using the pipeline-
based visual programming approach have been applied frequently to exploration of
geospatial data (Treinish 1995, Wood et al. 1997, Gahegan 1998, Masters et al. 2000).
Within scientific visualization, the focus of work on coordination has emphasized the
development of multi-user environments for collaborative work (Brodlie et al. 1998, Watson
2001). A related project, which extends the notion of object-orientation into “actor-oriented”
programming, is Ptolemy (Liu et al. 2003).

Overall, our work is motivated by the need for a system which can bring together novel
geovisualization and spatial analysis methods in a usable manner. The GVT architecture
presented below allows analysts to easily add and subtract components from their analysis
environments, while allowing software developers to easily create or adapt new components.

The “Introspective Observer” Coordination Design of the GeoViz Toolkit
This section describes our approach for extending the potential for coordination among
visual and computational components in a geovisualization environment. As noted above,
the approach builds on earlier work implemented in the Java-based visual programming
environment of GeoVISTA Studio (Gahegan et al. 2002). We begin by describing the basic
features of Introspective Observer Coordination. Next, we describe the coordination
mechanism that supports application construction in GeoVISTA Studio (the
StudioCoordinator) as a basis for comparison against our current work to develop an
improved coordination mechanism for the GeoViz Toolkit. Next, we describe how the
Introspective Observer Coordinator was implemented in the GeoViz Toolkit (the
GvtCoordinator). This is followed by an examination of how these two types of coordinators
perform the crucial task of inter-component registration. Finally, we describe the advantages
(and potential disadvantages) of the GvtCoordinator., compared with the StudioCoordinator.

Introspective Observer Coordination
Introspective Observer Coordination connects components using introspection to determine
at runtime which interfaces and methods each component implements. This information is
used to see if the objects could conform to a particular design pattern (the Observer pattern).
Then, reflective invocation is used to connect the components appropriately. We explain
these terms (introspection, design patterns, the Observer design pattern, and reflective
invocation) below, since they may not be familiar to all readers, and since the concept of
Introspective Observer Coordination is a natural outgrowth of their combination.

Hardisty and Robinson Page 3

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Introspection is the ability to discover information about objects at run-time. For example,
we could ask of any class what its type is, and what the names and types of its properties and
methods are. The ability to conduct introspection on all objects is a distinguishing feature of
modern object-oriented languages like Java and C#. Introspection has been used in many
contexts, such as grid computing (Baduel et al. 2007), automatic software testing (Simons
2007), and computer security (Kassab et al. 1998).

Design patterns describe commonly used combinations of objects, and form a common
vocabulary of programming constructs in an object-oriented context. The most popular
definition of design patterns is given in the seminal book by Gamma et. al: “A design pattern
systematically names, motivates, and explains a general design that addresses a recurring
design problem in object-oriented systems.” (Gamma et al. 1995).Perhaps surprisingly, there
are few descriptions in academic literature of using introspection with design patterns (for
one exception, see (Neumann et al. 2002)).

The Observer design pattern defines a one-to-many dependency between objects so that
when one object changes state, many objects receive notification and are updated
automatically. It relies on Subject (the one) and Observer (the many) interfaces and concrete
classes. The exact relationship and communication mechanism specified by the Observer
pattern is described later in this paper.

Reflective invocation is an extension of the introspection process described above. It means
that automatically discovered fields, methods, and constructors can be programmatically
invoked. In the case of the Introspective Observer Coordination architecture, it means that
the methods conforming to the Observer pattern which were discovered during introspection
are invoked to connect the components.

The Introspective Observer Coordination architecture we have designed and implemented
for the GeoViz Toolkit helps support the following user-centered goals for analytical
geovisualization:

1. End-users should be able to make their own application component sets

2. Geovisualization applications should integrate tightly with spatial analysis methods

3. Geovisualization applications should be easily accessible and sharable between
users

A description of how the Introspective Observer Coordination furthers these goals is
provided in the “Advances and Advantages of the GeoViz Toolkit” section below. First, we
provide a detailed description of what this coordination architecture is.

The GeoViz Toolkit Component-Based Coordinator – GvtCoordinator
The component-based coordinator we have designed for the GeoViz Toolkit coordinates
arbitrary types of events between two or more components. It does so by requesting
registration (and deregistration) of components based on their class information using
introspection. In contrast to the object-oriented Studio coordinator (described below), the
component-based coordinator (the main class for which is the GvtCoordinator) works by
registering objects with each other. Events are then sent from object to object without the
coordinator interceding in any way. The GvtCoordinator relies on introspection to discover
which components should be coordinated and uses reflective invocation to automatically
connect them. It relies on the observer software design pattern to know which components
are listeners, and which are broadcasters. The Java programming language makes available
extensive and automatically derived class metadata available for any object. This enables
meta-programming based on class metadata. For example, we can ask any Java object to

Hardisty and Robinson Page 4

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



report which class defines it. For any class, we can ask what methods, fields, and
constructors that it has. In addition, classes can report the interfaces they implement. These
automatic reporting mechanisms make powerful meta-programming approaches possible,
such as the coordination explained here, the deployment of programs as web services, as
well as incorporation of tools in many other programming contexts (Cazzola et al. 2002).

The Introspective Observer pattern described here brings the advantages of Inversion of
Control (IoC) (Fowler 2004) to multi-component user interfaces. While in procedural
computing, program flow is controlled by a central piece of code, with a central controller
invoking operations on components, using Inversion of Control, control is dispersed to those
components. IoC allows each part of the system can focus on its particular job. The observer
pattern itself enables IoC, while the introspection and reflective invocation parts of the
pattern enable the many couplings necessary for a large set of coordinated components.

Using class metadata queries, whenever an object (for example, geoMapOne) is registered to
an instance of GvtCoordinator, the coordinator examines geoMapOne’s class, GeoMap, for
methods that can add and remove references to interfaces, for example, the
SelectionListener. Then, all previously added components are examined to see if they
implement that interface. If any previously added components do implement this interface,
then Method.invoke() is called using the appropriate object identity reference and
arguments. In this case, the method is addSelectionListener(SelectionListener l) declared by
the class GeoMap, using geoMapOne and the previously added component which
implements SelectionListener as arguments. The presence of these methods indicates that
these components are following the observer software design pattern. After this is done, any
selections created and passed on by geoMapOne will be passed on to the listening object.
Similarly, GeoMap will be queried to see if it implements any interfaces for which
previously-added components have listeners, and geoMapOne will be registered with them
if any are found. Therefore, events such as changes in selections or color choices will be
received by geoMapOne with no user intervention. This registration process is illustrated in
Figure 2, using a generic “Java Bean” nomenclature.

The mechanism outlined above is more complicated than the process implemented in Studio
where each component is simply registered with the coordinator. There is a payoff for this
slightly more difficult process of registration, however. When events are sent, they are sent
directly to the receiving component, with no intercession by the coordinator. In fact, the
coordinator could be removed after registration has occurred, and the components would
function just the same. In a typical analysis session, registration of each component occurs
only once, while hundreds or thousands of events may be coordinated between components.
It makes sense to have the coordinator do a little extra work on set-up to save effort while
the program is running.

The Studio Object-Oriented Coordinator – StudioCoordinator
GeoVISTA Studio (Gahegan et al. 2002) allows fine-grained control and almost limitless
flexibility in how components (implemented as discrete JavaBeans) can be connected, and
therefore coordinated. This begs the question as to why there is the need for an improved
coordinator for the GeoViz Toolkit. One reason is to reduce the burden on the application
designer. If we have 15 components in a design, and each one can coordinate in 6 ways, then
we will need 15 * 6 * 2 = 180 links for bi-directional association. Considering that in Studio
one must use a GUI and make connection choices upon making each link, the process is
tedious and time consuming. It is desirable to develop a coordinating component that does
some of the wiring automatically. In general a coordinator simplifies an application design,
even one with only a few components. Since the number of connections expands

Hardisty and Robinson Page 5

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



exponentially with the number of coordinated components, this advantage can be substantial
for designs with many components.

The basic design of the object-oriented coordinator used in Studio is that of a multi-caster;
coordination events are fired by objects being coordinated, intercepted by the coordinator,
and then sent by the coordinator to all listening objects. A new component is simply added
to a list of components that are being coordinated. This process is illustrated in Figure 3.
One negative consequence of using one master list for all coordination is that as this list
grows, it needs to be traversed an increasing number of times as the number of components
and types of coordinated events grows. For example, the sequence that occurs when a user
initiates a coordinated interaction between two components, a GeoMap and a Scatterplot, is
as follows. First, the two components are added to the coordinator. Next, the Scatterplot
receives an interaction from the user. It passes this information to the coordinator, and the
coordinator fires an event to the GeoMap. Note the “busy” nature of the coordinator during
this sequence: all coordination events are sent by the coordinator. This process is illustrated
in Figure 3, which contrasts the two coordination mechanisms operations during program
use.

Comparing Registration Processes Between the StudioCoordinator and the
GvtCoordinator

The advantage of the component-based approach is shown in Figure 3 which shows the
sequence of a selection change propagated from the GeoMap to the Scatterplot. The user
initiates the change, and the Scatterplot receives it, because it was previously registered with
the GeoMap. Figure 3 also shows the more elaborate process that occurs when the same
sequence happens using the object-oriented StudioCoordinator. The selection change is
initiated by the user, and the GeoMap informs the StudioCoordinator that the selection has
occurred. The StudioCoordinator then rebroadcasts the event to the Scatterplot.

We have placed a few restrictions on the component-based coordination process to improve
its functionality. First, objects are not registered with themselves. Secondly, interfaces
defined in Java packages (grouped classes in a common namespace) that primarily concern
within-object communication, rather than between-object communication, are excluded.
(Packages are groups of related classes such as geovista.geoviz.map or javax.swing.) The
packages currently excluded for this reason are java.awt.event and javax.swing.event. If
these packages are not excluded, then generic low-level mouse clicks and window resizing
events, for example, would be duplicated across objects, which is (usually) undesirable
behavior. Thirdly, the GvtCoordinator restricts itself to discovering public methods only. If
this restriction is removed, then the GvtCoordinator violates Java’s security rules for applets
(web-delivered applications running inside other programs). With this restriction,
GvtCoordinator can operate in applets with no security violations.

Advantages of the Component-Based GvtCoordinator over the Object-Oriented
StudioCoordinator

The component-based GvtCoordinator has four software architectural advantages over the
object-oriented StudioCoordinator, listed here in order of importance.

1. Stable Coordination

2. Stable Clients

3. Runtime Control

4. Granular Control

Hardisty and Robinson Page 6

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Each of these four advantages is explained with the aid of UML diagrams. Each advantage
is explained, and the general relationship to component-based coordination techniques is
identified. We also describe how these software architecture advantages enable visual-
analytical advances in the GeoViz Toolkit.

Stable Coordination
The source code of the GvtCoordinator does not require modification to be extended to a
new type of event. In the object-oriented design of StudioCoordinator, if a new type of
coordination is desired, the source code for the coordinator needs to be changed, and the
class recompiled and redistributed. The GvtCoordinator, by contrast, can work with future
types of coordination that have not been thought of yet, and the GvtCoordinator can work
with them without modification or even re-compilation of the coordinator, as long as the
future coordination types are presented to the coordinator using the same code-naming
patterns. The GvtCoordinator can do this via the automatic introspection mechanisms
mentioned earlier. We can call this the advantage of stable coordination.

The StudioCoordinator has eight event types, and eight corresponding listener lists. If a non-
programmer end- user wanted to add an additional event type to this list, she/he would be
unable to. A programmer would be able to add an event type by modifying the source code,
which makes application extension a non-trivial task. The GvtCoordinator has only two
member variables, a list of firing components, and a list of listening ones. Any new types of
events are automatically discovered and coordinated as long as there are sending and
receiving components for that event type – no modification to source code is required.

Stable Clients
The stable client advantage is that the coordinated objects do not need to be modified if
events are modified or extended. In the object-oriented design, if a new type of event were
used, clients would not be able to handle them without their source code being modified.
Because events are passed directly from client to client using the component-based
GvtCoordinator, the events themselves can be extended or otherwise modified without
changing old clients or the coordinator. For example we could change the selection event to
extend what a selection means from a single subset to multiple subsets with attached authors
(i.e., to support multi-user interaction with a display). As another example, we could change
the indication event, which is a transient selection of just one observation, to include all
items in the class of the indicated observation. In both cases, neither the old clients nor the
coordination manager would need to be modified. We call this the advantage of stable
clients.

This advantage is a function of stable coordination, and stems from similar design
considerations. Classes that are coordinated by the StudioCoordinator have a dependency on
StudioCoordinatorClientListener, which specifies which events to listen for. Classes that are
coordinated by GvtCoordinator also have dependencies, however these dependencies are not
directly tied to the coordinator. The clients of StudioCoordinator, in addition to the
coordinator itself, depend on the interface StudioCoordinatorClientListener. In order to add
a new event type to those being coordinated this interface must be extended, and the source
code of all clients changed. If we hypothesize that we would like our components to start
coordinating conditioning, which enables filtering by a variable, then those clients would
need to have their source code modified accordingly. However, the other coordination
clients would remain unaffected. In our current toolset, we have sixteen coordinated
components. It would negatively impact program stability to change all of them to add a
single type of coordination to a single client, which would be required if we were using the
StudioCoordinator.

Hardisty and Robinson Page 7

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Both advantages of stable clients and that of a stable coordination derive their stability from
limiting dependencies. Limiting dependencies helps ensure application stability.
Coordination must be performed in a way that does not result in errors that impact effective
user interactions. The more classes the coordinator class depends on, the more likely it is
that the coordinator will break unexpectedly if these classes change.

Limited dependencies make the GvtCoordinator more robust than the object-oriented
StudioCoordinator. The GvtCoordinator has dependencies on only two other classes besides
the core Java libraries. Both of these classes are in the same package (namespace) as the
GvtCoordinator. The object-oriented StudioCoordinator design depends on nine custom
classes and implements a custom interface.

Runtime control
The GvtCoordinator enables end users to modify how components coordinate when users
interact with an application in the GeoViz Toolkit. The StudioCoordinator does not allow
the user any such control without rebuilding the application in the design mode of
GeoVISTA Studio. We can call this the advantage of runtime control.

This advantage reflects one of the primary goals we had in developing the component-based
coordination design for the GVT. With Studio, application end-users do not use or see the
visual programming environment that Studio provides for application designers. But this
means that the application end-user has no way of controlling how components interact at
runtime, because those mechanisms are only available on the visual programming side of the
Studio environment. The GvtCoordinator overcomes this limitation and allows application
end-users to redesign their toolkits on-the-fly.

Granular control
The GvtCoordinator in the GVT allows a fine level of control over how components
interoperate. In the StudioCoordinator, a component connected to the StudioCoordinator
would send and receive all the possible coordinated types of event. The GvtCoordinator
allows individual components to send or not send any combination of potentially
coordinated events. We call this the advantage of granular control.

A graphical user interface supports granular control. This interface allows users to to
connect and disconnect listeners from each other using the GvtCoordinatorGUI. This allows
a user to share some types of events, while excluding others. The StudioCoordinator does
not have this capability, because the linkages between components are defined at compile
time (object-oriented), not run-time (component-based). Granular control is offered by some
other coordination architectures, but they do not as easily allow third-part components to
participate, partially or wholly, in this advantage.

Figure 4 illustrates how granular control can be useful. In this design, there are two instances
of the GeoMap. The two maps are coordinated in their color selection, but not in their data
sources. This allows the user to determine whether patterns evident at one scale are evident
at another. Here, using a bivariate color scheme, we can see that the general patterns of
counties who voted proportionately more heavily for Obama also tended to be those states
with high populations but low areas.

Limitations of Introspective Observer Coordination
There are some limitations of the component-based GvtCoordinator that deserve attention.
Two particularly important limitations are discussed here. First, there is a tendency to pass
references to objects as fields of events, which creates shared references to the objects,

Hardisty and Robinson Page 8

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



which can break encapsulation if internal representations are exposed. Second, components
may become “over-coordinated” if components are broadcasting events with similar effects.

The first limitation stems from the fact that the easiest way to include information in an
event is to add a field that provides access to it. For example, our current SelectionEvent
functions just this way, having a method getSelection() that returns an array of integers,
notated int[] The potential problem is that multiple coordinator clients may acquire a
reference to the same array. Arrays in Java are mutable objects, thus any of the coordinator
clients can change the array, or assign it a null value, potentially breaking the other
coordinator clients. A safer approach would be to impose a rule that events have a method
that returns an Iterator, which is an interface that specifies a means for reading the values of
an array.

Using an Iterator would allow for read-only access to an underlying array. The Iterator
approach would be slower than the unsafe shared array approach, but probably faster than
another safe alternative, which would be returning a “defensive copy” of the array (returning
a copy of an object, to prevent the original from being modified) whenever the field is
accessed.

Another potential limitation of the Introspective Observer Coordination approach is that it
relies on each component sending and receiving the appropriate kinds of events. The default
behavior is to coordinate in all possible ways that the components are capable. This can lead
to an “over-wiring” situation, with more connections than are desired. Events that have
similar meanings are especially problematic, because if a component subscribes to multiple
events with similar meanings, later events will undo or change the effects of the first to
arrive, without the user being aware of what has happened. For example, if a component is
listening for color arrays as well as classes that contain color picking algorithms, one may
interfere with the other. A solution to this is less obvious than to the first problem. One
option may be to have types of coordination assigned to particular types of task, and have
the coordination change to fit the user’s needs (Gahegan 2003).

Although the approach has the limitations outlined here, we believe the Introspective
Observer Coordination based coordination strategy is a sound one and it has demonstrated
to be fairly robust in practice. Next, we elaborate on its advantages are embodied in working
software.

Advances and Advantages of the GeoViz Toolkit
The Introspective Observer Coordination strategy described above pays off in the following
advantages in the GeoViz Toolkit: End users are able to make their own applications,
interactive geovisualizations are tightly integrated with spatial analysis methods, and
geovisualizations are sharable between users. In this section, we describe the above
advantages of the Introspective Observer Coordination strategy along with some additional
advantages of the GeoViz Toolkit that implements it.

The Introspective Observer Coordination strategy allows users to assemble a unique
collection of visualization and spatial analysis tools in a single, tightly coordinated
framework. The GVT advances the state of the art by providing a set of views that can be
added to or taken away from the application using menus and mouseclicks. All data and
representational coordination happens automatically in real-time, so that users can easily
pursue real work. The component-based coordination of the GVT represents a substantial
evolution beyond the visual programming environment of GeoVISTA Studio because allows
application users to work as application designers without knowledge of programming

Hardisty and Robinson Page 9

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



principles or limitations. Simply put, the software makes reasonable decisions about
coordination without requiring user involvement.

The Introspective Observer Coordination strategy also allows for the integration of spatial
analysis methods. Because the strategy is so general, software developers can work on
separate parts of the GeoViz Toolkit environment, and their separate efforts do not conflict
with each other. For example, we have integrated four clustering methods from the Proclude
(Conley et al. 2005) suite of clustering tools into the GeoViz Toolkit. These tools work well
together because they share the Introspective Observer Coordination design method. This
coordination strategy also helps to integrate geovisualization and spatial analysis methods,
because it allows long-running processes to remain connected to the graphical user interface
without preventing interaction. It does this by relying on events for communication, which
facilitates having multiple centers of control. Additionally, the GeoViz Toolkit has explicit
support for spatial topology, spatial extents, and projection information built into the event
communication framework.

Introspective Observer Coordination also allows end-users to create and work with
geovisualizations in an open-source, web-distributable format. By leveraging Java to XML
marshalling tools (XStream (Walnes et al. 2008) in particular), representations of software
components and their relevant states can be turned into XML documents. These documents
can then be stored or shared appropriately. Keeping the software pieces as separate
components makes what could be an unmanageable problem into a tractable one.

The development methodology for the GeoViz Toolkit also incorporates a number of best
practices from open source and commercial software development. These include unit
testing, code coverage, and continuous integration (Cheon and Leavens 2001) (Roubtsov
2001). These techniques can be (and should be) used in concert to improve their
effectiveness.

Finally, we have incorporated tools for importing data from SEERStat (Surveillance
Research Program 2008), as well as other sources. These sources include popular data
formats such as Excel spreadsheets and comma-delimited tables. We have also incorporated
data export facilities, in the hopes that users can perform basic data handling tasks without
having to use a commercial GIS. In the next section we describe how Introspective Observer
Coordination helps enable geovisual analysis.

Exploring the 2008 U.S. Election With the GeoViz Toolkit
We have identified four advantages of the GvtCoordinator – stable coordination, stable
clients, runtime control, and granular control. In the following example, we demonstrate
how these advantages relate to a real world application example. A version of the GeoViz
Toolkit with the election data included is accessible from http://www.geovista.psu.edu/gvt.

To begin, we compiled a dataset of county results for the 2008 U.S. Presidential Election. A
user might wish to explore election results to compare recent results to previous elections
and to evaluate possible relationships to socioeconomic and behavioral covariates. The
initial task in this scenario could involve merging together multiple existing datasets –
something that the GVT handles easily through having registered data sources with the
GvtCoordinator. At the interface level, a user simply clicks on the “Load Data” file menu
option and can choose datasets in common formats like CSV and XLS to merge with a
boundary shapefile. The GVT identifies common keys and merges data sources
automatically, using inner-join, left-hand join, and right-hand join semantics from relational
databases.

Hardisty and Robinson Page 10

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.geovista.psu.edu/gvt


Once the appropriate dataset has been assembled, the GVT lets users add components on the
fly to create an application. The advantage of runtime control allows this capability. There is
no need to select tools and then launch the application – the process occurs in real time and
can involve as many modifications as the user desires. For example, the user may first
choose to add a bivariate choropleth map, a scatter plot, and parallel coordinate plot tool
(Figure 1). After working with the views for awhile, the user may then decide to remove the
parallel coordinate plot and add a table viewer, a histogram tool, and a univariate map
(Figure 5). The coordination design of the GVT ensures that there is no interruption to work
due to changes in the number or types of components.

Let us assume the user would like to explore patterns in both the bivariate map and the
univariate map. The advantage of granular control allows the user to set up different color
and classification schemes for each map, while still maintaining highlight and selection
coordination (Figure 6). If at some point the user decides to synchronize color and
classification schemes between the two maps, they can link them via a context menu.

In this example, the advantages provided by stable coordination and stable clients are less
visible, but remain quite important. These advantages ensure that the application is unlikely
to crash or behave erratically while in use, assuming that the individual components are
stable. Our testing with the default set of components shows that broadcasting selections
remain stable over a period of days, with hundreds of thousands of events generated and
processed. This architecture also allows for the addition of controls for highlighting
behavior, letting the user set the degree of transparency for de-selected items.

Conclusions and Future Work
We suggest that future projects to develop geovisualization tools would benefit from
adopting the approach outlined in this paper. This could be done by designing software in
components that can be separately instantiated, while exposing their behavioral capabilities
by using design patterns. Research and application areas that would be aided by this
approach include geocomputation and data mining, recording analysis sessions, and sharing
analysis sessions or analysis artifacts.

One research area where this architecture is already showing advantages is in the GeoJabber
project, which supports geovisual collaboration (Hardisty 2009). GeoJabber relies on the
GeoViz Toolkit for its user interface, and visualization and analytic functions. The
coordination system described in this paper allows remote collaborators to participate in a
user’s analysis session as additional components, without any fundamental changes in the
system.

The core advance presented here, of using introspection to search for and leverage
commonly used software design patterns, could be extended by using other software design
patterns besides the Observer pattern. Candidates include the Strategy pattern and the Visitor
pattern. The Strategy pattern would allow for a GUI to be automatically generated to apply
alternative algorithms to a common task, such as different clustering methods. The Visitor
pattern would allow arbitrary operations to be performed on sets of objects, for example
adjusting all color schemes in an application to change the saturation of those color schemes.

There is also a need for future research in methods for overcoming the limitations in the
Introspective Observer pattern identified earlier. The two most serious limitations identified
were breaking encapsulation and over-wiring. The problem with breaking encapsulation
might be overcome with adding automatic indirection or to expose deep copies of the data
structures. Over-wiring could be overcome by allowing for different topologies of
coordination (Gahegan 2008). The current coordinator could be described as a complete

Hardisty and Robinson Page 11

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



graph. Limiting the coordination topology to a tree structure might prove useful for tasks
which benefit from a data-flow paradigm. A bipartite coordination graph could aid in
analysis tasks that have distinct sets of tasks, such as sets of visualization tools on the one
hand, and analysis tasks on the other.

A key future means of extending the GeoViz Toolkit will be through the G-EX Portal
(Robinson et al. 2007). The G-EX Portal is a website intended to allow users to upload and
collaborate on geographic analysis sessions. The GVT will leverage the G-EX project in two
primary ways: first, GeoViz Toolkit projects will be exported to the G-EX Portal, allowing
them to be retrieved and worked on later. Second, analysis artifacts such as screen captures
will be published to the G-EX Portal. Conversely, comments created in the G-EX Portal will
be integrated into the projects that the GeoViz Toolkit uses.

The GeoViz Toolkit features advantages for application designers and end-users of
geovisualizations. For designers, the GVT embodies a robust yet flexible software
architecture for coordination that allows novel types of coordination to be added at run-time.
For visualization users, that flexibility and robustness translates into a software package that
contains leading edge geographic visualizations and analysis tools, yet remains usable
without programming expertise.

Acknowledgments
The GeoViz Toolkit relies on the work of numerous developers, designers, documentation creators, and funding
sources. Please see http://code.google.com/p/geoviz/wiki/GeoVizToolkitContributors for a current listing.

This research is supported by the National Visualization and Analytics Center, a U.S. Department of Homeland
Security program operated by the Pacific Northwest National Laboratory (PNNL). PNNL is a U.S. Department of
Energy Office of Science laboratory.

This material is based upon work supported by the National Institutes of Health under Grant # R01 CA95949-01

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the funding agencies.

References
Conley J, Gahegan M, Macgill J. A genetic approach to detecting clusters in point data sets.

Geographical Analysis. 2005; 37:286–314.
Andrienko, G.; Andrienko, N. Knowledge-based visualization to support spatial data mining.

Advances in Intelligent Data Analysis, Proceedings; Springer-Verlag Berlin; Berlin. 1999. p.
149-160.

Andrienko, G.; Andrienko, N. Intelligent support of visual data analysis in Descartes. Proceedings of
the 2nd international symposium on Smart graphics; ACM Press; Hawthorne, New York. 2002. p.
21-26.

Hardisty F. GeoJabber: Enabling Geo-Collaborative Visual Analysis. Cartography and Geographic
Information Science. 2009; 36

Chen, J. Visual Inquiry of Spatio-Temporal Multivariate Patterns; IEEE Symposium on Visual
Analytics Science and Technology (VAST 2006); Baltimore, MD. 2006.

Robinson AC. A design framework exploratory geovisualization in epidemiology. Information
Visualization. 2007a; 6:197–214. [PubMed: 20390052]

Guo D, Chen J, MacEachren AM, Liao K. A Visualization System for Space-Time and Multivariate
Patterns (VIS-STAMP). Ieee Transactions on Visualization and Computer Graphics. 2006;
12:1461–1474. [PubMed: 17073369]

Guo D. Coordinating computational and visual approaches for interactive feature selection and
multivariate clustering. Information Visualization. 2003; 2:232–246.

Hardisty and Robinson Page 12

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://code.google.com/p/geoviz/wiki/GeoVizToolkitContributors


Edsall, R. The Dynamic Parallel Coordinate Plot: Visualizing Multivariate Geographic Data; 19th
International Cartographic Conference; Ottowa, Cannada. 1999.

Weaver, C. Building Highly-Coordinated Visualizations in Improvise; IEEE Symposium on
Information Visualization (InfoVis 2004); 2004. p. 159-166.

Jern, M.; Johansson, S.; Johansson, J.; Franzen, J. The GAV Toolkit for Multiple Linked Views.
Proceedings of the Fifth International Conference on Coordinated and Multiple Views in
Exploratory Visualization; IEEE Computer Society; 2007.

Gahegan M, Takatsuka M, Wheeler M, Hardisty F. Introducing GeoVISTA Studio: an integrated suite
of visualization and computational methods for exploration and knowledge construction in
geography. Computers, Environment and Urban Systems. 2002; 26:267–292.

Gahegan, M.; Hardisty, F.; Demšar, U.; Takatsuka, M. GeoVISTA Studio: Reusability by Design. In:
Hall, GB.; Leahy, MG., editors. Open Source Approaches in Spatial Data Handling. Springer:
2008. p. 201-220.

Fekete, J. The InfoVis Toolkit. 2003 [accessed 20 May 2003 2003]. Available online at:
http://www.lri.fr/~fekete/InfovisToolkit/

Azevedo J, Beires N, Charpentier F, Farrell M, Johnston D, LeFlour E, Micca G, Militello S,
Schroeder K. Multilinguality in voice activated information services: The P502 EURESCOM
project. Speech Communication. 2000; 31:369–379.

Heer, J.; Card, SK.; Landay, JA. prefuse: a toolkit for interactive information visualization.
Proceedings of the SIGCHI conference on Human factors in computing systems; Portland,
Oregon, USA; ACM. 2005.

Rinner C. A geographic visualization approach to multi-criteria evaluation of urban quality of life.
International Journal of Geographical Information Science. 2007; 21:907–919.

Robinson, A. Synthesizing Geovisual Analytic Results; IEEE Visual Analytics, Science and
Technology Conference Doctoral Colloquium; Sacramento, CA. 2007b.

Rey SJ, Janikas MV. STARS: Space-time analysis of regional systems. Geographical Analysis. 2006;
38:67–86.

Anselin L, Syabri I, Kho Y. GeoDa: An introduction to spatial data analysis. Geographical Analysis.
2006; 38:5–22.

Cook D, Symanzik J, Majure JJ, Cressie N. Dynamic graphics in a GIS: More examples using linked
software. Computers & Geosciences. 1997; 23:371–385.

North C, Shneiderman B. Snap-together visualization: can users construct and operate coordinated
visualizations? International Journal of Human-Computer Studies. 2000; 53:715–739.

Sutherland P, Rossini A, Lumley T, Lewin-Koh N, Dickerson J, Cox Z, Cook D. Orca: A visualization
toolkit for high-dimensional data. Journal of Computational and Graphical Statistics. 2000; 9:509–
529.

Unwin A. Requirements for interactive graphics software for exploratory data analysis. Computational
Statistics. 1999; 14:7–22.

Fisherkeller, M.; Friedman, J.; Tukey, J. Prim-9: An Interactive Multidimensional Data Display And
Analysis System. Stanford, California: Stanford Linear Accelerator Center; 1974.

Newton, C. Graphics: from alpha to omega in data analysis. In: Wang, editor. Proc. Symposium on
Graphical Representation of Multivariate Data; Academic Press; 1978. p. 59-92.

Carr DB, Littlefield RJ, Nicholson WL, Littlefield JS. Scatterplot matrix techniques for large n.
Journal of the American Statistical Association. 1987; 82:424–436.

Monmonier M. Geographic Brushing - Enhancing Exploratory Analysis of the Scatterplot Matrix.
Geographical Analysis. 1989; 21:81–84.

Cook D, Majure JJ, Symanzik J, Cressie N. Dynamic graphics in a GIS: Exploring and analyzing
multivariate spatial data using linked software. Computational Statistics. 1996; 11:467–480.

Dykes JA. Exploring spatial data representation with dynamic graphics. Computers & Geosciences.
1997; 23:345–370.

Haug, D.; MacEachren, AM.; Boscoe, FP.; Barnes, D.; Mararra, M.; Polsky, C.; Beedasy, J. GIS/LIS.
Cincinnati, OH: 1997. Implementing exploratory spatial data analysis methods for multivariate
health statistics; p. 205-213.

Hardisty and Robinson Page 13

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.lri.fr/~fekete/InfovisToolkit/


Andrienko G, Andrienko N, Jankowski P, Keim D, Kraak MJ, Maceachren A, Wrobel S. Geovisual
analytics for spatial decision support: Setting the research agenda. International Journal of
Geographical Information Science. 2007; 21:839–857.

Edsall, RM.; MacEachren, AM.; Pickle, L. Case study: design and assessment of an enhanced
geographic information system for exploration of multivariate health statistics; Information
Visualization, 2001. INFOVIS 2001. IEEE Symposium on; 2001. p. 159-162.

Homer PT, Schlichting RD. A Software Platform for Constructing Scientific Applications from
Heterogeneous Resources. Journal of Parallel and Distributed Computing. 1994; 21:301–315.

Abram, G.; Treinish, LA. An Extended Data-Flow Architecture for Data Analysis and Visualization;
IBM Visualization Data Explorer Symposium; San Francisco, CA. 1996.

Treinish LA. Visualization of scattered meterological data. IEEE Computer Graphics & Applications.
1995; 15

Wood, J.; Wright, H.; Brodlie, K. IEEE Visualization'97. Phoenix, AZ, USA: 1997. Collaborative
Visualization.

Gahegan M. Scatterplots and Scenes: Visualization Techniques for Exploratory Spatial Analysis.
Comput. Environ. and Urban Systems. 1998; 22:43–56.

Masters, R.; Edsall, R. Visualization Development Environments. Princeton, New Jersey: 2000.
Interaction Tools to Support Knowledge Discovery: A Case Study Using Data Explorer and Tcl/
Tk.

Brodlie KW, Duce DA, Gallop JR, Wood JD. Distributed Coorperative Visualization. State of the Art
Reports at Eurographics98. 1998:27–50.

Watson, VR. HICSS-34 Minitrack on Collaborative Problem Solving Environments. Maui, Hawaii:
2001. Supporting Scientific Analysis within Collabortive Problem Solving Environments.

Liu J, Eker J, Janneck JW, X L, Lee EA. Actor-Oriented Control System Design: A Responsible
Framework Perspective. IEEE Transactions on Control System Technology. 2003

Baduel L, Baude F, Caromel D. Asynchronous typed object groups for grid programming.
International Journal of Parallel Programming. 2007; 35:573–614.

Simons AJH. JWalk: a tool for lazy, systematic testing of java classes by design introspection and user
interaction. Automated Software Engineering. 2007; 14:369–418.

Kassab LL, Greenwald SJ. Towards formalizing the Java security architecture of JDK 1.2. Computer
Security - Esorics 98. 1998; 1485:191–207.

Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: elements of reusable object-oriented
software. 1995

Neumann, G.; Zdun, U. Pattern-based design and implementation of an XML and RDF parser and
interpreter: A case study. In: Magnusson, B., editor. Ecoop 2002 - Object-Oriented Programming.
2002. p. 392-414.

Cazzola, W.; Ghoneim, A.; Saake, G. Reflective analysis and design for adapting object run-time
behavior. Object-Oriented Information Systems, Proceedings; SPRINGER-VERLAG BERLIN;
Berlin. 2002. p. 242-254.

Fowler, M. Inversion of Control Containers and the Dependency Injection pattern. 2004. Available
online at: http://martinfowler.com/articles/injection.html2009

Gahegan M. Personal Communication. 2003
Walnes, J.; Schaible, J. XStream. 2008 [accessed June 10 2009]. Available online at:

http://xstream.codehaus.org/
Surveillance Research Program N.C.I. SEER*Stat software. 2008. seer.cancer.gov/seerstat6.4.4
Gahegan, M. Coordination Typologies for Geographic Visualization and Analysis. Hardisty, F., editor.

University Park, PA; 2008.
Robinson, A.; Koua, E.; Hardisty, F.; MacEachren, AM. ICA Commission on Visualization and

Virtual Environments Workshop 'From Geovisualization Toward Geovisual Analytics'. Helsiki,
Finland: 2007. The G-EX Portal: Web-based Dissemination of Geovisual Analytic Results.

Hardisty and Robinson Page 14

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://martinfowler.com/articles/injection.html2009
http://xstream.codehaus.org/
http://seer.cancer.gov/seerstat


Figure 1.
A bivariate map, univariate map, scatterplot, parallel coordinate plot, and hisotgram showing
2008 Presidential Election Results in the GVT. The scatterplot and bivariate map show the
percentage of votes for Obama and McCain (blue and red axes, respectively). Program
available at http://www.geovista.psu.edu/gvt, source code available from
http://code.google.com/p/geoviz/.

Hardisty and Robinson Page 15

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.geovista.psu.edu/gvt
http://code.google.com/p/geoviz/


Figure 2.
UML activity diagram comparing the processes of adding a component to the GeoViz
Toolkit component-based coordinator (GvtCoordinator, top) and the Studio object-based
coordinator (StudioCoordinator, bottom)

Hardisty and Robinson Page 16

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
UML Sequence Diagram showing event firing during application use, between the GeoViz
Toolkit component-based coordinator (GvtCoordinator, top) and the Studio object-based
coordinator (StudioCoordinator, bottom). This figure illustrates the run-time advantages of
using introspection and reflective invocation.

Hardisty and Robinson Page 17

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Coordination between two GeoMap instances. The color scheme is coordinated between the
two maps, but the data are not coordinated. This figure illustrates how viewing data at
multiple scales can be coordinated and illustrate each scale.

Hardisty and Robinson Page 18

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
The GVT has been reconfigured on-the-fly to remove the parallel coordinate plot and
scatterplot, and add a table viewer, histogram tool, and univariate map. The table viewer
shows the entire raw dataset. The histogram and univariate map are showing different
representations of the percent of people currently living under the poverty line. Randolph
County, West Virginia is highlighted in each of the views. It has a high percentage of
impoverished residents and McCain won by 14 points.

Hardisty and Robinson Page 19

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
At top left, a univariate map shows the percentage of Catholics by county. At top right a
bivariate map shows the percentage of votes for Obama and McCain. The GVT allows
granular control so that users can set up different representations of their data while still
allowing coordination between views. At bottom, a selection and highlight has been
performed and both maps reflect the change.

Hardisty and Robinson Page 20

Int J Geogr Inf Sci. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


