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Remote-sensing-based drought monitoring methods provide fast and useful informa-
tion for a sustainable management strategy of drought impact over a region. Common
pixel-based monitoring methods are limited in the analysis of the dynamics of this
impact at regional scale. For instance, these hardly allow us to quantify the movement of
drought in space and time and to compare drought with rainfall deficits without losing
the variability of these events within a region. This study proposed an object-based
approach that allowed us to visualize and quantify the spatio-temporal movement of
drought impact on vegetation, called vegetative drought, in a region. The GIS soft-
ware Dynomap was used to extract and track objects. Measures of distance and angle
were used for determining the speed and direction of vegetative drought and rainfall
deficit objects, calculated from the National Oceanic and Atmospheric Administration’s
(NOAA’s) normalized difference vegetation index and rainfall estimates data. The
methods were applied to the two rainy seasons during the drought year 1999 in East
Africa. Results showed that vegetative drought objects moved into the southwestern
direction at an average angle of −138.5◦ during the first season and −144.5◦ during
the second season. The speed of objects varied between 38 km dekad−1 and 185 km
dekad−1 during the first season and between 33 km dekad−1 and 144 km dekad−1

during the second season, reflecting the rate of spread between dekads. Vegetative
drought objects close to rainfall deficit objects showed similar trajectories and some-
times regions overlapped. This indicated that the two events are related. We conclude
that a spatiotemporal relationship existed between the two types of events and that this
could be quantified.

Keywords: drought; trajectories; spatio-temporal objects; spatial data quality; remote
sensing; GIS

1. Introduction

Drought is defined as a period drier than normal conditions. It is a natural and recurrent
phenomenon that affects various regions of the World such as East Africa. In recent years,
geographic information science (GIS) and remote sensing (RS) have played a major role
in studying drought (Mokhtari et al. 2011, Murad and Islam 2011) and its impact on veg-
etation using indices such as the normalized difference vegetation index (NDVI) (Tucker
1979, Davenport and Nickolson 1993, Eklundh 1996, 1998, Nicholson et al. 1999). This
is done on the basis of the primary understanding of vegetative drought as a period during
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1482 C.M. Rulinda et al.

which vegetation health is below normal. In this article, vegetative drought is defined as the
negative departure of the current NDVI values from their corresponding long-term mean
values. As drought develops and intensifies, the impact on vegetation spreads throughout
a region. Analyzing the spatiotemporal movements of vegetative drought can improve our
understanding of the phenomenon and help in planning to reduce its devastating effects.

Issues of geospatial data quality have been addressed, and the vague characterization
of vegetative drought was modeled using a fuzzy classification approach (Rulinda et al.
2012). These advancements allowed us to quantify the dynamics of vegetative drought
with measures of certainties, but without providing an understanding of the spatiotemporal
movement of vegetative drought at a regional scale. Advancements have also been made
during the past years in the development of object-based image analysis (Jong et al. 2001,
Blaschke et al. 2008, Stein et al. 2009, Blaschke 2010, Blaschke et al. 2011, Mokhtari et al.
2011). A major difference between pixel-based and object-based image analyses is that
object-based approaches provide output in the form of thematic maps that are composed of
geographical entities. Relationships between these entities can be quantified and visualized.
Visualization techniques to explore spatial data have been widely discussed (e.g., Kraak
and MacEachren 1999).

In this study, we propose a method to visualize and quantify the spatiotemporal move-
ment of vegetative drought over East Africa using NDVI data. Spatial relationships of
vegetative drought regions with rainfall deficit regions are assessed.

2. Materials and methods

2.1. Study area and period

The study area covers a subset of East Africa including Burundi, Kenya, Rwanda, Tanzania,
and Uganda, as in Rulinda et al. (2012). In this article, the drought year 1999 was analyzed
for the two main rainy seasons. The United Nations International Children’s Emergency
Fund (UNICEF) reported a serious drought that developed in East Africa since early that
year (UNICEF 2000). The Food and Agricultural Organization (FAO) also reported serious
crop failures in several regions of Tanzania in November 1999 (FAO 1999). In Kenya,
significant harvest shortfalls were forecast during the same period in several parts due to
drought, and worsening nutritional conditions were reported in pastoral and agro-pastoral
areas (FAO 1999). During the same period, in Burundi and Rwanda, inadequate rainfall
affected the crops.

2.2. Data and processing

2.2.1. Characterizing vegetative drought

In this study, we used the National Oceanic and Atmospheric Administration’s (NOAA’s)
Advanced Very High Resolution Radiometer- (AVHRR-) derived 10-day (dekad) NDVI
products, processed by the Global Inventory Monitoring and Modeling Systems (GIMMS)
group (Tucker et al. 2005, Pinzón et al. 2005) at the US National Aeronautic Space Agency
(NASA/Goddard Space Flight Center (GSFC)). Data from March to May 1999 and from
October 1999 to January 2000 and their corresponding long-term mean values were used.
The characteristics of these data can be found in Tucker et al. (2005) and Pinzón et al.
(2005). We used the Global Land Cover 2000 (GLC2000) (JRC-GEMU 2000) map to mask
out non-vegetated areas and forests. Three classes according to the GLC2000 Africa-v5-
legend were selected: (7) mosaic forest/croplands, (18) croplands (>50% of pixel area),
and (19) croplands with open woody vegetation.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
2:

22
 1

2 
M

ay
 2

01
6 



International Journal of Geographical Information Science 1483

Vegetative drought was characterized from the difference NDVI images, using a fuzzy
classification in a similar way as in Rulinda et al. (2012). Vegetative drought images, called
vd images, resulting from this classification process, have pixels with d(x) values ranging
between 0 (i.e., no drought membership) and 1 (i.e., full drought membership).

The fuzzy classification results in fuzzy-fuzzy image regions. These are field data mod-
els that do not allow us to quantify certain spatiotemporal relations between different
entities. An object-field data model is then used instead. The object-field is an ontol-
ogy of geographic phenomena that allows to represent and model fuzzy phenomena, as
well as reasoning about them. The fuzzy-fuzzy image regions have two non-overlapping
classes: drought and non-drought, and we are interested in all areas possibly affected by
drought. Hence, the fuzzy-fuzzy image regions are formalized into fuzzy objects with
crisp boundaries, called crisp-fuzzy objects. The formalization process is explained in
Section 2.3.

2.2.2. Characterizing rainfall deficit

To further assess the relationship between vegetative drought and rainfall deficit, rain-
fall estimates (RFE) image data covering the same area in East Africa were used. These
data were obtained from NOAA’s Climate Prediction Center (Xie and Arkin 1997).
Characterisctics of these data can be found in Xie and Arkin (1997). As vegetation health
has a lagged response to rainfall, we have selected an RFE period longer than that for the
NDVI images in order to capture their relationship. Images from January to May and from
September to December 1999 were used. Cumulative RFE values were obtained for each
dekad by adding up values from previous dekads.

RFE anomaly values for each pixel, denoted by ra, were calculated as the difference
between the current RFE and the long-term mean values, denoted by RFE. Values of ra
vary between ×250 and 250 mm. Rainfall deficit values, denoted by rd, were obtained
from ra values by

rd =
{

0 if ra ≥ 0
−ra
2.5 if ra < 0

Values of rd thus vary between 0, no deficit, and 100, maximum deficit. Rainfall deficit
images were used as input to extract and track rainfall deficit objects.

2.3. Extracting objects

In this study, we call an entity the set of interconnected pixels with positive values, and an
object the set of entities linked in time. Cheng et al. (1997) proposed methods to identify
fuzzy objects from field observations. According to their definitions, vegetative drought
entities can be characterized in space as objects with crisp boundaries and fuzzy interiors,
called crisp-fuzzy objects. The formalization approach used in this article for the crisp-
fuzzy object model differs from the one proposed by Cheng et al. (1997). Assuming that
d(x) represents the membership value of grid cell P with respect to vegetative drought
class, and D[P,d] represents the decision function assigning P to a region of vd, we created
conditional boundaries by assigning pixels with d(x) > 0 to the vegetative drought class as
follows:

D[P, d] = 1 if d(x) ≥ 0
D[P, d] = 0 if d(x) = 0
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A similar formalization process is applied to indentify rd entities from rd images.
Assuming that r(x) represents the membership value of grid cell P with respect to rain-
fall deficit class, and D[P,r] represents the decision function assigning P to a region of rd,
we created conditional boundaries by assigning all pixels with r(x) > 0 to the rainfall deficit
class as follows:

D[P, r] = 1 if r(x) ≥ 0
D[P, r] = 0 if r(x) = 0

The prototype Dynomap developed by Turdukulov et al. (2005, 2007) in ENVI/IDL® is
used to extract and visualize the evolution of entities in RS images. Entities are extracted
with the following attributes:

• The time t, representing the image frame, in this case, dekad;
• The entity ID that uniquely identifies an object at time t;
• The support-area, or the spatial coverage of the entity, calculated as in

Equation (5) of Rulinda et al. (2012) and the mean-area of the entity, calculated
as in Equation (7) of Rulinda et al. (2012)

• The centroid, or center of mass of entities are used to visualize the evolution of
objects in space and time. The coordinates of the centroid, Cx and Cy, are calculated
for each entity as in Equations (9) and (10) of Rulinda et al. (2012).

As centroids are given in (x,y) image coordinates, a common linear transforma-
tion is applied as follows: Lat = (Cy) · (Top − Bottom)/(MaxRow + Bottom) and Lon =
(Cx) · (Right − Left)/(MaxCol + Left), where we used the following values: Top = 4.63,
Bottom = −11.77, MaxRow = 224, MaxCol = 179, Right = 41.92 and Left = 28.81.

Due to the spatial distribution of positive rd pixels in some dekadal images, thresh-
old values were chosen to separate the interconnected patches observed on the rd images.
These values were selected manually by selecting the maximum value of pixel that could
visually separate exclusive patches, for each dekad. For the first season, the rd values of
27, 10, 8, 27, 20, 46, 29, and 33 were used for the dekads of Jan I, Jan II, Jan III, Feb I,
Feb II, Feb III, Mar I, and Mar II, respectively. For the second season, the rd values of 2, 6,
11, 22, 7, 68, and 78 were used for Oct I, Oct II, Oct III, Nov I, Nov II, Dec II, and Dec III,
respectively.

2.4. Tracking objects

Dynomap uses the post-processing method originally proposed by Samtaney et al. (1994)
and later modified by Silver and Wang (1996) to track objects. The post-processing method
allows one to handle deformable dynamic phenomena. It can handle objects with crisp
boundaries and fuzzy interiors. After objects are extracted in each image, that is, as entities,
they are grouped to form objects in time using the spatial overlap criterion. Details on the
tracking algorithm can be found in Turdukulov (2006). Uniquely labeled entities, by means
of a set of relations, form a compound entity called an object. Each object has an object
ID that uniquely identifies it. Samtaney et al. (1994) introduced a number of evolutionary
events that describe the creation, continuation, and dissipation of objects, as illustrated in
Figure 1.

When an entity appears in an image, an object is created. Object creation can also result
from the splitting or merging of existing objects at previous time. Splitting and merging
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E1

E4

E2 E3

New object

Object
disappearance

Same object

Dissipation

Dynamic

Creation

Continuation

Entity at time t + 1Entity at time t

Figure 1. Spatiotemporal dynamics of objects represented by uniquely labeled entities E.

happen when there is no minimum overlap allowing to link the image entity at time t to
the one at time t + 1. Objects can dissipate by merging with other objects, resulting in
the creation of a new object. Visualizing centroids rather than the regions of entities in a
3D space–time cube allows one to better understand the movement of objects in a time
series. The size of the centroids can indicate the spatial coverage or the intensity of an
entity K; hence, the evolution of spatial attributes of an object can also be observed in the
3D space–time cube.

Quantifying the spatial relations between entities is important to analyze the move-
ment of an object. Spatiotemporal relations can exist between entities of the same or
different objects. In this study, we first analyzed relations between entities of the same
object. Centroids indicate the core locations of the entities, and the distance d between the
centroids of an entity K1 at time t and an entity K2 at time t + 1 was calculated using
the Haversine formula. This formula gives the great-circle distance between two points on
a surface of a sphere in kilometers (Sinnot 1984). It was used in this study to obtain the
distance d between the Lat and Lon coordinates of the centroids of two entities as

a = sin2

(
�Lat

2

)
+ cos (Lat1) × cos (Lat2) × sin2

(
�Lon

2

)

c = 2 · a tan 2
(√

y,
√

x
)

d = R × c

where �Lat and �Lon are the differences between the Lat and Lon coordinates of the
two centroids, respectively, Lat1 and Lat2 are the latitude of the first and second centroids,
respectively, and R = 6.371 km is the Earth’s radius. The function atan2(y, x) is the angle
in radians between the positive x-axis of a plane and the point given by the coordinates
(x, y) on the plane. The distance between the centroids of entities is hence referred to as
the distance between entities.

The speed v of movement of vegetative drought from time t to time t + 1 was obtained
from the distance divided by the time and expressed in km dekad−1. The direction of move-
ment of a vegetative drought object from time t to time t + 1 was calculated using the angle
θ between the lines defined by the locations of the two centroids of entities K1 and K2 at
time t and t + 1, respectively, and the horizontal axis. It is given in degrees by:

θ (k1, k2) = a tan 2(Cy(K2) − Cy(K1), Cx(K2) − Cx(K1))
180

π
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Values between 0◦ and 90◦ indicate a movement toward East–North; values between
90◦ and 180◦ indicate a movement toward North–West. Values between 0◦ and −90◦ indi-
cate a movement toward East–South, whereas values between −90◦ and −180◦ indicate a
South–West movement.

2.5. Assessing relationship between vd and rd objects

The relationship between vegetative drought and rainfall deficit objects, denoted vd and
rd, respectively, can be assessed qualitatively by visually comparing the trajectories of
both sets of objects and quantitatively by measuring the distances between them, or by
assessing their region overlapping in the space–time cube.

For the visual approach, the Lat and Lon coordinates of objects were plotted separately
per season, and the trajectories were compared. Furthermore, both sets of images were
input into Dynomap, after creating alternated stacked layers in ENVI®, in order to assess
their overlapping. For this study, stacks of 24 layers were created for each season following
the chronological order of image frames. For the first season, the first seven layers are
rainfall deficit images from Jan I to Mar I, followed by an alternance between vegetative
drought images and rainfall deficit images until May III. For the second season, the first
four layers are rainfall deficit images, followed by an alternance between vegetative drought
images and rainfall deficit images until Dec III. The stacked layers ended with three layers
of vegetative drought until Jan III.

For the quantitative approach, the distances d between the centroids of the entities of
selected objects from different sets visually close to each other were calculated.

3. Results

3.1. Vegetative drought objects

The trajectories of all extracted vd objects are shown in Figures 2c and d and 3c and d. For
the first season (Figure 2), 128 vd objects were extracted, whereas for the second season
(Figure 3), 215 vd objects were extracted.

In Figures 2c and d, the existence of the vd object vd1 (in blue) is observed in March
1999, in northern Tanzania. From April onwards, the object shifts toward the south and
its size, that is, support-area, decreases before the object dissipates at the second dekad of
May. A smaller object vd77 (in purple) is observed from April 1999 through the end of
the season in northern Kenya, shifting slightly toward the center. In Figure 2c and d, we
observe a vegetative drought object vd24 (in green) starting in eastern Kenya and shifting
south toward the center of Tanzania. Another vegetative drought object vd115 (in dark
blue) smaller than the first one is also observed in the northeastern part of Kenya from the
end of October to the end of November. These large objects are also shown in Figure 4a
vd1, c vd77, (b) vd24, and (d) vd115.

The change of the size of centroids indicates the change in the support-area or spa-
tial coverage, that is, shrinkage or expansion of the objects. The shifting of the centroids
indicates either that the intensity of the object has moved to another area of the entity, the
entities have shifted, or a combination of the above. In the next section, we analyze these
dynamics.

3.2. Dynamics of vd objects

Distances and angles between the centroids of entities of the same object are calculated.
Object vd1, with a average speed of 185 km dekad−1 moves faster than vd77 with an
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Figure 2. Trajectories of rd objects in (a) 3D space–time cube and (b) 2D along the y-axis (South–
North) and vd objects in (c) 3D space–time cube and (d) 2D along the y-axis (South–North), for the
first season.

Notes: Different colors represent different objects and different sizes represent different values of
support-area of objects. Frame numbers on the time axis represent sequence numbers of dekads.

average speed of 38 km dekad−1 and object vd24 with an average speed of 144 km
dekad−1 moves faster than vd115 with an average speed of 33 km dekad−1. When con-
sidering vd24 at the time interval between the third dekad of October and the first dekad
of November, the speed of movement equals to 674 km dekad−1, whereas from the first to
the second dekad of November it is 33 km dekad−1.

The directions of the movement of vd objects are calculated as angles considering the
locations of the centroids at the appearance and last existence of the object. Object vd1
moved at −124◦, vd77 at −153◦, vd24 at −118◦, and vd115 at −171◦. These values
indicate that vegetative drought, from these four objects, moved into the southwestern
direction from its origin.

3.3. Rainfall deficit objects

Rainfall deficit objects, denoted rd, were extracted from rainfall deficit images. The
locations of the centroids of the largest extracted objects are shown in Figure 2a and
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Figure 3. Trajectories of rd objects in (a) 3D space–time cube and (b) 2D along the y-axis (South–
North) and vd objects in (c) 3D space–time cube and (d) 2D along the y-axis (South–North) for the
second season.

Notes: Different colors represent different objects and different sizes represent different values of
support-area of objects. Frame numbers on the time axis represent sequence numbers of dekads.

b for the first season and in Figure 3a and b for the second season. For the first sea-
son, 38 rd objects were extracted, whereas for the second season, 78 rd objects were
extracted.

Two large rd objects are observed for the first season, and six large objects are
observed for the second season. For the first season, object rd1 is persisting in southeast-
ern Tanzania, whereas object rd8, originating in southern Kenya, moved and persisted in
northern Kenya (Figure 2a and b). During the second season, we observe more objects that
are clustered in southern Tanzania, in Kenya, and in Uganda. These regions coincide with
regions of vegetative drought. These objects also show different spatiotemporal dynamics.
During the first season, we observe two large objects; one starting and ending in south-
eastern Tanzania, whereas the other starts in southern Kenya and ends in northern Kenya.
They both have the same duration; however, one rd2 is more stable (persistent) in space
than rd8.
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3.4. Dynamics of rd objects

Distances and angles between the centroids for each rd were calculated for each sea-
son, respectively. During the first season, object rd1 moved at an average speed of
20 km dekad−1 and 129.76◦, whereas object rd8 moved at an average speed of 76 km
dekad−1 and at an average angle of 102.66◦. For the second season, object rd8 moved at
an average of 77 km dekad−1 and −70.93◦, rd9 at 76 km dekad−1 and 141.78◦, rd10
at 88 km dekad−1 and −27.29◦, rd45 at 78 km dekad−1 and 120.44◦, rd50 at 56 km
dekad−1 and −29.55◦, and rd52 at 29 km dekad−1 and 157◦.

We observe that objects rd1 and rd8 in the first season and objects, rd9, rd45,
and rd52 in the second season moved into the northwestern direction from their origin.
Objects rd8, rd10 and rd50 moved into the southeastern direction from their locations
of origin. Although some objects present the same direction of movement, results must be
interpreted with care along with the speed of movement for a complete understanding.

3.5. Relationship between vd and rd objects

Trajectories of objects are plotted together by season, along the Lat and Lon axes, as shown
in Figures 5 and 6. Note that vd objects are observed from March and October for the first
and second seasons, respectively, and rd objects are observed from January and September
for the first and second seasons, respectively. Hence, we compare the largest objects at
the time of their co-existence. Results show similar trajectories of vd and rd objects,
indicating that persisting rainfall deficit in certain areas have caused vegetative drought.

For the first season (Figure 5), we observe that vd1 trajectory along the Lat direction
is close to rd8, whereas vd77 was closer to rd8 at the first dekad of March and moved
toward rd2. Object vd1 may have been influenced first by rd8 and later on by rd2.
Results indicate that the distance between vd1 and rd8 increased from 298 to 1094 km
through time, whereas between vd1 and rd2, it decreases from 641 to 512 km. This quan-
titatively indicates that vegetative drought object vd1 may have been influenced first by
rd8 and later by rd2. The distance between vd77 and rd8 also decreased from 389 km
to 248 km, showing a dependence between the two objects.

During the second season (Figure 6), we observe that the trajectories of rd10, rd45,
and rd50 objects were closer to the trajectory of vd24 object, whereas the trajectories of
rd9 and rd52 objects were closer to the trajectory of vd115 object. Results show that
distances between vd24 and rd10, vd24 and rd8, vd24 and rd45, vd115 and rd52,
and vd11 and rd9 decreased in time, whereas the distance between vd24 and rd50
increased.

Figure 7 shows trajectories of selected combined vd and rd objects, called rd-vd
objects. The existence of such combined objects show that regions of vd and rd objects
overlap, indicating a spatial relationship between the two events.

4. Discussion

This study indicates the existence of rainfall deficit and vegetative drought events in
the East African region in 1999. A qualitative analysis by visually comparing images to
determine this relation is limited as it can only offer a subjective interpretation, and it
can become time consuming when many images are used, for example, when analyzing
a multiyear drought. Alternative approaches, while providing with quantitative analysis
methods, do not consider the spatial variability of these events in a region of interest.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
2:

22
 1

2 
M

ay
 2

01
6 



International Journal of Geographical Information Science 1491

4

2

0

0

5

10

15

20

25

30

35

40

45
Dekadal interval

Dekadal interval

Ja
n 

l

Ja
n 

ll

Ja
n 

lll

Fe
b 

l

Fe
b 

ll

M
ay

 l

M
ay

 ll

M
ay

 ll
l

A
pr

 l

A
pr

 ll

A
pr

 ll
l

M
ar

 l

M
ar

 ll

M
ar

 ll
l

Fe
b 

lll

La
tit

ud
e

Lo
ng

itu
de

−2

−4

−6

−8

−10

−12

Ja
n 

l

Ja
n 

ll

Ja
n 

lll

Fe
b 

l

Fe
b 

ll

M
ay

 l

M
ay

 ll

M
ay

 ll
l

A
pr

 l

A
pr

 ll

A
pr

 ll
l

M
ar

 l

M
ar

 ll

M
ar

 ll
l

Fe
b 

lll

(b)

(a)

vd77 rd8rd2vd1

Figure 5. (a) Lat and (b) Lon coordinates of rd and vd objects plotted for the first season 1999.

Hence, they cannot propose quantitative ways to analyze their spatiotemporal dynamics
within a region of interest. We propose an object-oriented analysis approach to extract
entities with crisp boundaries and fuzzy (multivalues) interiors. This allows us to capture
the spatiotemporal variability of values within each entity, when compared to features with
crisp (single-valued) interiors. As only one category of an event, either vegetative drought
or cumulative rainfall deficit, is of interest, entities can be extracted on images with crisp
boundaries. The centroids are used to track the trajectory of each object. Dynomap allows
us to select the size of the centroids in regard to one attribute. This approach allows us to
visualize not only the movement of vd or rd objects but also the evolution of the support-
area of these objects. Results indicate that rainfall deficits in East Africa may have caused
vegetative drought in Kenya and Tanzania, as demonstrated by other studies mentioned in
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Figure 6. (a) Lat and (b) Lon coordinates of rd and vd objects plotted for the second season 1999.

Section 2.2. Visually comparing trajectories of both events show that there is a relation
between them.

The use of a membership function allowed us to account for the vague nature of
vegetative drought. Selection of threshold values to limit the class from NDVI anomaly
values, however, remains a challenge. On the one hand, vegetative drought is characterized
from NDVI anomaly values below normal. In many areas, normal conditions generally
mean conditions that do not deviate from long-term averages. However, these averages
themselves can change over time. Results obtained should hence be carefully interpreted,
according to the long-term mean period used. On the other hand, even while considering
that the normal values are unchanged, selecting a value from which a vegetative drought
starts and ends is subjective. Extracting and tracking rd objects presented an additional
challenge of segmentation, as the entities in the images are smoothed, hence spatially more
connected than vd entities. This is caused by the modeled input data: although patches
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Figure 7. Trajectories of selected rd-vd objects in (a) 3D space–time cube and (b) 2D along the
y-axis (South–North), for the first season and in (c) 3D space–time cube and (d) 2D along the y-axis
(South–North) for the second season.

Note: Different colors represent different combined objects and different sizes represent different
values of support-area of objects. Frame numbers on the time axis represent sequence numbers of
dekads.

are visually separable, they are spatially connected with positive rd values pixels. A man-
ual approach has been adopted here. The long-term mean values used to calculate RFE
anomaly images are calculated for the years before 1999. Rainfall anomalies should then
be considered relative to the long-term period used and the process of obtaining rd objects
needs to be further developed.
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The movement of vegetative drought and rainfall deficit were assessed. Quantifying
their movement is a step toward increasing the accuracy of the qualitative assessment.
Although a spatial relationship is observed between the two events, rainfall deficit is an
important but obviously not the only source of vegetative drought. Further studies to under-
stand the spatiotemporal movement of vegetative drought in East Africa can be carried out,
such as by analyzing its possible relationship with El Niño-Southern Oscillation (ENSO)
dynamics (Anyamba and Eastman 1996). Considering their centroids, spatial relationships
can further be quantified for vd and rd objects using available spatial statistical meth-
ods such as using Morans’ I (Moran 1950) and Mantel (Mantel and Valand 1950) tests.
This may in time result in an automatic identification and tracking system that is suited
for inclusion in a GIS. Results from this study are also difficult to validate using ground
collected data due to the large geographical coverage of vegetative drought and its charac-
terization. Other RS data such as that of higher spatial resolution can be used, and results
can be compared for validation.

This method can be integrated into existing early warning systems, allowing for a
more comprehensive monitoring and forecasting of vegetative drought. Further analysis
is recommended to study the sensitivity of this method during other drought years and
other drought-prone regions. This approach can further be developed by selecting for opti-
mized vegetation stress indices, by optimizing the segmentation process of both series of
objects taking into account other information, and by considering the growth cycle of veg-
etation of interest, in order to discriminate vegetation stress areas not caused by rainfall
deficits from vegetative drought. The proposed method can also be adapted to quantify the
spatiotemporal relationships between other natural geographical phenomena.

5. Conclusion

The main conclusion of this study is that object-based methods allow us to assess the tra-
jectory of vegetative drought entities, both visually and quantitatively. Results showed that
more vd and rd objects are observed during the second season 1999 when compared to
the first season. This finding concides with reported literature. The higher number of vd
compared to rd objects may be explained by the small patches of vegetation obtained after
land-use classification. Although different vd objects moved in different directions and at
different speed, large objects persisted in northen Kenya and northen Tanzania during both
seasons. Results also showed that regions where vd are found coincide with those of rd
objects, indicating the existence of a spatial relationship between vegetative drought and
rainfall deficit events. This relationship is further observed with the overlapping of the two
sets of objects. The use of a field-object data model allows us to take into account the
spatial variation of values within each entity, which is crucial in assessing the intensity of
a combined drought and rainfall pattern. Combining mathematical methods with visual-
ization techniques gives a more effective assessment of vegetative drought, measured as
multidimensional data.
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