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Spatiotemporal Scale Dependency and Other Sensitivities 

in Dynamic Land Use Change Simulations 

 

Abstract: This study examines how land use change simulation outcomes can vary based on the 

way the simulation model is applied, attempting to support informed model choices and model 

applications.  This is accomplished through a series of experiments using a hypothetical model 

that represents the basic logic of various cell-based dynamic land use change modeling 

environments.  In the experiments, consideration is given to the sensitivity of the simulation 

results with respect to the following four application specifications: 1) the spatial resolution, 2) 

the temporal resolution, 3) the probability distribution, and 4) the degree of the influence of 

stochastic factors, under multiple growth scenarios.  The experiments show that all four factors, 

particularly the spatiotemporal resolution and the degree to which stochastic factors are involved, 

can generate substantial variation in the simulation model outcomes.  It is also found that the 

magnitude of the variation can be affected by changes in regional growth rates and the level of 

fluctuation, which determine the demand for new development to be allocated over the 

simulation time horizon. 

 

Keywords: Land Use Change, Simulation Modeling, Scale Dependency, Model Sensitivity, Map 

Comparison  
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1. Introduction 

 

Dynamic land use change simulation technology has become more useful and approachable as 

rapid advancement has been made regarding data availability, computing resources, relevant 

knowledge bases, and modeling techniques.  As a result, land use change simulation models have 

been increasingly employed not only in academia for scientific research but also in a variety of 

policy decision-making processes (U.S. Environmental Protection Agency 2000, Verburg et al. 

2004, Iacono et al. 2008).  Furthermore, in recent years, a broad range of planning organizations 

and other government agencies have utilized this technology as an essential tool to generate 

spatially explicit growth forecasts, to conduct impact analysis, and to facilitate participatory 

planning and visioning projects (Couclelis 2005, Deal and Chakraborty 2010, Kim and Hewings 

2011).   

As land use change simulation models have been widely applied, a considerable number 

of studies have synthesized and evaluated these models in many respects, such as regarding their 

theoretical foundations, modeling strategies, and data requirements (see e.g., Wegener 1994, 

Briassoulis 2000, Parker 2003, Verburg et al. 2004, Pontius et al. 2008).  Recent years have also 

witnessed increasing recognition of the importance of model application settings and associated 

model sensitivities (Veldkamp and Lambin 2001, Kok et al. 2001, Veldkamp and Verburg 2004, 

Verburg 2006, Pontius et al. 2007).  For instance, Veldkamp and Fresco (1997) investigate land 

use patterns in Costa Rica at six different geographical scales and find significant scale 

dependence from the analysis based on multiple regression models.  Drawing on their 

applications of the CLUE (Conversion of Land Use and its Effects) framework to three study 

areas (i.e., China, Ecuador and the Atlantic Zone of Costa Rica), Veldkamp et al. (2001) also 
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suggest that spatial resolution of analysis plays a critical role in determining key factors of land 

use changes.  Furthermore, in a study using a cellular automata-based model (i.e., SLEUTH: 

Slope, Land use, Exclusion, Urban extent, Transportation, Hillshade), Jantz and Goetz (2005) 

detect substantial variation of the model’s ability to simulate dynamic land use change processes 

with respect to spatial resolution, while some other studies, such as Kok and Veldkamp (2001), 

report that the influence of spatial extent would be more substantial than that of spatial resolution.   

These studies and other previous research have indeed shed lights on the importance of 

model application settings, particularly spatial scale, in land use change analysis and simulation.  

To further enhance our understanding of complex model behaviors in various application settings, 

this study examines how land use change simulation outcomes can vary based on the way these 

models are applied.  More specifically, it develops a simple, hypothetical simulation model that 

represents the common logic of various dynamic land use change modeling environments and 

conducts a series of experiments to examine the sensitivities of the simulation results with 

respect to the following four application details: 1) the spatial resolution, 2) the temporal 

resolution (i.e., the simulation increment), 3) the probability distribution, and 4) the degree of the 

influence of stochastic factors, under multiple growth scenarios (high vs. low growth rates and 

steady vs. fluctuating growth).  By doing so, the present study attempts to reveal the pattern of 

variation in simulation outcomes due to changes in application settings, so as to facilitate more 

informed and effective use of dynamic land use change simulation technology.     

The remainder of this article is organized as follows.  Section 2 discusses a series of 

important choices to be made in developing and applying dynamic land use change models.  

Then, section 3 provides detailed explanations of the hypothetical model, experimental design, 
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and variation assessment methods used in this study.  The experiment results are presented in 

section 4 and discussed in section 5, followed by a concluding section summarizing the research.           

  

 

2. Key Choices in Land Use Change Modeling & Simulation 

 

Simulation modeling is a useful scientific methodology that enables one to experiment with and 

learn about a system of interest (Frigg and Hartmann 2006).  It is especially valuable if the 

system of interest is very complex and, thus, cannot be experimented with in the real world, as is 

the case for land use change.  Although a simulation model is designed to mimic the behavior of 

a real system, modeling is not a replication of a real system with the same level of complexity.  

Rather, it is a process of simplifying and describing the core nature of the system under various 

constraints, such as limited data availability and the costs of model development, and this 

process always involves a series of choices.   

Land use change simulation modeling is not an exception to these rules.  For instance, to 

develop a land use change model, attention needs to be paid to key drivers and/or constraints 

(e.g., macroeconomic forces, ecological factors, policy influences) of land use change processes.  

In addition, a particular modeling strategy needs to be selected among various available options 

to describe the nature of land use change dynamics.  One could decide to develop a cellular 

automata-type model by characterizing land use change as an ecological diffusion process, while 

others may adopt a microeconomic approach by focusing on land owners’ or developers’ profit 

maximization.   
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The above choices are critical in shaping the overall structure of land use change 

modeling and simulation.  These decisions, however, do not represent all of the choice problems 

involved.  There are many more subsequent details to be decided to put a land use change 

simulation model into operation.  For instance, modelers need to specify the functional forms of 

individual model formulas, to select explanatory variables, and to consider uncertainty factors, 

which are essential for many land use simulation tasks.  Furthermore, they must decide how to 

project the future trajectories of key drivers of land use changes.  If land use change is modeled 

as an allocation of increasing demand for urban land uses, it is necessary to estimate the amount 

of demand for new development in the future.  In addition, if transportation conditions are 

included in the model to reflect the effect of accessibility on land development probabilities, the 

land use change simulation will require projection of dynamic changes in transportation 

networks.  If possible, one may attempt to endogenize such explanatory variables in the model to 

better consider reciprocal interactions between land use and the variables, as these interactions 

are critical in describing the evolution of land use and other key elements of human settlements 

that are systematically connected to each other (Verburg 2006, Kim and Hewings 2011 and 

2012).  If it is difficult to fully incorporate the variables into the modeling environment, the 

projections can be made separately and used as exogenous inputs for the land use change 

simulation.  Different approaches for handling these inputs may generate substantial variation in 

simulation outcomes. 

Another important choice to be made involves the spatiotemporal scale in model 

applications.  As revealed by a considerable number of studies (e.g., Jantz and Goetz 2005, 

Buyantuyev et al. 2010), model behaviors are often sensitive to the spatial unit of analysis, so the 

selection of a spatial resolution needs to be made carefully.  The temporal resolution (i.e., the 
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time increment in simulation) may also be critical in dynamic land use change simulations where 

land use change probabilities can rise and fall dramatically over time.  It needs to be stressed that 

these decisions should be made with consideration of the objective of the modeling/simulation, 

data availability, and many other conditions.  Although a finer spatiotemporal resolution may 

generally be more favorable, a certain scale is not always better than another.  An increase in 

spatiotemporal resolution (i.e., an increase in model complexity), while providing benefits, can 

require a significant amount of additional costs for data collection, calibration, and simulation.   

Understanding how model simulation outcomes can vary based on the choices described 

above is essential for producing better model applications.  An enhanced understanding of 

sensitivities can enable the model developers and users to comprehend various advantages and 

disadvantages of alternative options.  It can also support more appropriate use of simulation 

outputs by recognizing the errors or possible biases involved in the simulation.  The following 

section describes a series of experiments that are conducted to reveal scale dependencies and 

other sensitivities, attempting to support informed model choices and model applications. 

 

 

3. Experiments  

 

Do the choices involved in model development and application affect land use change simulation 

outcomes?  What are important factors generating substantial variation?  Under what 

circumstances can the variation be reduced or amplified?  This study examines these critical 

issues by conducting experiments based upon a hypothetical modeling and simulation 

environment.  Specifically, consideration is given to the variation in simulation outcomes due to 
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the changes in four important model application settings: 1) the spatial resolution, 2) the 

temporal resolution (i.e., the simulation increment), 3) the probability distribution, and 4) the 

degree of the influence of stochastic factors, under multiple growth scenarios, as explained 

below.  

 

3.1. Model  

The experiments utilize a simple, hypothetical simulation model designed to replicate the 

essence of various land use change simulation applications, particularly stochastic cellular 

automata approaches, which have been widely employed for a broad range of land use studies.  

The hypothetical model uses a grid system with the following binary classification of land uses: 

1 indicates developed land cells and 0 undeveloped land areas.  Specifically, as demonstrated in 

figure 1, the grid system is designed such that there is a pre-developed area in the center and 

undeveloped surrounding hinterlands, where future development (i.e., land use changes) can 

occur in the simulation.  For the baseline simulation experiments, a grid system with dimensions 

of 36×36 is adopted, while dimensions of 18×18 and 72×72 are also used to test the effects of the 

spatial resolution on simulation outcomes.   

<< Figure 1 about here >> 

Figure 1. Initial Setup 

Basically, land use changes are characterized here as a demand-driven land development process.  

This process can be described through two distinct steps: 1) estimation of the aggregated demand 

for new development and 2) allocation of the demand within the spatially explicit grid system 

(figure 2).  Regarding the first step, for simplicity, the aggregated demand, )(tD , is assumed to 

be determined exogenously, even though regional growth and, thus, the demand for new 
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development would be influenced by the efficiency of internal land use patterns in reality (White 

and Engelen 2000, Cervero 2001, Kim 2011).  As explained in the next sub-section, each 

exogenous demand structure represents a unique regional growth scenario in the experiments, 

and multiple hypothetical growth scenarios, including a higher growth rate (i.e., a greater level of 

new development to be allocated) and a more fluctuating regional growth trajectory as opposed 

to steady growth, are tested to understand how the model sensitivities can vary under different 

exogenous conditions.   

<< Figure 2 about here >> 

Figure 2. Experimental Simulation Procedures 

The second step (i.e., the spatial allocation of the demand) is accomplished by considering both 

deterministic and stochastic factors, similar to many real land use model applications (see, e.g., 

Wu 2002, De Almeida et al. 2003, Deal and Sun 2006).  The deterministic portion indicates the 

extent to which explanatory variables can describe dynamic land use change processes and can 

be formulated in terms of the development probability using a logistic function that gives a value 

between 0 and 1, as follows:   

 IF )(tNGi U∈    THEN 0=t
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)exp(1

)exp(
t

i

t

it

i
z

z
p

+
=  (1) 

 
εβ +⋅= t

i

t

i Xz
 (2) 

where )(tNG  indicates No Growth areas that cannot be developed in time t due to their current 

state or other constraints (e.g., pre-developed areas or water); t

ip  is the development probability 

of cell i in time t; t

iz  is the cell’s raw development score before being converted into the 
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probability; t

iX  and β  represent a vector of explanatory variables and the column vector of the 

associated parameters, respectively; and ε  is an error term.   

Recent land use change model applications have used a variety of explanatory variables, 

ranging from each cell’s physical, social, and economic conditions to its locational advantages.  

However, the present hypothetical model assumes no ecological or socioeconomic variation 

across cells for simplicity.  Instead, the model takes into account each cell’s proximity to pre-

developed areas in the system, which is widely recognized as an important factor in land 

development in the literature.  More specifically, it utilizes a generalized gravity function to 

calculate the average gravity forces from all pre-developed locations for each cell, as given 

below. 

 ∑
≠









⋅=

tm

ijj ijt

t

i dm
z

,

1ln
1

δ     (3)  

where j denotes developed cells; tm indicates the number of existing developed cells in time t; 

ijd represents the distance between cell i (for which the score is calculated) and the j-th 

developed cell; and δ  is a distance decay rate for the gravity calculation.  Figure 3 shows the 

initial development probability distribution.    

<< Figure 3 about here >> 

Figure 3. Development Probability 

The deterministic portion alone does not fully describe complex patterns of dynamic land use 

changes in reality.  Therefore, land use change models often incorporate stochastic elements by 

employing the well-known Monte Carlo simulation technique or using random number 

generators (see e.g., Wu 2002, Li and Yeh 2002, Soares-Filho et al. 2002, Luijten 2003, Almeida 
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et al. 2008).  The randomized factor contributes to portraying the real irregularity and probable 

future land use patterns given the imperfect explanatory power of the deterministic portion, even 

though the randomness inevitably generates some variation in land use simulation outcomes. 

This common characteristic of many land use change simulations (i.e., the inclusion of a 

stochastic factor) is reflected in the experiments.  The present hypothetical model, however, does 

not simply adopt the Monte Carlo approach or other stochastic features with a fixed range of 

random values.  Instead, it attempts to control the level of the randomized factor relative to the 

deterministic portion in every simulation practice to examine how land use simulation outcomes 

are influenced by the degree to which the stochastic factors are involved in the model.  More 

specifically, in each time increment of the experimental simulations, the following procedures 

are performed to consider the stochastic factors with an appropriate control.    

(1) Calculating t

ip  (i.e., the deterministic portion) for individual cells  

(2) Computing the mean ( t

ip ) and the standard deviation ( )( t

ipσ ) of the { }tip  distribution 

(3) Generating a set of random numbers { }tir  based on a normal distribution 

( ))(, t

i

t

i ppN σαα ⋅⋅ , where α  is a factor introduced to control the relative magnitude of 

the stochastic factor compared to the deterministic portion 

(4) Creating a{ }tit

i rp +  raster surface by combining the deterministic and stochastic portions 

Finally, the demand allocation is completed by identifying specific land cells for new 

development considering both deterministic and stochastic factors, represented by { }tit

i rp + .  As 

mentioned earlier, the amount of new development (i.e., the number of newly developed cells) 

follows the exogenously determined demand for new development, )(tD , in each simulation 

time increment.   
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3.2. Land Use Simulation Experiments 

The hypothetical model presented in the previous section can be used to simulate dynamic land 

use changes for a finite simulation time horizon.  In this study, the model is first employed to 

generate a set of baseline land use simulation outcomes with the following detailed simulation 

setup and a default growth scenario of yeartD /4)( =  in terms of 36×36 cells.   

• Spatial resolution: 36×36 

• Temporal resolution: 2 year increments for a 20-years simulation time horizon (i.e., 

t=2,4,…18,20) 

• Probability distribution: 1=δ  

• Stochastic factor: 1=α  

With the above baseline setting, the model is run 50 times to observe the variation in simulation 

outcomes arising from the same setting (hereafter, single-setting variation).  Basically, this 

single-setting variation originates from the stochastic factor involved in the model.  However, the 

magnitude of the variation can also be influenced by other factors that shape the dynamics of 

land use changes in the simulation.  For this reason, even if the stochastic factor holds constant, 

the single-setting variation can differ in different application settings.   

Then, in addition to the baseline, land use simulations are conducted with eight other 

settings to examine how the model simulation outcomes are influenced by changes in 

spatiotemporal resolution and other application details.  Table 1 presents all of the settings tested 

in this study, along with the application specifications.  Again, in each setup, the model 

simulations are conducted 50 times to observe the single-setting variation in each setting.  
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<< Table 1 about here >> 

Table 1. Experimental Settings 

Finally, to examine how the variation in simulation outcomes can be affected by external 

conditions, particularly the regional demand growth trend, three additional growth scenarios are 

tested in this study.  The growth scenarios (in terms of 36×36 cells) include 

• Default: Constant level of the demand for new development at the rate of θ4)( =tD  

where θ  indicates the time increment in simulation (e.g., 1 year, 2 years, and 4 years) – 

i.e., even distribution of the total 80 cells over the simulation time horizon1  

• Fluctuation: Fluctuating level of the demand with the same total amount as in the Default 

scenario – i.e., ... , 0 , 8 , 0 , 8)( θθ=tD   

• High Growth: Constant level of the demand for new development at the rate of θ8)( =tD  

– i.e., even distribution of the total 160 cells over the simulation time horizon  

• High Growth & Fluctuation: Fluctuating level of the demand with the same total amount 

as in the High Growth scenario – i.e., ... , 0 , 16 , 0 , 16)( θθ=tD   

In summary, nine different simulation settings (i.e., one baseline and eight alternative setups) are 

tested under four different growth scenarios.  The total number of model runs is 1,800, i.e., 9 

(settings) × 4 (growth scenarios) × 50 (model runs).  The following section explains how the 

                                                 
1 In order to be consistent, the number of cells is adjusted depending on the spatial scale used in the 

experiments.  For instance, in the case of the 72×72 scale (i.e., Setting 2. High Resolution), )(tD  is set to 

16/year (i.e., even distribution of the total 320 cells), which is equivalent to four 36×36 cells per year.   
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many land use change simulation outcomes are compared with each other to identify meaningful 

results from the experiments. 

 

3.3. Evaluation Methodology – Comparisons and Variation Measurements 

To systematically assess how the simulation outcomes (i.e., 1,800 maps) differ based on the 

model application settings, an evaluation strategy along with appropriate measurements is 

required.2  In this study, the outcome assessment is accomplished from the following two 

different perspectives: 1) evaluation of the single-setting variation in each group of 50 simulation 

outcomes based on the same simulation setting and 2) evaluation of the cross-setting variation 

across 36 setups (9 settings × 4 growth scenarios). 

 

3.3.1. Single-setting Variation  

To measure single-setting variation, this study employs some map comparison methods.  The 

most comprehensive approach for accomplishing this task would be to compare all 50 maps from 

a simulation setup with each other to determine the single-setting variation.  However, this would 

require an overly large number of comparisons (i.e., 1,225 pairs of the maps given 50 simulation 

outputs) and would not add substantial value with respect to enhancing the interpretation of the 

experimental results.  Therefore, to achieve greater efficiency, this study identifies a basis map in 

which the external demand for new development is met by the cells that are most frequently 

selected in the 50 maps, and then compares all 50 simulation outcome maps with this basis map.  

                                                 
2 In fact, map comparisons and the identification of differences have long been placed at the center of the 

spatial modeling and GIS literature (see e.g., Pontius 2000, Power et al. 2001, Hagen 2003, Hagen-Zanker 

2006, Pontius and Cheuk 2006, White 2006, Remmel 2009, Ruiz et al. 2012). 
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For instance, in the case of the baseline simulation, a basis map is derived from the 50 simulation 

outcomes produced under the baseline setting, as illustrated in figure 4.  Then, each of the 50 

maps is compared with the basis map (i.e., 50 comparisons, as opposed to 1,225 comparisons), 

and the differences between each map and the basis map are quantified.  The logic of this 

approach is similar to that of the variance calculation in statistics that measures the gap between 

each observation and the mean and then synthesizes the gaps.  The basis map is something like 

the mean value that helps identify the variation in the simulation outcomes.     

<< Figure 4 about here >> 

Figure 4. Basis Map Development 

A remaining issue is how to quantify the differences between the basis map and individual land 

use change simulation outcomes.  To perform this quantification, the simplest, most 

straightforward method is to conduct a cell-by-cell comparison that checks the match between 

each pair of corresponding cells in the two maps and calculating the percentage of the cell 

matches (CM), as shown below (p. 976, Kuhnert et al. 2005). 

 
N

N
CM id=     (4)  

where idN  and N  represent the number of identical (i.e., matched) cells between the two maps 

and the total number of cells, respectively.  

Another useful metric is the figure of merit that has recently gained popularity in the field 

of geographical studies (see e.g., Pontius et al. 2007, 2008, and 2011).  This index, which can 

range between 0 and 1, focuses on the cells that are predicted to experience changes in their 

status (i.e., land use conversion), while the cell matches (i.e., CM) considers the entire group of 
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cells in quantifying the level of correspondence between two maps.  In other words, the figure of 

merit prevents analysts from ending up with a high value of correspondence simply due to a 

large number of cells with no change (i.e., persistence) in their study areas.  More specifically, 

the figure of merit indicator (FM) can be expressed, as shown below. 

 
21

21

∪

∩=
M

M
FM     (5)    

where 21∩M  represents the number of cells that are projected to be newly developed according to 

both maps, while 21∪M indicates the number of cells that are chosen for new development in 

either the first or the second map.  

The figure of merit index is useful, but it is another type of cell-by-cell comparison and, 

thus, cannot capture the similarity between two maps in terms of the overall land use patterns, 

which are critical in land use simulation practices.  Pattern-wise comparison is needed to 

determine if two simulation outputs fundamentally differ from each other.  This can be 

accomplished by employing landscape structure metrics (see e.g., Turner et al. 1989; Mas et al. 

2012) or by applying a moving or expanding window method (see e.g., Pontius et al. 2004; 

Kuhnert et al. 2005).  This study adopts a moving window approach presented in Costanza (1989) 

to complement the cell-by-cell comparison statistics.  The moving window index (MWI), which 

quantifies the pattern-wise similarity in a single value, is defined as follows. 
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where w is the window size in terms of the cell numbers (e.g., 1 cell × 1 cell, …, n cell × n cell); 

wS  indicates the total number of the windows required to cover the spatial extent of the maps 

compared (e.g., 2nSw =  when w is 1 cell × 1 cell, whereas 1=wS  when w is n cell × n cell); and 

lm1  and lm2  represent the number of cells with an l-type land use within each window in the 

first and the second maps, respectively.  

In sum, the single-setting variation in the land use simulation outcomes is assessed in this 

study by conducting map comparisons between the basis map for each application setting and 

individual simulation outcomes with the three following indicators: 1) the rate of the cell 

matches (CM), 2) the figure of merit indicator (FM), and 3) a moving window index (MWI).   

 

3.3.2. Cross-setting Variation  

Second, to assess the variation in the land use change simulation outcomes due to the changes in 

the settings, multiple basis maps that represent individual simulation setups are compared.  More 

specifically, under each growth scenario, the basis map from the baseline setup is compared with 

the basis maps for the remaining eight alternative settings, which are listed in table 1.  Again, the 

map comparison results are quantified by utilizing the three indicators CM, FM, and MWI, as 

explained above.   

Regarding the investigation of cross-setting variation, this study considers one additional 

issue: how the variation between two basis maps differs based on the number of model runs used 

to derive the basis maps.  It is hypothesized that the cross-setting variation is mitigated as the 

number of model runs increases.  To test this hypothesis, the basis maps are derived from five 

different sets of model runs (i.e., the first 10 model runs, first 20 model runs, first 30 model runs, 
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first 40 model runs, and the total of 50 model runs) for each setting under each growth scenario, 

and comparisons are then made.   

 

 

4. Results 

 

4.1. Single-setting variation  

As explained in the previous section, the model is run with a wide range of simulation settings, 

and the simulation outputs are then systematically compared to examine how the model 

outcomes can vary based on the way the model is applied.  This section presents the 

experimental results and the single-setting and cross-setting variation analysis outcomes.  Table 

2 summarizes the single-setting variation analysis results.   

<< Table 2 about here >> 

Table 2. Single-setting Variation Analysis Result 

The mean and standard deviation in the table are descriptive statistics for the 50 different values 

of the three indicators from the comparisons between the basis map and the 50 simulation 

outcomes for each setting (for example, see figure 5 for the 50 CM values from the baseline 

under the default growth scenario that result in a mean of 0.949 and a standard deviation of 

0.006).  

<< Figure 5 about here >> 

Figure 5. CM Distribution of the 50 Simulations 
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The analysis results first suggest that the simulation outcomes vary significantly, even if they 

come from an identical application setup.  For instance, in the case of the baseline under the 

default scenario, simulation outcomes exhibit 94.9% of cells matched with the basis map on 

average.  This indicates a substantial magnitude of variation (i.e., only approximately 47 cells 

showing accordance, out of 80 newly developed cells in a simulation), which is also highlighted 

by the FM value, 0.419.    

 Admittedly, this single-setting variation can mainly be attributed to the randomized factor 

involved in the simulation model.  The higher accordance under the small random setup (e.g., 

CM: 0.971 under the default scenario) and the lower accordance in the large random case (e.g., 

CM: 0.921 under the default scenario) clearly demonstrate this fact.  However, it should be 

stressed that the single-setting variation can also be influenced by other specifications once a 

randomized factor is included.  More specifically, even if the level of the randomized factor 

remains fixed, relatively larger variation in the simulation outputs is found with (i) a lower 

spatial resolution, (ii) a more aggregated temporal scale (i.e., a larger simulation increment), and 

(iii) more evenly distributed development scores.  In particular, when a higher spatial resolution 

is implemented for the simulation, the variation can be substantially reduced.  Under the default 

growth scenario, the CM value is 0.968 for the higher spatial resolution setting, while the 

baseline setting presents a CM value of 0.949. 

All of the observed patterns appear to be consistent with the expectations.  For example, 

under the settings with lower spatial and temporal resolution levels, the model simulation has to 

treat a larger chunk of the demand for new development together rather than allocating smaller 

pieces separately.  As a result, the simulation outcomes tend to lean to one side and, thus, involve 

a greater degree of single-setting variation.  In the case of a setting with more evenly distributed 
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development scores, the stochastic model simulation outcomes are less likely to be identical (i.e., 

large single-setting variation), as many alternative undeveloped cells can be picked in every 

round of allocation, as they exhibit similar development probability levels.   

The results of the analysis also suggest that the variation in the model simulation 

outcomes can be significantly influenced by the external demand to be allocated.  In particular, 

the fluctuating growth scenarios present much smaller values of all three indicators (i.e., CM, FM, 

and MWI) which imply higher levels of single-setting variation.  The increasing variation in 

fluctuation is not surprising, as the fluctuation has an effect in the simulation similar to the lower 

temporal resolution, which generates a higher level of the single-setting variation, as mentioned 

above.  The effects of a change in growth rates, however, are mixed.  While the high growth 

scenarios generate smaller values of CM and MWI similar to the fluctuating growth scenarios 

(i.e., a higher level of variation in terms of CM and MWI), the FM values derived from these 

scenarios turn out to be greater than those from the default scenario (i.e., a lower variation level 

in terms of FM).  This suggests that the influence of demand growth rates on the variation is 

indeterminate, although a change in the external demand trajectory does modify land use 

simulation outcomes.  There is no reason that an increase in the demand growth rate should 

result in a larger degree of variation.  The variation can either increase or decrease in response to 

a change in the growth rate, while the fluctuation tends to increase the variation, as found in this 

study.  

 

4.2. Cross-setting Variation  

The cross-setting variation is also analyzed by comparing the baseline’s basis map with those 

from other settings.  Table 4 presents the cross-setting variation analysis results when the basis 
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maps are derived from the first 10 simulation outcomes in each simulation setting.  Table 5 

shows the analysis results using the basis maps from the total of 50 simulation runs.  As 

explained in section 3.3.2., investigation of the cross-setting variation with different numbers of 

model runs could aid in checking whether the variation can be mitigated by increasing the 

number of model runs.   

<< Tables 3 and 4 about here >> 

Table 3. Cross-setting Variation Analysis Result (First 10 Model Runs) 

Table 4. Cross-setting Variation Analysis Result (50 Model Runs) 

Above all, table 3 clearly shows that the model application specifications do matter.  In this case, 

the simulation outcomes systematically differ across all of the four tested aspects, i.e., 1) the 

spatial resolution, 2) the temporal resolution, 3) the probability distribution, and 4) the degree of 

the influence of stochastic factors.  In detail, the rate of cell matches (i.e., CM) ranges from 0.91 

to 0.98, with median 0.96 which indicates that approximately 55 cells show accordance, out of 

80 newly developed cells.  Furthermore, the fluctuation scenarios are again found to involve 

generally higher levels of cross-setting variation, as in the case of the single-setting variation.   

Regarding the relationship between the cross-setting variation and the number of model 

runs, the results suggest that the difference between the two basis maps can be mitigated as the 

number of model runs increases.  As an example, figure 6 shows how CM under the default 

scenario varies based on the number of model runs.  The generally higher values of the 

accordance statistics observed in table 4, with 50 model runs, compared to table 3, based on 10 

simulations, also support this finding.     

<< Figure 6 about here >> 
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Figure 6. CM between the Basis Maps by Number of Model Runs 

 

 

5. Discussion of Results 

 

Among others, the results of this study show that land use change simulation outcomes can vary 

within and across application settings, and that the variation in simulation outcomes can be 

influenced not only by the randomized factor but also by other specifications in the model 

application.  Table 5 presents a set of t-tests conducted to check the statistical implications of the 

resultant gaps from the experiments with 50 model runs for each setting.   As shown in the table, 

the gaps between the means of the baseline and other settings are substantial in most cases.   

<< Tables 5 about here >> 

Table 5. T-statistics of the Gaps between the Means of Each Setting and the Baseline 

It also needs to be stressed that the simulated land use patterns and their variation can differ 

significantly based on the overall growth trends (represented by the four growth scenarios in the 

experiments), even if there are no changes in the allocation settings.  This finding suggests that 

regional growth forecasting and demand estimation largely shape the detailed land use 

simulation outcomes.  Given that macro growth forecasts and aggregate demand estimations are 

critical, land use modelers may need to pay more attention to the quality of population and 

macroeconomic forecasts, rather than focusing only on demand allocation, assuming that 

regional growth forecasting is outside the scope of their analysis.   
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 Another important finding is that the variation can be mitigated by increasing the number 

of model runs, as demonstrated in figure 6.  This point is important, as it shows how model users 

can better deal with the variation in simulation outcomes involved in most stochastic dynamic 

land use change simulation models.  Given the variation, it is apparent that focusing on a single 

model simulation outcome is not desirable.  It would be better to recognize a wide range of 

possible futures represented by a large number of simulation outcomes.  In fact, to some extent, 

the variation is an intended outcome of the model, which seeks to describe the possible 

irregularity and path dependence in land use changes in reality.  Using one or a few simulation 

outputs based on a single baseline growth scenario must represent an under-utilization of the land 

use change simulation model.  An attempt needs to be made to thoroughly understand a variety 

of possible land use patterns in the future through extensive scenario analyses, as have been 

performed in some recent studies, such as those of Li and Liu (2008), Robinson and Brown 

(2009), and Houet et al. (2010).  Policy decision making and planning practices also should 

consider many different possibilities that can take place in a study area with a more extensive use 

of models and scenario planning approaches in order to attain more robust planning and policy 

decision-making (Chakraborty et al. 2011).    

 

 

6. Conclusion 

 

Understanding complex model behaviors in various application settings is crucial to improving 

the quality of land use simulation models and promoting more effective use of these promising 

tools.  To enhance the understanding of the model behaviors, this study examines how dynamic 
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land use change model outcomes can vary based on simulation settings with an emphasis on four 

key aspects: 1) the spatial resolution, 2) the temporal resolution, 3) the probability distribution, 

and 4) the degree of the influence of stochastic factors, under multiple growth scenarios.  This is 

accomplished through a set of experiments using a hypothetical simulation environment that 

represents the basic logic of the cell-based dynamic land use change models employed for 

various empirical studies on land use dynamics and in making many policy decisions.  

 The experiments show that the simulation outcomes are substantially influenced not only 

by changes in the influence of stochastic factors but also by the determination of spatiotemporal 

scales and the probability distribution.  More specifically, higher levels of variation are found 

under lower spatiotemporal resolution levels and more evenly distributed probability 

distributions.  In addition, the cross-setting variation analysis shows that land use simulation 

models can generate different outputs if one of the four factors is set up differently.  Furthermore, 

the results of the experiments reveal that macro growth forecasts are critical in dynamic land use 

change simulation, not only because they provide control totals to be allocated but also because 

they can affect detailed patterns of land use change simulation outcomes.    

Future research to test the model sensitivities with the use of a more complex simulation 

environment will be extremely valuable, as it can help us grasp how the variation pattern 

examined in this study is determined in a more specific context and what other factors are 

involved in shaping the model sensitivities.  Such research endeavors can lead to more successful 

implementation of the simulation modeling technology, which in turn can enhance our 

understanding of the dynamics and complexity of land use changes.   
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Table 1. Experimental Settings  

Category Setting 
Spatial 

Resolution 

Temporal 

Resolution 

Probability 

Distribution 

Stochastic 

Factor 

Baseline 1. Baseline 36×36 
10 × 2-year 

increment 
1=δ  1=α  

Spatial 

Resolution 

2. Low Resolution 18×18 
10 × 2-year 

increment 
1=δ  1=α  

3. High Resolution 72×72 
10 × 2-year 

increment 
1=δ  1=α  

Temporal 

Resolution 

4. Less Frequent 36×36 
5 × 4-year 

increment 
1=δ  1=α  

5. More Frequent 36×36 
20 × 1-year 

increment 
1=δ  1=α  

Probability 

Distribution 

Conditions 

6. More Evenly  

Distributed 
36×36 

10 × 2-year 

increment 
5.0=δ  1=α  

7. Less Evenly  

Distributed 
36×36 

10 × 2-year 

increment 
2=δ  1=α  

Extent of the 

Influence of 

Randomness 

8. Small Random 

Involved 
36×36 

10 × 2-year 

increment 
1=δ  5.0=α  

9. Large Random 

Involved 
36×36 

10 × 2-year 

increment 
1=δ  2=α  
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Table 2. Single-setting Variation Analysis Result  

Growth 

Scenario 
Setting 

Rate of the Cell 

Matches (CM) 

Figure of Merit  

(FM) 

Moving Window 

Index (MWI) 

Mean SD Mean SD Mean SD 

Default 

Scenario 

1. Baseline 0.949 0.006 0.419 0.049 0.964 0.004 

2. Low Res. 0.946 0.010 0.395 0.080 0.962 0.007 

3. High Res. 0.968 0.005 0.586 0.047 0.977 0.003 

4. Less Freq. 0.944 0.005 0.380 0.040 0.961 0.004 

5. More Freq. 0.952 0.005 0.445 0.046 0.966 0.004 

6. More Ev. Dist. 0.949 0.004 0.418 0.037 0.964 0.003 

7. Less Ev. Dist. 0.951 0.005 0.432 0.044 0.965 0.004 

8. Small Random  0.971 0.005 0.623 0.053 0.980 0.004 

9. Large Random  0.921 0.007 0.222 0.040 0.944 0.005 

Fluctuation 

Scenario 

1. Baseline 0.943 0.005 0.372 0.039 0.960 0.004 

2. Low Res. 0.930 0.012 0.282 0.083 0.951 0.009 

3. High Res. 0.966 0.005 0.567 0.048 0.976 0.003 

4. Less Freq. 0.922 0.008 0.226 0.048 0.945 0.006 

5. More Freq. 0.944 0.006 0.376 0.043 0.960 0.004 

6. More Ev. Dist. 0.941 0.006 0.358 0.042 0.959 0.004 

7. Less Ev. Dist. 0.943 0.006 0.372 0.045 0.960 0.004 

8. Small Random  0.968 0.004 0.591 0.038 0.977 0.003 

9. Large Random  0.911 0.006 0.162 0.032 0.937 0.004 

High 

Growth 

Scenario 

1. Baseline 0.921 0.006 0.518 0.029 0.944 0.004 

2. Low Res. 0.916 0.013 0.494 0.059 0.940 0.009 

3. High Res. 0.956 0.005 0.697 0.030 0.969 0.004 

4. Less Freq. 0.914 0.007 0.486 0.031 0.939 0.005 

5. More Freq. 0.927 0.007 0.544 0.031 0.948 0.005 

6. More Ev. Dist. 0.920 0.005 0.511 0.024 0.943 0.004 

7. Less Ev. Dist. 0.926 0.007 0.538 0.033 0.947 0.005 

8. Small Random  0.958 0.005 0.710 0.030 0.970 0.004 

9. Large Random  0.866 0.009 0.296 0.031 0.905 0.006 

High 

Growth & 

Fluctuation 

Scenario 

1. Baseline 0.912 0.009 0.476 0.038 0.938 0.006 

2. Low Res. 0.903 0.012 0.436 0.051 0.931 0.009 

3. High Res. 0.950 0.005 0.662 0.027 0.964 0.003 

4. Less Freq. 0.877 0.008 0.335 0.029 0.913 0.006 

5. More Freq. 0.920 0.008 0.511 0.037 0.943 0.006 

6. More Ev. Dist. 0.910 0.007 0.466 0.032 0.936 0.005 

7. Less Ev. Dist. 0.917 0.006 0.499 0.028 0.942 0.004 

8. Small Random  0.954 0.005 0.684 0.028 0.967 0.004 

9. Large Random  0.855 0.009 0.262 0.028 0.898 0.006 
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Table 3. Cross-setting Variation Analysis Result (First 10 Model Runs) 

Growth 

Scenario 
Baseline vs.  

Rate of the Cell 

Matches (CM) 

Figure of Merit  

(FM) 

Moving Window 

Index (MWI) 

Default 

Scenario 

2. Low Res. 0.955 0.468 0.968 

3. High Res. 0.978 0.702 0.985 

4. Less Freq. 0.968 0.584 0.977 

5. More Freq. 0.975 0.667 0.983 

6. More Ev. Dist. 0.969 0.600 0.978 

7. Less Ev. Dist. 0.972 0.633 0.980 

8. Small Random  0.980 0.720 0.986 

9. Large Random  0.952 0.441 0.966 

Fluctuation 

Scenario 

2. Low Res. 0.963 0.538 0.974 

3. High Res. 0.977 0.684 0.984 

4. Less Freq. 0.963 0.538 0.974 

5. More Freq. 0.971 0.616 0.979 

6. More Ev. Dist. 0.968 0.584 0.977 

7. Less Ev. Dist. 0.971 0.616 0.979 

8. Small Random  0.977 0.684 0.984 

9. Large Random  0.952 0.441 0.966 

High 

Growth 

Scenario 

2. Low Res. 0.952 0.675 0.966 

3. High Res. 0.965 0.749 0.975 

4. Less Freq. 0.958 0.711 0.971 

5. More Freq. 0.957 0.702 0.969 

6. More Ev. Dist. 0.957 0.702 0.969 

7. Less Ev. Dist. 0.951 0.667 0.965 

8. Small Random  0.960 0.720 0.972 

9. Large Random  0.918 0.502 0.942 

High 

Growth & 

Fluctuation 

Scenario 

2. Low Res. 0.949 0.658 0.964 

3. High Res. 0.955 0.693 0.968 

4. Less Freq. 0.943 0.624 0.960 

5. More Freq. 0.948 0.649 0.963 

6. More Ev. Dist. 0.946 0.641 0.962 

7. Less Ev. Dist. 0.960 0.720 0.972 

8. Small Random  0.954 0.684 0.967 

9. Large Random  0.912 0.475 0.938 
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Table 4. Cross-setting Variation Analysis Result (50 Model Runs) 

Growth 

Scenario 
Baseline vs.  

Rate of the Cell 

Matches (CM) 

Figure of Merit  

(FM) 

Moving Window 

Index (MWI) 

Default 

Scenario 

2. Low Res. 0.977 0.684 0.984 

3. High Res. 0.986 0.798 0.990 

4. Less Freq. 0.983 0.758 0.988 

5. More Freq. 0.989 0.839 0.992 

6. More Ev. Dist. 0.988 0.818 0.991 

7. Less Ev. Dist. 0.989 0.839 0.992 

8. Small Random  0.992 0.882 0.995 

9. Large Random  0.977 0.684 0.984 

Fluctuation 

Scenario 

2. Low Res. 0.972 0.633 0.980 

3. High Res. 0.992 0.882 0.995 

4. Less Freq. 0.988 0.818 0.991 

5. More Freq. 0.981 0.739 0.987 

6. More Ev. Dist. 0.981 0.739 0.987 

7. Less Ev. Dist. 0.991 0.860 0.993 

8. Small Random  0.989 0.839 0.992 

9. Large Random  0.980 0.720 0.986 

High 

Growth 

Scenario 

2. Low Res. 0.965 0.749 0.975 

3. High Res. 0.985 0.882 0.989 

4. Less Freq. 0.977 0.829 0.984 

5. More Freq. 0.981 0.860 0.987 

6. More Ev. Dist. 0.978 0.839 0.985 

7. Less Ev. Dist. 0.978 0.839 0.985 

8. Small Random  0.986 0.893 0.990 

9. Large Random  0.968 0.768 0.977 

High 

Growth & 

Fluctuation 

Scenario 

2. Low Res. 0.971 0.788 0.979 

3. High Res. 0.974 0.808 0.981 

4. Less Freq. 0.974 0.808 0.981 

5. More Freq. 0.977 0.829 0.984 

6. More Ev. Dist. 0.981 0.860 0.987 

7. Less Ev. Dist. 0.980 0.850 0.986 

8. Small Random  0.986 0.893 0.990 

9. Large Random  0.963 0.739 0.974 
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Table 5. T-statistics of the Gaps between the Means of Each Setting and the Baseline  

Growth 

Scenario 
Baseline vs.  

Rate of the Cell 

Matches (CM) 

Figure of Merit  

(FM) 

Moving Window 

Index (MWI) 

Default 

Scenario 

2. Low Res. 2.03 * 1.81  2.03 * 

3. High Res. 17.15 *** 17.43 *** 17.14 *** 

4. Less Freq. 4.34 *** 4.39 *** 4.34 *** 

5. More Freq. 2.74 ** 2.73 ** 2.74 ** 

6. More Ev. Dist. 0.09 0.17  0.08 

7. Less Ev. Dist. 1.39 1.36  1.39 

8. Small Random  19.71 *** 20.02 *** 19.71 *** 

9. Large Random  22.30 *** 22.19 *** 22.22 *** 

Fluctuation 

Scenario 

2. Low Res. 6.98 *** 6.94 *** 6.98 *** 

3. High Res. 22.56 *** 22.28 *** 22.55 *** 

4. Less Freq. 16.18 *** 16.82 *** 16.16 *** 

5. More Freq. 0.49  0.52  0.49  

6. More Ev. Dist. 1.80  1.75  1.80  

7. Less Ev. Dist. 0.03  0.02  0.03  

8. Small Random  28.10 *** 28.68 *** 28.10 *** 

9. Large Random  29.80 *** 29.60 *** 29.73 *** 

High 

Growth 

Scenario 

2. Low Res. 2.80 ** 2.63 ** 2.80 ** 

3. High Res. 30.46 *** 30.53 *** 30.44 *** 

4. Less Freq. 5.42 *** 5.40 *** 5.42 *** 

5. More Freq. 4.23 *** 4.27 *** 4.23 *** 

6. More Ev. Dist. 1.29 1.32  1.29 

7. Less Ev. Dist. 3.26 ** 3.27 ** 3.25 ** 

8. Small Random  32.25 *** 32.58 *** 32.22 *** 

9. Large Random  36.03 *** 37.19 *** 35.95 *** 

High 

Growth & 

Fluctuation 

Scenario 

2. Low Res. 4.52 *** 4.48 *** 4.52 *** 

3. High Res. 26.98 *** 28.32 *** 27.00 *** 

4. Less Freq. 21.23 *** 21.10 *** 21.21 *** 

5. More Freq. 4.63 *** 4.62 *** 4.62 *** 

6. More Ev. Dist. 1.47 1.51  1.48 

7. Less Ev. Dist. 3.43 *** 3.39 ** 3.44 *** 

8. Small Random  29.64 *** 31.24 *** 29.66 *** 

9. Large Random  32.80 *** 32.22 *** 32.76 *** 

*** 0.1% level significance | ** 1% level significance | * 5%level significance  

n

ss

xx
t

baselinesetting

baselinesetting

22 ′+′

−
=  

where x  and s′  represent the mean and standard deviation of a particular setting, and n  is the number of samples 

(i.e., the number of simulation runs in each setting, which is 50)    
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Figure 1. Initial Setup 
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Figure 2. Experimental Simulation Procedures 
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Figure 3. Development Probability 
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Figure 4. Basis Map Development 

<< Aggregation of 50 Simulations >> 

<< Basis Map >> 
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Figure 5. CM Distribution of the 50 Simulations 
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Figure 6. CM between the Basis Maps by Number of Model Runs 

 

 




