
ARXIV.ORG PREPRINT 1

A GRASS GIS parallel module for
radio-propagation predictions

Lucas Benedičič, Felipe A. Cruz, Tsuyoshi Hamada and Peter Korošec

Abstract—Geographical information systems are ideal candi-
dates for the application of parallel programming techniques,
mainly because they usually handle large data sets. To help us
deal with complex calculations over such data sets, we inves-
tigated the performance constraints of a classic master-worker
parallel paradigm over a message-passing communication model.
To this end, we present a new approach that employs an external
database in order to improve the calculation/communication
overlap, thus reducing the idle times for the worker processes.
The presented approach is implemented as part of a parallel
radio-coverage prediction tool for the GRASS environment.
The prediction calculation employs digital elevation models and
land-usage data in order to analyze the radio coverage of a
geographical area. We provide an extended analysis of the
experimental results, which are based on real data from an LTE
network currently deployed in Slovenia. Based on the results of
the experiments, which were performed on a computer cluster,
the new approach exhibits better scalability than the traditional
master-worker approach. We successfully tackled real-world data
sets, while greatly reducing the processing time and saturating
the hardware utilization.

Index Terms—GRASS, GIS, parallel, radio, propagation, sim-
ulation.

I. INTRODUCTION

ALTHOUGH Gordon Moore’s well-known and often cited
prediction still holds [23], the fact is that for the past

few years, CPU speeds have hardly been improving. Instead,
the number of cores within a single CPU is increasing.
This situation poses a challenge for software development in
general and research in particular: a hardware upgrade will,
most of the time, fail to double the serial execution speed
of its predecessor. However, since this commodity hardware
is present in practically all modern desktop computers, it
creates an opportunity for the parallel exploitation of these
computing resources to enhance the performance of complex
algorithms over large data sets. The challenge is thus to deliver
the computing power of multi-core systems in order to tackle
a computationally time-consuming problem, the completion
of which is unfeasible using traditional serial approaches.
Moreover, by accessing many such computing nodes through
a network connection, even more possibilities are available.

A traditional approach when dealing with computationally
expensive problem solving is to simplify the models in order to

Lucas Benedičič is with the Research and Development Depart-
ment of Telekom Slovenije, d.d., Ljubljana, Slovenia, e-mail: lu-
cas.benedicic@telekom.si. Corresponding author.

Felipe A. Cruz and Tsuyoshi Hamada are with the Nagasaki Advanced
Computing Center, Nagasaki University, Nagasaki, Japan.

Peter Korošec is with the Computing Systems Department, Jožef Stefan
Institute, Ljubljana, Slovenia, e-mail: peter.korosec@ijs.si.

Preprint submitted to Taylor & Francis.

be able to execute their calculations within a feasible amount
of time. Clearly, this method increases the introduced error
level, which is not an option for a certain group of simulations,
e.g., those dealing with disaster contingency planning and
decision support [19], [46]. The conducted simulations during
the planning phase of a radio network also belong to this
group. Their results are the basis for the decision making prior
to physically installing the base stations and antennas that will
cover a certain geographical area. A greater deviation of these
results increases the probability of making the wrong decisions
at the time of the installation, which may considerably increase
the costs or even cause mobile-network operators to incur
losses.

Various groups have successfully deployed high-
performance computing (HPC) systems and techniques
to solve different problems dealing with spatial data [2],
[3], [13], [19], [21], [27], [38], [39], [40], [44], [46]. This
research has confirmed that a parallel paradigm such as
master-worker, techniques like work pool (or task farming)
and spatial-block partitioning are applicable when dealing
with parallel implementations over large spatial data sets.
However, it is well known that parallel programming and
HPC often call for area experts in order to integrate these
practices into a given environment [8]. Moreover, the wide
range of options currently available creates even more barriers
for general users wanting to benefit from HPC.

In this paper, we combine some of the known principles
of HPC and introduce a new approach in order to improve
the performance speed of a GIS module for radio-propagation
predictions. The efficiency improvement is based on over-
lapping process execution and communication in order to
minimize the idle time of the worker processes and thus
improve the overall efficiency of the system. To this end,
we save the intermediate calculation results into an external
database (DB) instead of sending them back to the master
process. We implement this approach as part of a parallel
radio-prediction tool (PRATO) for the open-source Geographic
Resources Analysis Support System (GRASS) [25]. For its
architecture, we have focused on scalability, clean design and
the openness of the tool, inspired by the GRASS GIS. This
makes it an ideal candidate for demonstrating the benefits
and drawbacks of several reviewed patterns, while tackling
the radio-coverage predictions of big problem instances, e.g.,
real mobile networks containing thousands of transmitters over
high-resolution terrains, and big-scale simulations covering the
whole country.

ar
X

iv
:1

40
2.

40
10

v1
  [

cs
.D

C
] 

 1
7 

Fe
b 

20
14

mailto:lucas.benedicic@telekom.si
mailto:lucas.benedicic@telekom.si
mailto:peter.korosec@ijs.si


ARXIV.ORG PREPRINT 2

A. Objectives

In order to assess the benefits and drawbacks of various
reviewed approaches from the performance point of view,
we evaluate PRATO in a distributed computing environment.
Furthermore, by presenting a detailed description of its design
and implementation, we provide an analysis of the patterns
achieving higher efficiency levels, so that they can be adopted
for general task parallelization in the GRASS GIS.

The paper is organized as follows. Section II gives an
overview of the relevant publications, describing how they
relate to our work. Section III gives a description of the radio-
coverage prediction problem, including the radio-propagation
model. Section IV concentrates on the design principles and
implementation details of the radio-propagation tool, for the
serial and parallel versions. Section V discusses the experi-
mental results and their analysis. Finally, Section VI draws
some conclusions.

II. RELATED WORK

The task-parallelization problem within the GRASS envi-
ronment has been addressed by several authors in a variety of
studies. For example, in [6], the authors present a collection
of GRASS modules for a watershed analysis. Their work
concentrates on different ways of slicing raster maps to take
advantage of a Message Passing Interface (MPI) implementa-
tion.

In the field of high-performance computing, the authors
of [2] presented implementation examples of a GRASS raster
module, used to process vegetation indexes for satellite im-
ages, for MPI and Ninf-G environments. The authors ac-
knowledge a limitation in the performance of their MPI
implementation for big processing jobs. The restriction appears
due to the computing nodes being fixed to a specific spatial
range, since the input data are equally distributed among
worker processes, creating an obstacle for load balancing in
heterogeneous environments.

Using a master-worker technique, the work by [18] abstracts
the GRASS data types into its own struct and MPI data types,
thus not requiring the GRASS in the worker nodes. The data
are evenly distributed by row among the workers, with each
one receiving an exclusive column extent to work on. The test
cluster contains heterogeneous hardware configurations. The
authors note that data-set size is bounded by the amount of
memory on each of the nodes, since they allocate the memory
for the whole map as part of the set-up stage, before starting
the calculation. Regarding the data sets during the simulations,
the largest one contains 3,265,110 points. They conclude that
the data-set size should be large enough for the communication
overhead to be hidden by the calculation time, so that the
parallelization pays off.

In [38], the authors employ a master-worker approach,
using one worker process per worker node. The complete
exploitation of the computing resources of a single computing
node is achieved with OpenMP. The experimental environment
features one host. The horizon-composition algorithm presents
no calculation dependency among the spatial blocks. Conse-
quently, the digital elevation model (DEM) may be divided

into separate blocks to be independently calculated by each
worker process. The authors present an improved algorithm
that can also be used to accelerate other applications like
visibility maps. The tasks are dynamically assigned to idle
processes using a task-farming paradigm over the MPI.

Also, in [39] there is no calculation dependency among
the spatial blocks. The experimental evaluation is made over
multiple cores of one CPU and a GPU, communicated using
a master-worker setup.

In [46], the authors present a parallel framework for GIS
integration. Based on the principle of spatial dependency, they
lower the calculation processing time by backing it with a
knowledge database, delivering the heavy calculation load to
the parallel back-end if a specific problem instance is not found
in the database. There is an additional effort to achieve the
presented goals, since the implementation of a fully functional
GIS (or “thick GIS” as the authors call it) is required on both
the desktop client and in the parallel environment.

An agent-based approach for simulating spatial interactions
is presented in [11]. The authors’ approach decomposes the
entire landscape into equally-sized regions, i.e., a spatial-block
division as in [38], which are in turn processed by a different
core of a multi-core CPU. This work uses multi-core CPUs
instead of a computing cluster.

Some years ago, grid computing received the attention of
the research community as a way of accessing the extra
computational power needed for the spatial analysis of large
data sets [3], [42], [43]. However, several obstacles are still
preventing this technology from being more widely used.
Namely, its adoption requires not only hardware and software
compromises with respect to the involved parts, but also a
behavioral change at the human level [3].

III. RADIO-COVERAGE PREDICTION FOR MOBILE
NETWORKS

A. Background
The coverage planning of radio networks is a key problem

that all mobile operators have to deal with. Moreover, it has
proven to be a fundamental issue, not only in LTE networks,
but also in other standards for mobile communications [31],
[33], [36], [41]. One of the primary objectives of mobile-
network planning is to efficiently use the allocated frequency
band to ensure that some geographical area of interest can be
satisfactorily reached with the base stations of the network.
To this end, radio-coverage prediction tools are of great
importance as they allow network engineers to test different
network configurations before physically implementing the
changes. Nevertheless, radio-coverage prediction is a complex
task, mainly due to the several combinations of hardware and
configuration parameters that have to be analyzed in the con-
text of different environments. The complexity of the problem
means that radio-coverage prediction is a computationally-
intensive and time-consuming task, hence the importance of
using fast and accurate tools (see Section IV-B for a complex-
ity analysis of the algorithm). Additionally, since the number
of deployed transmitters keeps growing with the adoption of
modern standards [31], there is a clear need for a radio-
propagation tool that is able to cope with larger work loads in



ARXIV.ORG PREPRINT 3

a feasible amount of time (see Section IV-B for the running
time of the serial version).

In this work, we present PRATO: a high-performance radio-
propagation prediction tool for GSM (2G), UMTS (3G) and
LTE (4G) radio networks. It is implemented as a module of the
GRASS GIS. It can be used for planning the different phases of
a new radio-network installation, as well as a support tool for
maintenance activities related to network troubleshooting in
general and optimization in particular. Specifically, automatic
radio-coverage optimization requires the evaluation of millions
of radio-propagation predictions in order to find a good solu-
tion set, which is unfeasible using other serial implementations
of academic or commercial tools [17], [22], [29].

As a reference implementation, we used the publicly avail-
able radio-coverage prediction tool, developed in [17]. The
authors of this work developed a modular radio-coverage tool
that performs separate calculations for radio-signal path loss
and antenna radiation patterns, also taking into account differ-
ent configuration parameters, such as antenna tilting, azimuth
and height. The output result, saved as a raster map, is the
maximum signal level over the target area, in which each point
represents the received signal from the best serving transmitter.
This work implements some well-known radio-propagation
models, e.g., Okumura-Hata [15] and COST 231 [7]. The latter
is explained in more detail in Section III-B. Regarding the
accuracy of the predicted values, the authors [17] report com-
parable results to those of a state-of-the-art commercial tool.
To ensure that our implementation is completely compliant
with the previously mentioned reference, we have designed a
comparison test that consists of running both tools with the
same set of input parameters. The test results from PRATO and
the reference implementation were identical in all the tested
cases.

B. Propagation modeling

PRATO uses the COST-231 Walfisch-Ikegami radio-
propagation model [33], which was introduced as an extension
of the well-known COST Hata model [32]. The suitability of
this model comes from the fact that it distinguishes between
line-of-sight (LOS) and non-line-of-sight (NLOS) conditions.

In this work, as well as in the reference implementation [17],
the terrain profile is used for the LOS determination. In this
context, a NLOS situation appears when the first Fresnel
zone is obscured by at least one obstacle [45]. We include
a correction factor, based on the land usage (clutter data),
for accurately predicting the signal-loss effects due to foliage,
buildings and other fabricated structures. This technique is
also adopted by other propagation models for radio networks,
like the artificial neural networks macro-cell model developed
in [24]. Consequently, we introduce an extra term for signal
loss due to clutter (LCLUT) to the Walfisch-Ikegami model [33],
defining the path loss as

PL(d) = L0(d) + LCLUT +

{
PLLOS(d)

PLNLOS(d)
, (1)

where L0(d) is the attenuation in free space and is defined as

L0(d) = 32.45 + 20 log(d) + 20log(F ). (2)

If there is LOS between the transmitter antenna and the
mobile, the path loss PLLOS(d) is defined as

PLLOS(d) = 42.64 + 26 log(d) + 20 log(F ), (3)

whereas the path loss for NLOS conditions is determined as

PLNLOS(d) = LRTS + LMSD. (4)

Here, d is the distance (in kilometers) from the transmitter
to the receiver point, F is the frequency (in MHz), LRTS
represents the diffraction from rooftop to the street, and
LMSD represents the diffraction loss due to multiple obstacles.
Consequently, the total path loss from the antenna to the
mobile device is calculated as in Equation (1), where the
attenuation in free space and due to clutter are also taken into
account.

IV. DESIGN AND IMPLEMENTATION

A. Design of the serial version

This section describes the different functions contained in
the serial version of PRATO, which is implemented as a
GRASS module. Their connections and data flow are depicted
in Figure 1 on page 3, where the parallelograms of the flow
diagram represent the input/output (I/O) operations.

Our design follows a similar internal organization as the
radio-planning tool presented in [17], but with some impor-
tant differences. First, the modular design was avoided in
order to prevent the overhead of I/O operations between the
components of a modular architecture. Second, our approach
employs a direct connection to an external database server for
intermediate result saving, instead of the slow, built-in GRASS
database drivers. To explicitly avoid tight coupling with a
specific database vendor, the generated output is formatted in
plain text, which is then forwarded to the DB. Any further
processing is achieved by issuing a query over the database
tables that contain the partial results for each of the processed
transmitters.

Start Read input data

Calculate antenna in uence

Stop

Create nal coverage

         prediction
Save transmitter 

 path-loss to DB

Calculate LOS / NLOS

Figure 1. Flow diagram of the serial version.

1) Isotropic path-loss calculation: This step starts by cal-
culating which receiver points, r, are within the specified
transmission radius (see “transmission radius” in Figure 1
on page 3). The transmission radius is defined around each
transmitter in order to limit the radio-propagation calculation
to a reasonable distance. For these points, the LOS and NLOS
conditions are calculated with respect to the transmitter (see
“Calculate LOS/NLOS” in Figure 1 on page 3). The following



ARXIV.ORG PREPRINT 4

Figure 2. Example of raster map, showing the result of a path-loss calculation
from an isotropic source.

Figure 3. Example of raster map, showing the antenna influence over the
isotropic path-loss result, as depicted in Figure 2 on page 4.

step consists of calculating the path loss for an isotropic source
(or omni antenna). This calculation is performed by applying
the Walfisch-Ikegami model, which was previously defined in
Equation (1), to each of the points within the transmission
radius around the transmitter.

Figure 2 on page 4 shows an example result of the isotropic
path-loss calculation, only including the map area within the
transmission radius. The color scale is given in dB, indicating
the signal loss from the isotropic source of the transmitter,
located at the center. Notice the hilly terrain is clearly dis-
tinguished due to LOS and NLOS conditions from the signal
source.

2) Antenna diagram influence: This step considers the
antenna radiation diagram of the current transmitter and its in-
fluence over the isotropic path-loss calculation (see “Calculate
antenna influence” in Figure 1 on page 3). Working on the in-
memory results generated by the previous step, the radiation
diagram of the antenna is taken into account, including the
beam direction, the electrical and the mechanical tilt. Figure
3 on page 4 shows the map area within the transmission
radius, where this calculation step was applied to the results
from Figure 2 on page 4. Notice the distortion of the signal
propagation that the antenna has introduced.

3) Transmitter path-loss prediction: In this step, the path-
loss prediction of the transmitter is saved in its own database
table (see “Save transmitter path-loss to DB” in Figure 1 on
page 3). This is accomplished by connecting the standard
output of the developed module with the standard input of
a database client. Naturally, the generated plain text should be
understood by the DB itself.

4) Coverage prediction: The final radio-coverage predic-
tion, containing the aggregation of the partial path-loss results
of the involved transmitters, is created in this step (see “Create
final coverage prediction” in Figure 1 on page 3). The received
signal strength from each of the transmitters is calculated as
the difference between its transmit power and the path loss
for the receiver’s corresponding position. This is done by
executing an SQL query over the tables containing the path-
loss predictions of each of the processed transmitters. Finally,
the output is generated, using the GRASS built-in modules
v.in.ascii and v.to.rast, which create a raster map using the
query results as the input. The final raster map contains the

maximum received signal strength for each individual point,
as shown in Figure 4 on page 4. In this case, the color scale is
given in dBm, indicating the strongest received signal strength
from the transmitters.

Figure 4. Example of a raster map, displaying the final coverage prediction
of 136 transmitters over a geographical area. The color scale is given in
dBm, indicating the received signal strength. Darker colors denote areas with
a reduced signal due to the fading effect of the hilly terrain and clutter.

B. Computational complexity of the radio-coverage algorithm

Table I
PSEUDO CODE OF THE RADIO-COVERAGE PREDICTION ALGORITHM. THE

TIME COMPLEXITY IS GIVEN PER LINE.

DEM ← Digital Elevation Model (DEM) of the whole area. . O(M)
Clutter ← signal Losses due to land usage of the whole area. . O(M)
T ← transmitter configuration data. . O(n)
for all t ∈ T do . O(n ·m2)

DEMt ← DEM area within transmission radius of t . O(m)
Clutt ← Clutter area within transmission radius t . O(m)
LoSt ← LineOfSight (DEMt) . O(m2)
PLt ← PathLoss (DEMt, Clutt, LoSt) . O(m2)
Diagt ← Antenna diagram of t . O(1)
PLt ← AntennaInfluence (Diagt, PLt) . O(m)

end for
for all t ∈ T do . O(n ·m)

CoveragePrediction← PathLossAggregation (t, PLt) . O(m)
end for
return CoveragePrediction



ARXIV.ORG PREPRINT 5

In this section, the time complexity of the radio-coverage
prediction algorithm is presented, for which the pseudo code
is listed in Table I.

The algorithm starts by loading the input, i.e., the DEM
and the clutter data. Both regular square grids (RSGs) should
account for the same area and resolution, consequently con-
taining the same number of pixels, M . The transmitter data
is then loaded into set T , the cardinality of which is denoted
as n = |T |. For each transmitter t ∈ T , a smaller subarea
of the DEM and clutter data (denoted DEMt and Clutt,
respectively) is delimited around t, based on a given trans-
mission radius. The number of pixels within this sub-area is
denoted as m, and its value is the same for all t ∈ T . The
visibility for an RSG cell is computed using the LineOfSight
function, by walking from the antenna of the transmitter to the
given element, along the elements intersected by a LOS, until
either the visibility is blocked, or the target is reached [10].
Regarding the PathLoss function, whenever a receiver point
is in NLOS, the walking path from the transmitter has to
be inspected for obstacles, calculating the diffraction losses
for each of them, i.e., LMSD from Equation (4). Hence, its
quadratic complexity, which dominates the complexity of the
algorithm, together with LineOfSight, resulting in an algorith-
mic complexity denoted by

O(M + n ·m2). (5)

Although n will generally be many orders of magnitude
smaller than m2, its computational-time complexity is relevant
for practical use. For example, assuming the radio-coverage
prediction for one transmitter completes in around 15 seconds
using a serial implementation, the prediction for a mobile net-
work comprising 10,240 transmitters would have an execution
time of almost two days.

C. Multi-paradigm parallel programming

The implementation methodology adopted for PRATO fol-
lows a multi-paradigm, parallel programming approach in
order to fully exploit the resources of each of the nodes in
a computing cluster. This approach combines a master-worker
paradigm with an external DB. To efficiently use a shared
memory multi-processor on the worker side, and to effectively
overlap the calculation and communication, PRATO uses
POSIX threads [5].

To use the computing resources of a distributed memory
system, such as a cluster of processors, PRATO uses the
MPI [12]. The MPI is a message-passing standard that defines
the syntax and semantics designed to function on a wide
variety of parallel computers. The MPI enables multiple pro-
cesses, running on different processors of a computer cluster,
to communicate with each other. It was designed for high
performance on both massively parallel machines and on
workstation clusters.

In order to make the text clearer and to differentiate between
the programming paradigms used from here on, we will refer
to a POSIX thread simply as a ‘thread’ and a MPI process as
a ‘process’.

D. Design of the parallel version

By maintaining our focus on the practical usability and
performance of PRATO, we are introducing a parallel im-
plementation to overcome the computational-time constraints
that prevent a serial implementation of the radio-coverage
prediction algorithm from tackling big problem instances in
a feasible amount of time.

A major drawback of the GRASS as a parallelization envi-
ronment is that it is not thread-safe, meaning that concurrent
changes to the same data set have an undefined behavior [4].
One technique to overcome this problem is to abstract the
spatial data from the GRASS. For example, in [18], the
authors achieve the GRASS abstraction by introducing a Point
structure with four double attributes, where each pixel of
the RSG is mapped to an instance of this structure. Another
possibility is for one of the processes, e.g., the master, to read
entire rows or columns of data before dispatching them for
processing to the workers [2], [18]. In this case, an indepen-
dence between row/column calculations is required, which is a
problem-specific property. In our case, we propose to achieve
the GRASS abstraction by loading the spatial data into a 2D
matrix (or matrices) of basic data-type elements, e.g., float or
double depending on the desired accuracy. The geographical
location of each element is calculated as the geographical
location of the matrix plus the element offset within it. The
advantage of this technique is having the geographical location
of each pixel readily available with a minimum memory foot-
print. Moreover, a convenient consequence of this abstraction
schema is that worker processes are completely independent
of the GRASS, thus significantly simplifying the deployment
of the parallel implementation over multiple computing hosts.

In the area of geographical information science, the master-
worker paradigm has been successfully applied by several
authors [1], [2], [6], [13], [18], [38], [39]. However, some-
times this technique presents certain issues that prevent the
full exploitation of the available computing resources when
deployed over several networked computers. Additionally,
such issues are difficult to measure when the parallelization
involves only one computing node [38], [39], i.e., no network
communication is required, or only a few processes deployed
over a handful of nodes [18]. Specifically, we are referring to
network saturation and idle processes within the master-worker
model. Generally speaking, a single communicating process,
e.g., the master, is usually not able to saturate the network
connection of a node. Using more than one MPI process per
node might solve this problem, but possible rank-ordering
problems may appear, thus restricting the full utilization of
the network [30]. Another issue appears when the master
process executes the MPI code, in which case other processes
sleep, making a serial use of the communication component
of the system. Consequently, the master process becomes the
bottleneck of the parallel implementation as the number of
worker processes it has to serve grows. This situation is also
common when dealing with the metadata of a spatial region,
which may relate to several elements of a RSG, making it
a frequent cause of load imbalance [11], [16], [44]. In our
case, the transmitter configuration and its antenna diagram



ARXIV.ORG PREPRINT 6

represent metadata that are complementary to the sub-region
that a transmitter covers.

Hybrid MPI-OpenMP implementations [38], [39], in which
no MPI calls are issued inside the OpenMP-parallel regions,
also fail to saturate the network [30]. A possible solution to
this problem is to improve the communication overlap among
the processes. To this end, we have implemented non-blocking
point-to-point MPI operations, and an independent thread in
the worker process to save the intermediate results to a DB.
We use one such database system per computer cluster, which
also serves the input data to the GRASS, in order to aggregate
the partial results of the path-loss predictions or to visualize
them. It is important to note that any kind of database system
may be used. By this we mean relational, distributed [28]
or even those of the NoSQL type [37]. Nevertheless, in this
study we use a central relational database system, since they
are the most popular and widely available ones. Additionally,
the non-blocking message-passing technique used to distribute
the work-load among the nodes provides support for heteroge-
neous environments. As a result, computing nodes featuring
more capable hardware receive more work than those with
weaker configurations, thus ensuring a better utilization of the
available computing resources despite hardware diversity and
improved load balancing.

1) Master process: The master process, for which the flow
diagram is given in Figure 5 on page 7, is the only component
that runs within the GRASS environment. As soon as the
master process starts, the input parameters are read. This step
corresponds to “Read input data” in Figure 5 on page 7, and
it is carried out in a similar way as in the serial version.
The next step delivers the metadata that is common to all
the transmitters and the whole region to all the processes
(see “Metadata broadcasting” in Figure 5 on page 7). Before
distributing the work among the worker processes, the master
process proceeds to decompose the loaded raster data into
2D matrices of basic-data-type elements, e.g., float or double,
before dispatching them to the multiple worker processes. In
this case, the decomposition applies to the DEM and the clutter
data only, but it could be applied to any point-based data set.
In the next step, the master process starts an asynchronous
message-driven processing loop (see “Processing loop” in
Figure 5 on page 7), the main task of which is to assign and
distribute the sub-region and configuration data of different
transmitters among the idle worker processes.

The flow diagram shown in Figure 6 on page 7 illustrates the
“Processing loop” step of the master process. In the processing
loop, the master process starts by checking the available
worker processes, which will calculate the radio-coverage
prediction for the next transmitter. It is worth pointing out
that this step also serves as a stopping condition for the
processing loop itself (see “Any worker still on?” in Figure
6 on page 7). The active worker processes inform the master
process that they are ready to compute by sending an idle
message (see “Wait for idle worker” in Figure 6 on page
7). The master process then announces to the idle worker
process that it is about to receive new data for the next
calculation, and it dispatches the complete configuration of the
transmitter to be processed (see “Send keep-alive message”

and “Send transmitter data” steps, respectively, in Figure 6
on page 7). This is only done in the case that there are
transmitters for which the coverage prediction has yet to be
calculated (see “Any transmitters left?” in Figure 6 on page
7). The processing loop of the master process continues to
distribute the transmitter data among the worker processes,
which asynchronously become idle as they finish the radio-
prediction calculations they have been assigned by the master
process. When there are no more transmitters left, all the
worker processes announcing they are idle will receive a
shutdown message from the master process, indicating to them
that they should stop running (see “Send stop message” in
Figure 6 on page 7). The master process will keep doing this
until all the worker processes have finished (see “Any worker
still on?” in Figure 6 on page 7), thus fulfilling the stopping
condition for the processing loop.

Finally, the last step of the master process is devoted to
creating the final output of the calculation, e.g., a raster map
(see “Create final coverage prediction” in Figure 5 on page
7). The final coverage prediction of all the transmitters is an
aggregation from the individual path-loss results created by
each of the worker processes during the “Processing loop”
phase in Figure 5 on page 7, which provides the source data
for the final raster map. The aggregation of the individual
transmitter path-loss results is accomplished by issuing an
SQL query over the database tables containing the partial
results, in a similar way as in the serial version.

2) Worker processes: An essential characteristic of the
worker processes is that they are completely independent of
the GRASS, i.e., they do not have to run within the GRASS
environment nor use any of the GRASS libraries to work. This
aspect significantly simplifies the deployment phase to run
PRATO on a computer cluster, since no GRASS installation is
needed on the computing nodes hosting the worker processes.

One possibility to overcome the thread-safety limitation of
the GRASS is to save the transmitter path-loss predictions
through the master process, thus avoiding concurrent access.
However, for the workers to send intermediate results back to
the master process, e.g., as in [1], [18], is a major bottleneck
for the scalability of a parallel implementation. The scalability
is limited by the master process, because it must serially
process the received results in order to avoid inconsistencies
due to concurrent access. Instead, our approach allows each
of the worker processes to output its intermediate results
into a DB, i.e., each path-loss prediction in its own table.
Additionally, worker processes do this from an independent
thread, which runs concurrently with the calculation of the
next transmitter received from the master process. In this
way, the overlap between the calculation and communication
significantly hides the latency created by the result-dumping
task, thus making better use of the available system resources.

The computations of the worker processes, for which the
flow diagram is given in Figure 7 on page 8, begin by receiving
metadata about the transmitters and the geographical area from
the master process during the initialization time (see “Receive
broadcasted metadata” in Figure 7 on page 8).

After the broadcasted metadata are received by all the
worker processes, each one proceeds to inform the master



ARXIV.ORG PREPRINT 7

Start

Read input data

Metadata broadcasting

Stop

Processing loop

Create nal coverage

         prediction

Figure 5. Flow diagram of the master process.

Start

Send transmitter data

Stop

Wait for idle worker

Send keep-alive

     message

Yes

Any worker

   still on?

      Any 

transmitters

      left?

Yes

Send stop message
No

No

Figure 6. Flow diagram of the “Processing loop” step of the master
process.

process that it is ready (i.e., in an idle state) to receive the
transmitter-configuration data that defines which transmitter
path-loss prediction to perform (see “Send idle message” in
Figure 7 on page 8). If the master process does not give
the instruction to stop processing (see “Has stop message
arrived?” in Figure 7 on page 8), the worker process collects
the sub-region spatial data and the transmitter configuration
(see “Receive transmitter data” in Figure 7 on page 8). In the
event that a stop message is received, the worker process will
wait for any result-dumping thread to finish (see “Wait for
result-dump thread” in Figure 7 on page 8) before shutting
down. The coverage calculation itself follows a similar design
as the serial version (see “Coverage calculation” in Figure 7
on page 8).

As mentioned before, the worker process launches an inde-
pendent thread to save the path-loss prediction of the target
transmitter to a database table (see “Threaded save path-loss
to DB” in Figure 7 on page 8). It is important to note that
there is no possibility of data inconsistency due to the saving
task being executed inside a thread, since path-loss data from
different workers belong to different transmitters and are, at
this point of the process, mutually exclusive.

3) Master-worker communication: Similar to [38], [39], the
message-passing technique used in this work enables a better
use of the available computing resources, both in terms of
scalability and load balancing, while introducing a negligible
overhead. This last point is supported by the experimental
results, introduced in Section V-C.

The first reason to implement the message-passing tech-
nique is to support heterogeneous computing environments.
In particular, our approach focuses on taking full advantage of
the hardware of each computing node, thus explicitly avoiding
the bottlenecks introduced by the slowest computing node in

the cluster. This problem appears when evenly distributing the
data among the worker processes on disparate hardware, as
in [2], [18], being more noticeable with a larger number of
computing nodes and processes. In other words, computing
nodes that deliver better performance have more calculations
assigned to them. Moreover, in real-world scenarios, it is often
the case that a large number of dedicated computing nodes
featuring exactly the same configuration is difficult to find,
i.e., not every organization owns a computer cluster.

A second reason for selecting a message-passing technique
is related to the flexibility it provides for load balancing,
which is of greater importance when dealing with extra data or
information besides just spatial data [16]. This can be seen in
Figure 6 on page 7, where the master process, before delivering
the spatial subset and transmitter-configuration data, sends a
message to the worker process, indicating that it is about to
receive more work. This a priori meaningless message plays
a key role in correctly supporting the asynchronous process
communication. Notice that the subset of spatial data that a
worker process receives is directly related to the transmitter
for which the prediction will be calculated. Similar to [38],
[39], this problem-specific property enables the use of a data-
decomposition technique based on a block partition of spatial
data, e.g., the DEM and clutter data.

In general, there are many different ways a parallel program
can be executed, because the steps from the different processes
can be interleaved in various ways and a process can make
non-deterministic choices [35], which may lead to situations
such as race conditions [9] and deadlocks. A deadlock occurs
whenever two or more running processes are waiting for each
other to finish, and thus neither ever does. To prevent PRATO
from deadlocking, message sending and receiving should be
paired, i.e., an equal number of send and receive messages on



ARXIV.ORG PREPRINT 8

Start

Receive broadcasted

         metadata

Receive transmitter data

Coverage calculation

Threaded save 

path-loss to DB

Send idle message

Wait for master's

      message

No

Stop

         Has

 stop message

      arrived?

Yes Wait for result-dump

          thread

Figure 7. Flow diagram of a worker process.

Master process Worker process

Input data broadcasting

Send idle message

Send keep-alive message

Send stop message

Send idle message

( ... )Processing
     loop

Figure 8. Communication diagram, showing message passing between
master and one worker process.

the master and worker sides [35].
Figure 8 on page 8 depicts the master-worker message

passing, from which the transmitter-data transmission has been
excluded for clarity. Notice how each idle message sent from
the worker process is paired with an answer from the master
process, whether it is a keep-alive or a stop message.

V. SIMULATIONS

Considering the large computational power needed for pre-
dicting the radio-coverage of a real mobile network, the use
of a computer cluster is recommended. A computer cluster is
a group of interconnected computers that work together as a
single system. Computer clusters typically consist of several
commodity PCs connected through a high-speed local-area
network (LAN) with a distributed file system, like NFS [34].
One such system is the DEGIMA cluster [14] at the Nagasaki
Advanced Computing Center (NACC) of the Nagasaki Uni-
versity in Japan. This system ranked in the TOP 500 list of
supercomputers until June 20121, and in June 2011 it held
third place in the Green 500 list2 as one of the most energy-
efficient supercomputers in the world.

This section presents the simulations and analyses of the
parallel version of PRATO. Our aim is to provide an exhaustive

1http://www.top500.org
2http://www.green500.org

analysis of the performance and scalability of the parallel
implementation in order to achieve the objectives of this work.
The most common usage case for PRATO is to perform a
radio-coverage prediction for multiple transmitters. Therefore,
a straight-forward parallel decomposition is to divide a given
problem instance by transmitter, for which each coverage
prediction is calculated by a separate worker process.

The following simulations were carried out on 34 computing
nodes of the DEGIMA cluster. The computing nodes are
connected by a LAN, over a Gigabit Ethernet interconnect. As
mentioned before, the reason for using a high-end computer
cluster such as DEGIMA is to explore by experimentation
the advantages and drawbacks of the introduced methods.
However, this does not imply any loss of generality when
applying these principles over a different group of networked
computers, i.e., not acting as a computer cluster.

Each computing node of DEGIMA features one of two
possible configurations, namely:

• Intel Core i5-2500T quad-core processor CPU, clocked
at 2.30 GHz, with 16 GB of RAM; and

• Intel Core i7-2600K quad-core processor CPU, clocked
at 3.40 GHz, also with 16 GB of RAM.

During the simulation runs, the nodes equipped with the Intel
i5 CPU host the worker processes, whereas the master process
and the PostgreSQL database server (version 9.1.4) each run



ARXIV.ORG PREPRINT 9

on a different computing node, featuring an Intel i7 CPU. The
database server performs all its I/O operations on the local
file system, which is mounted on an 8 GB RAM disk. During
the simulations, the path-loss predictions of 5,120 transmitters
occupied less than 4 GB of this partition.

All the nodes are equipped with a Linux 64-bit operat-
ing system (Fedora distribution). As the message passing
implementation we use OpenMPI, version 1.6.1, which has
been manually compiled with the distribution-supplied gcc
compiler, version 4.4.4.

A. Test networks

To test the parallel performance of PRATO, we prepared
different problem instances that emulate real radio networks
of different sizes. In order to create the synthetic test data-sets
with an arbitrary number of transmitters, we used the real data
of a group of 2,000 transmitters, which we randomly replicate
and distribute over the whole target area. The configuration
parameters of these 2,000 transmitters were taken from the
LTE network deployed in Slovenia by Telekom Slovenije, d.d.
The path-loss predictions were calculated using the Walfisch-
Ikegami model. The digital elevation model has an area of
20,270 km2, with a resolution of 25 m2. The clutter data
extends over the same area and resolution, containing different
levels of signal loss due to land usage. For all the points within
a radius of 20 km around each transmitter, we assume that
the receiver is positioned 1.5 m above the ground, and the
frequency is set to 1,843 MHz.

B. Weak scalability

This set of simulations is meant to analyze the scalability
of the parallel implementation in cases where the workload
assigned to each process (one MPI process per processor core)
remains constant as we increase the number of processor cores
and the total size of the problem, i.e., the number of transmit-
ters deployed over the target area is directly proportional to the
number of processor cores and worker processes. We do this
by assigning a constant number of transmitters per core, while
increasing the number of cores hosting the worker processes.
Here we test for the following numbers of transmitters per
worker/core: {5, 10, 20, 40, 80}, by progressively doubling the
number of worker processes from 1 to 64.

Problems that are particularly well-suited for parallel com-
puting exhibit computational costs that are linearly dependent
on the size of the problem. This property, also referred to as
algorithmic scalability, means that proportionally increasing
both the problem size and the number of cores results in a
roughly constant time to solution.

The master-worker (MW) configuration performs result
aggregation continuously, i.e., while receiving the intermediate
results from the worker processes. In contrast, the master-
worker-DB (MWD) setup performs the result aggregation as
the final step. With this set of experiments, we would like to
investigate how the proposed MWD technique compares with
the classic MW approach in terms of scalability when dealing
with different problem instances and numbers of cores.

An important fact about the presented simulations when
using multi-threaded implementations is to avoid oversub-
scribing a computing node. For example, if deploying four
worker processes over a quad-core CPU, the extra threads
will have a counter effect on the parallel efficiency, since
the CPU resources would be exhausted, which slows the
whole process down. For this reason, we have deployed three
worker processes per computing node, leaving one core free
for executing the extra threads.

1) Results and discussion: The results represent the best
running time out of a set of 20 independent simulation runs,
in which we randomly selected both the transmitters and the
rank ordering of the worker processes. The collected running
times for the weak-scalability experiments are shown in Figure
9 on page 9. All the measurements express wall-clock times in
seconds for each setup and problem instance, defined as the
number of transmitters per process (TX/process). The wall-
clock time represents the real time that elapses from the start
of the master process to its end, including the time that passes
while waiting for the resources to become available. The
running-time improvements of the master-worker-DB against
the master-worker setup are shown in Table II.

10
0

10
1

10
2

10
3

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

W
a

ll-
c
lo

c
k
 t

im
e

 [
s
]

Number of processes

Master-worker-DB (MWD)
Master-worker (MW)

80 Tx/process40 Tx/process20 Tx/process10 Tx/process5 Tx/process

Figure 9. Measured wall-clock time for weak-scalability experiments, fea-
turing MW and MWD setups. Experiments allocate one MPI worker process
per core. The wall-clock time axis is expressed in a base-10 logarithmic scale,
whereas the axis representing the number of cores is expressed in a base-2
logarithmic scale.

Table II
RUNNING-TIME GAIN (IN PERCENT) OF THE SIMULATIONS FOR THE

WEAK-SCALABILITY OF THE MWD SETUP RELATIVE TO THE CLASSIC
MW APPROACH.

Number of cores

TX/core 1 2 4 8 16 32 64

5 -11.39 -10.42 -11.14 -0.95 11.75 26.15 32.53
10 -5.84 -7.78 -7.67 0.91 12.81 33.28 33.55
20 -8.59 -10.88 -1.04 1.95 14.29 35.23 35.27
40 -5.26 -6.90 -3.68 -0.67 17.27 36.23 36.65
80 -5.29 -7.11 -3.20 -0.31 17.94 36.32 36.57

The time measurements observed from the weak-scalability
results show that the classic MW approach performs well



ARXIV.ORG PREPRINT 10

for up to four worker processes. When using eight worker
processes, the MW setup is practically equivalent to the
MWD approach, indicating that the master process is being
fully exploited. When increasing the problem size and the
number of worker processes to 16, the running-time gain
is already clear, favoring the MWD configuration. This gain
keeps growing, although slower, as we increase the number of
worker processes to 32 and 64, confirming our hypothesis that
in a classic MW approach, the parallel efficiency is bounded
by the capacity of the master process to serve an increasing
number of worker processes. Interestingly, the gain when using
32 and 64 worker processes is almost the same. After further
investigation, we found the reason for this behavior was due to
the LAN being completely saturated by the worker processes.
Consequently, they have to wait for the network resources to
become available before sending or receiving data, which is
not the case when running the MW setup. Therefore, using the
MWD approach we hit a hardware constraint, meaning that the
bottleneck is no longer at the implementation level. Moreover,
since the master process is far from overloaded when serving
64 worker processes, we can expect the MWD approach will
keep scaling if we use a faster network infrastructure, e.g.,
10-gigabit Ethernet or InfiniBand.

Certainly, the parallel version of PRATO, when using the
MWD approach, scales better when challenged with a large
number of transmitters (5,120 for the biggest instance) over
64 cores. This fact shows PRATO would be able to calculate
the radio-coverage prediction for real networks in a feasible
amount of time, since many operational radio networks have
already deployed a comparable number of transmitters, e.g.,
the 3G network within the Greater London Authority area, in
the UK [26].

Not being able to achieve perfect weak scalability using
the MWD setup is due to a number of factors. Specifi-
cally, the overhead time of the serial sections of the parallel
process grow proportionally with the number of cores, e.g.,
aggregation of the intermediate results, although the total
contribution of this overhead remains low for large problem
sizes. Moreover, the communication overhead grows linearly
with the number of cores used. Consequently, we can confirm
the findings of [18], who concluded that the data-set size
should be large enough for the communication overhead to
be hidden by the calculation time, for parallelization to be
profitable in terms of a running-time reduction.

C. Strong scalability

This set of simulations is meant to analyze the impact
of increasing the number of computing cores for a given
problem size, i.e., the number of transmitters deployed over the
target area does not change, while only the number of worker
processes used is increased. Here we test for the following
number of transmitters: {1,280, 2,560, 5,120}, by gradually
doubling the number of workers from 1 to 64 for each problem
size.

1) Results and discussion: Similar to the weak-scalability
experiments, these time measurements show that when ap-
plying a classic MW approach the running-time reduction

10
2

10
3

10
4

 1  2  4  8  16  32  64

A
v
e

ra
g

e
 w

a
ll-

c
lo

c
k
 t

im
e

 [
s
]

Number of processes

MWD - 1280 Transmitters
MW - 1280 Transmitters

MWD - 2560 Transmitters
MW - 2560 Transmitters

MWD - 5120 Transmitters
MW - 5120 Transmitters

Figure 10. Measured wall-clock time for strong-scalability experiments, fea-
turing MW and MWD setups. Experiments assigned one MPI worker process
per core. The wall-clock time axis is expressed in a base-10 logarithmic scale,
whereas the axis representing the number of cores is expressed in a base-2
logarithmic scale.

starts flattening when more than eight worker processes are
used. Moreover, the running times for 16, 32 and 64 worker
processes are the same, i.e., it does not improve due to the
master process being saturated. In contrast, when using our
MWD technique, the running-time reduction improves for
up to 32 worker processes, after which there is no further
improvement since the network is being fully exploited. These
results clearly show that when applying parallelization using
a larger number of worker processes, the master process
becomes the bottleneck of the MW approach. When using
the MWD configuration, a steady running-time reduction is
observed, until a hardware constraint is hit, e.g., the network
infrastructure.

We have also measured the overhead of sending/receiving
asynchronous messages in order to support heterogeneous
systems, which is lower than 0.02% of the total running
time for the MW experiments, and 0.01% for the MWD
experimental set.

In order to further analyze how well the application scales
using the MW and MWD approaches, we measured the
performance of the parallel implementation in terms of its
speedup, which is defined as

S(NP ) =
execution time for base case

execution time for NP cores
, (6)

where NP is the number of cores executing the worker
processes. As the base case for comparisons we chose the
parallel implementation running on only one core and decided
against using the serial implementation. We consider that the
serial implementation is not a good base comparison for the
parallel results as it does not reuse the resources between each
transmitter-coverage calculation and it does not overlap the
I/O operations with the transmitter computations. In practice,
this means that several concatenated runs of the serial version
would be considerably slower than the parallel but single
worker implementation.



ARXIV.ORG PREPRINT 11

 1

 2

 4

 8

 16

 32

 64

 1  2  4  8  16  32  64

A
v
e

ra
g

e
 s

p
e

e
d

u
p

Number of processes

MWD
MW

Perfect speedup

Figure 11. Average speedup for strong-scalability experiments. The speedup
axis is expressed in a base-2 logarithmic scale, and the axis representing the
number of cores is expressed in a base-2 logarithmic scale.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  4  8  16  32  64

A
v
e

ra
g

e
 e

ff
ic

ie
n

c
y

Number of processes

MWD
MW

Figure 12. Average parallel efficiency for strong-scalability experiments.
The parallel-efficiency axis is expressed in a linear scale, whereas the axis
representing the number of cores is expressed in a base-2 logarithmic scale.

Using the speedup metric, linear scaling is achieved when
the obtained speedup is equal to the total number of processors
used. However, it should be noted that a perfect speedup is
almost never achieved, due to the existence of serial stages
within an algorithm and the communication overhead of the
parallel implementation.

Figure 11 on page 11 shows the average speedup of
the parallel implementation for up to 64 worker processes,
using the standard MW method and our MWD approach.
The average speedup was calculated for the three different
problem instances, i.e., 1,280, 2,560, and 5,120 transmitters
deployed over the target area. The number of transmitters used
in these problem sizes is comparable to several real-world
radio networks that were already deployed in England, e.g.,
Hampshire County with 227 base stations, West Midlands with
414 base stations, and Greater London Authority with 1,086
base stations [26]. Note that it is common for a single base
station to host multiple transmitters.

The plotted average speedup clearly shows the minimal
overhead of the MWD approach when using a small number
of worker processes. This overhead accounts for the final

aggregation of the intermediate results at the DB, which in
the MW configuration is performed along worker processing.
Like before, the DB component allows the parallel imple-
mentation to fully exploit the available computing resources
when deploying a larger number of worker processes, until
the network-speed limit is met. Of course, these results are
directly correlated with the wall-clock times shown in Figure
10 on page 10.

Another measure to study how well PRATO utilizes the
available computing resources considers the parallel efficiency
of the implementation, i.e., how well the parallel implementa-
tion makes use of the available processor cores. The definition
of parallel efficiency is as follows

E(NP ) =
S(NP )

NP
, (7)

where S(NP ) is the speedup as defined in Equation (6),
and NP is the number of cores executing worker processes.
Figure 12 on page 11 shows the average parallel efficiency of
the parallel implementation for different problem sizes as we
increase the number of processing cores. Like for the speedup
measure, we have calculated the average parallel efficiency
from the three problem instances analyzed.

The ideal case for a parallel application would be to utilize
all the available computing resources, in which case the paral-
lel efficiency would always be equal to one as we increase the
core count. From the plot in Figure 12 on page 11, we can see
that the efficiency of the MWD approach is better than in the
MW case for larger number of processes and as long as there
is still capacity at the LAN level. In accordance to the previous
analysis, the under utilization of the computing resources is
more significant when the master process is overloaded (in the
MW case) than when the network infrastructure is saturated (in
the MWD case). The lower efficiency is directly proportional
to the number of idle worker processes that are waiting for
the master process (MW case) or for network access (MWD
case).

Overall, the experimental results confirm that the objective
of fully exploiting the available hardware resources is accom-
plished when applying our MWD approach, thus improving
the scalability and efficiency of PRATO when compared with
a traditional MW method.

VI. CONCLUSION

We have presented PRATO, a parallel radio-coverage pre-
diction tool for radio networks. The tool, as well as the patterns
for exploiting the computing power of a group of networked
computers, i.e., a computer cluster, are intended to be used for
spatial analysis and decision support. The introduced MWD
technique, which combines the use of a database system
with a work-pool approach, delivers improved performance
when compared with a traditional MW setup. Moreover, the
presented system provides parallel and asynchronous compu-
tation, that is completely independent of the GIS used, in this
case the GRASS environment. Consequently, a GIS installa-
tion is needed on only one of the nodes, thus simplifying the
required system setup and greatly enhancing the applicability
of this methodology in different environments.



ARXIV.ORG PREPRINT 12

The extensive simulations, performed on the DEGIMA
cluster of the Nagasaki Advanced Computing Center, were
analyzed to determine the level of scalability of the imple-
mentation, as well as the impact of the presented methods for
parallel-algorithm design aimed at spatial-data processing. The
conducted analyses show that when using the MWD approach,
PRATO is able to calculate the radio-coverage prediction of
real-world mobile networks in a feasible amount of time,
which is not possible for a serial implementation. Moreover,
the experimental results show PRATO has a better scalability
than the standard MW approach, since it is able to com-
pletely saturate the network infrastructure of the cluster. These
promising results also show the great potential of our MWD
approach for parallelizing different time-consuming spatial
problems, where databases form an intrinsic part of almost
all GIS. Furthermore, the automatic optimization of radio
networks, where millions of radio-propagation predictions take
part in the evaluation step of the optimization process, are also
excellent candidates for this approach. Indeed, this last point
is currently undergoing extensive research and it is already
giving its first results.

Encouraged by the favorable results, further work will
include abstracting the introduced MWD principle into a
multi-purpose parallel framework such as Charm++ [20],
which provides a functionality for overlapping execution and
communication, as well as fault tolerance.

In addition, as PRATO is also a free and open-source
software project3, it can be readily modified and extended
to support, for example, other propagation models and post-
processing algorithms. This characteristic provides it with a
clear advantage when compared to commercial and closed-
source tools.

ACKNOWLEDGMENTS

This project was co-financed by the European Union,
through the European Social Fund. Hamada acknowledges
support from the Japan Society for the Promotion of Science
(JSPS) through its Funding Program for World-leading Inno-
vative R&D on Science and Technology (First Program).

REFERENCES

[1] S Akhter, K Aida, and Y Chemin. Grass gis on high performance
computing with mpi, openmp and ninf-g programming framework. In
Proceeding of ISPRS 2010, 2010.

[2] S. Akhter, Y. Chemin, and K. Aida. Porting a GRASS raster module to
distributed computing Examples for MPI and Ninf-G. OSGeo Journal,
2(1), 2007.

[3] Marc P Armstrong, Mary Kathryn Cowles, and Shaowen Wang. Using
a computational grid for geographic information analysis: a reconnais-
sance. The Professional Geographer, 57(3):365–375, 2005.

[4] R. Blazek and L. Nardelli. The GRASS server. In Proceedings of the
Free/Libre and Open Source Software for Geoinformatics: GIS-GRASS
Users Conference, 2004.

[5] D.R. Butenhof. Programming with POSIX threads. Addison-Wesley
Professional, 1997.

[6] I. Campos, I. Coterillo, J. Marco, A. Monteoliva, and C. Oldani.
Modelling of a Watershed: A Distributed Parallel Application in a Grid
Framework. Computing and Informatics, 27(2):285–296, 2012.

[7] D.J. Cichon and T. Kurner. Propagation prediction models. COST 231
Final Rep, 1995.

3The source code is available for download from http://cs.ijs.si/benedicic/

[8] Andrea Clematis, Mike Mineter, and Richard Marciano. Guest editorial:
high performance computing with geographical data. Parallel Comput-
ing, 29(10):1275–1279, 2003.

[9] C. Clemencon, J. Fritscher, M. Meehan, and R. Rühl. An implementation
of race detection and deterministic replay with MPI. EURO-PAR’95
Parallel Processing, pages 155–166, 1995.

[10] Leila De Floriani, Paola Magillo, and Enrico Puppo. Applications of
computational geometry to geographic information systems. Handbook
of computational geometry, pages 333–388, 1999.

[11] Zhaoya Gong, Wenwu Tang, David A Bennett, and Jean-Claude Thill.
Parallel agent-based simulation of individual-level spatial interactions
within a multicore computing environment. International Journal of
Geographical Information Science, 27(6):1152–1170, 2013.

[12] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel
programming with the message passing interface, volume 1. MIT press,
1999.

[13] Qingfeng Guan, Phaedon C Kyriakidis, and Michael F Goodchild. A
parallel computing approach to fast geostatistical areal interpolation.
International Journal of Geographical Information Science, 25(8):1241–
1267, 2011.

[14] T. Hamada and K. Nitadori. 190 TFlops astrophysical N-body sim-
ulation on a cluster of GPUs. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–9. IEEE Computer Society, 2010.

[15] Masaharu Hata. Empirical formula for propagation loss in land mobile
radio services. Vehicular Technology, IEEE Transactions on, 29(3):317–
325, 1980.

[16] Kenneth A Hawick, Paul David Coddington, and HA James. Dis-
tributed frameworks and parallel algorithms for processing large-scale
geographic data. Parallel Computing, 29(10):1297–1333, 2003.

[17] A. Hrovat, I. Ozimek, A. Vilhar, T. Celcer, I. Saje, and T. Javornik.
Radio coverage calculations of terrestrial wireless networks using an
open-source GRASS system. WSEAS Transactions on Communications,
9(10):646–657, 2010.

[18] F. Huang, D. Liu, X. Tan, J. Wang, Y. Chen, and B. He. Explorations of
the implementation of a parallel IDW interpolation algorithm in a Linux
cluster-based parallel GIS. Computers & Geosciences, 37(4):426–434,
2011.

[19] Qunying Huang, Chaowei Yang, Karl Benedict, Abdelmounaam Rezgui,
Jibo Xie, Jizhe Xia, and Songqing Chen. Using adaptively coupled
models and high-performance computing for enabling the computability
of dust storm forecasting. International Journal of Geographical
Information Science, 27(4), 2013.

[20] Laxmikant V. Kale and Abhinav Bhatele, editors. Parallel Science and
Engineering Applications: The Charm++ Approach. Taylor & Francis
Group, CRC Press, November 2013.

[21] Xia Li, Xiaohu Zhang, Anthony Yeh, and Xiaoping Liu. Parallel
cellular automata for large-scale urban simulation using load-balancing
techniques. International Journal of Geographical Information Science,
24(6):803–820, 2010.

[22] Christian Mehlführer, Josep Colom Colom Ikuno, Michal Šimko,
Stefan Schwarz, Martin Wrulich, and Markus Rupp. The Vienna
LTE simulators-Enabling reproducibility in wireless communications re-
search. EURASIP Journal on Advances in Signal Processing, 2011(1):1–
14, 2011.

[23] Gordon E Moore et al. Cramming more components onto integrated
circuits. Proceedings of the IEEE, 86(1):82–85, 1998.

[24] A. Neskovic and N. Neskovic. Microcell electric field strength prediction
model based upon artificial neural networks. AEU-International Journal
of Electronics and Communications, 64(8):733–738, 2010.

[25] Markus Neteler and Helena Mitasova. Open Source software and GIS.
Springer, 2008.

[26] Ofcom. Table of base station totals. Available from:
http://stakeholders.ofcom.org.uk/sitefinder/table-of-totals/, 2012.

[27] A. Osterman. Implementation of the r.cuda.los module in the open
source GRASS GIS by using parallel computation on the NVIDIA
CUDA graphic cards. Elektrotehniški Vestnik, 79(1-2):19–24, 2012.

[28] M Tamer Özsu and Patrick Valduriez. Principles of distributed database
systems. Springer, 2011.

[29] Giuseppe Piro, Luigi Alfredo Grieco, Gennaro Boggia, Francesco
Capozzi, and Pietro Camarda. Simulating LTE cellular systems: an
open-source framework. Vehicular Technology, IEEE Transactions on,
60(2):498–513, 2011.

[30] Rolf Rabenseifner, Georg Hager, and Gabriele Jost. Hybrid
MPI/OpenMP parallel programming on clusters of multi-core SMP
nodes. In Parallel, Distributed and Network-based Processing, 2009



ARXIV.ORG PREPRINT 13

17th Euromicro International Conference on, pages 427–436. IEEE,
2009.

[31] A.B. Saleh, S. Redana, J. Hämäläinen, and B. Raaf. On the coverage ex-
tension and capacity enhancement of inband relay deployments in LTE-
Advanced networks. Journal of Electrical and Computer Engineering,
2010:4, 2010.

[32] T.K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma. A survey
of various propagation models for mobile communication. Antennas and
Propagation Magazine, IEEE, 45(3):51–82, 2003.

[33] N. Shabbir, M.T. Sadiq, H. Kashif, and R. Ullah. Comparison of Radio
Propagation Models for Long Term Evolution (LTE) Network. arXiv
preprint arXiv:1110.1519, 2011.

[34] S. Shepler, M. Eisler, D. Robinson, B. Callaghan, R. Thurlow,
D. Noveck, and C. Beame. Network file system (NFS) version 4
protocol. Network, 2003.

[35] S. Siegel and G. Avrunin. Verification of halting properties for MPI
programs using nonblocking operations. Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pages 326–334, 2007.

[36] Iana Siomina and Di Yuan. Minimum pilot power for service coverage
in WCDMA networks. Wireless Networks, 14(3):393–402, June 2007.

[37] Michael Stonebraker. SQL databases v. NoSQL databases. Communi-
cations of the ACM, 53(4):10–11, 2010.

[38] Siham Tabik, Luis Felipe Romero, and Emilio López Zapata. High-
performance three-horizon composition algorithm for large-scale ter-
rains. International Journal of Geographical Information Science,
25(4):541–555, 2011.

[39] Siham Tabik, A Villegas, and Emilio López Zapata. Optimal tilt
and orientation maps: a multi-algorithm approach for heterogeneous
multicore-GPU systems. The Journal of Supercomputing, pages 1–13,
2013.

[40] Siham Tabik, Emilio L Zapata, and Luis F Romero. Simultaneous com-
putation of total viewshed on large high resolution grids. International
Journal of Geographical Information Science, 27(4):804–814, 2013.

[41] A. Valcarce, G. De La Roche, Á. Jüttner, D. López-Pérez, and
J. Zhang. Applying FDTD to the coverage prediction of WiMAX femto-
cells. EURASIP Journal on Wireless Communications and Networking,
2009:1–13, 2009.

[42] Mladen A Vouk. Cloud computing–issues, research and implementa-
tions. Journal of Computing and Information Technology, 16(4):235–
246, 2008.

[43] Shaowen Wang. A cyberGIS framework for the synthesis of cyber-
infrastructure, GIS, and spatial analysis. Annals of the Association of
American Geographers, 100(3):535–557, 2010.

[44] Michael J Widener, Neal C Crago, and Jared Aldstadt. Developing a
parallel computational implementation of amoeba. International Journal
of Geographical Information Science, 26(9):1707–1723, 2012.

[45] Howard Xia, Henry L Bertoni, Leandro R Maciel, Andrew Lindsay-
Stewart, and Robert Rowe. Radio propagation characteristics for line-
of-sight microcellular and personal communications. Antennas and
Propagation, IEEE Transactions on, 41(10):1439–1447, 1993.

[46] Ling Yin, Shih-Lung Shaw, Dali Wang, Eric A Carr, Michael W Berry,
Louis J Gross, and E Jane Comiskey. A framework of integrating GIS
and parallel computing for spatial control problems–a case study of
wildfire control. International Journal of Geographical Information
Science, 26(4):621–641, 2012.


	I Introduction
	I-A Objectives

	II Related work 
	III Radio-coverage prediction for mobile networks 
	III-A Background
	III-B Propagation modeling

	IV Design and implementation 
	IV-A Design of the serial version
	IV-A1 Isotropic path-loss calculation
	IV-A2 Antenna diagram influence
	IV-A3 Transmitter path-loss prediction
	IV-A4 Coverage prediction

	IV-B Computational complexity of the radio-coverage algorithm 
	IV-C Multi-paradigm parallel programming
	IV-D Design of the parallel version
	IV-D1 Master process
	IV-D2 Worker processes
	IV-D3 Master-worker communication


	V Simulations 
	V-A Test networks
	V-B Weak scalability
	V-B1 Results and discussion

	V-C Strong scalability
	V-C1 Results and discussion


	VI Conclusion 
	References

