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RESEARCH ARTICLE

A Formal Model to Infer Geographic Events from Sensor
Observations

Anusuriya Devarajua∗, Werner Kuhnb and Chris S. Renschlerc

aAgrosphere Institute, Forschungszentrum Jülich; bInstitute für Geoinformatics,
University of Münster; cDepartment of Geography, University at Buffalo.

The Sensor Web provides wider access to sensors and their observations via
the Web. A key challenge is to infer information about geographic events from
these observations. A systematic approach to the representation of domain
knowledge is vital when reasoning about events due to heterogeneous obser-
vational sources. This paper delivers a formal model capturing the relations
between observations and events. The model is exploited with a rule-based
mechanism to infer information about events from in-situ observations. The
paper also describes how the model’s vocabularies are used to formulate spatio-
temporal queries. A use case for reasoning about blizzard events based on real
time series illustrates the formal model.

Keywords: events, sensor web, ontology, rule-based reasoning, event-oriented queries

1. Introduction

Environmental sensors provide users with an increased understanding of geographic phe-
nomena. For example, river stage sensors aid forecasters in tracking overflow into agri-
cultural fields, satellites and weather stations help weather forecasters to predict hurri-
cane development and movement, and groundwater monitoring systems provide insights
into groundwater fluxes and nutrient dynamics. Frank suggests that, “our knowledge of
the world follows (only) from observations. [...] processes change observable properties”
(Frank 2003). The premise here is that sensors observe certain properties; these values
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can be used to reason about geographic events and their interactions with the environ-
ment (Devaraju 2012). Consider the following: when a bush fire develops, it changes
surrounding thermo-physical conditions that are indicated by observed properties such
as temperature, relative humidity, wind speed and dryness of vegetation. We infer the
presence and behavior of a bush fire from these properties and their changes.

1.1. Motivation

How can we infer meaningful descriptions of geographic events from observations? This
inference is usually carried out by environmental numerical models or spatio-temporal
models. Numerical models contain implicit assumptions concerning the occurrence-of-
interest, and are limited to domain experts and hard to manipulate, thereby limiting
interoperability across different applications (Alexandrov et al. 2011). In the geospatial
domain, there are numerous spatio-temporal models1, stemming from snapshot models
(Armstrong 1988), object or feature-oriented models representing changes of objects in
terms of spatial and attributes (Langran and Chrisman 1988, Langran 1992, Worboys
1994), or event- and process-oriented models (Peuquet and Duan 1995, Worboys 2005,
Yuan 2001, Claramunt and Thériault 1995, Worboys and Hornsby 2004). Worboys (2005)
identifies the last stage of development as “a full-blooded treatment of changes”, in which
occurrences, i.e., events, processes or actions are treated as primary modeling entities. Ac-
cording to Yuan, while various event-oriented models have introduced ideas to integrate
spatial and temporal data, “the lack of common definitions in terminology and coherent
theoretical frameworks presents many challenges to further developments in temporal
GIS ”(Yuan 2008, p.1147). “In addition to common vocabularies and theoretical frame-
works, research is needed in spatiotemporal ontology, representation, reasoning, query
analysis [...]” (Yuan 2008, p.1148). Peuquet also emphasized that “semantically-driven
representations and query languages are needed that seem ‘natural’ to the human user,
and that at the same time utilize the medium of computing to best advantage”(Peuquet
2001, p.7). Nittel et al. also expressed that, “looking at the flood of collected and inte-
grated real-time sensor data, it becomes clear that the cognitive aspects of users must be
addressed and that higher-level, semantically rich data representation models and query
languages [concerning events] are necessary”(Nittel et al. 2008, p.4). The work presented
in this paper is comparable to the last stage of development of spatio-temporal models
as suggested by Worboys (2005) in terms of its objectives, which are to represent com-
plex events, their participants and the relations between them. However, it differs from
the existing event-oriented models in several aspects. First, we use an ontology-based
approach to provide common and explicit descriptions of events as well as their sensing
information. The sensing concepts are modeled after the OGC’s Observations and Mea-
surements (O&M) data model (Cox 2007). Second, the ontological vocabularies are meant
to be ‘building blocks’ for developing application ontologies that support inferences of
events from in-situ observations. Third, we have utilized Semantic Web technologies and
reasoning mechanisms to interpret observations from various sensors. Finally, meaningful
queries concerning events are also supported.

Various ontologies have been developed to classify geographic events, e.g., (Tripathi
2005, Babitski et al. 2009, Brodaric and Probst 2009, Raskin et al. 2004). Some of these
specifications are designed for specific application domains, and only represent events

1For the literature on existing spatio-temporal models, see Langran (1989), Peuquet (2001), Pelekis et al. (2004),
Worboys (2005), Galton (2009), Yuan and Hornsby (2007).
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for their applications. They do not offer common vocabularies for representing complex
events; consider for example, how a complex event such as a run-off is made of other
events like precipitation, interception, and infiltration. Moreover, there is no support for
distinguishing participants. For instance, amounts of rainfall are produced-by a hurricane
and a number of states are affected-by the event. In the Semantic Web, event-oriented on-
tologies (Scherp et al. 2009, Schlenoff et al. 2000, Shaw et al. 2009, Van Hage et al. 2011)
capture common characteristics of events, including participation and composition rela-
tions, spatial and temporal properties. Nevertheless, the event concept is not explicitly
associated with sensing concepts such as observation event, sensor and result. A Sensor
Web consists of web-accessible sensors where the sensors and their observations can be
accessed via a common standard such as the OGC’s Sensor Web Enablement framework.
Existing formal specifications related to the framework, e.g., Bermudez et al. (2006),
Probst (2006), Compton et al. (2009) primarily represent sensors and observations. They
do not capture information concerning events (Broering et al. 2009).

As more and more observations are gathered from heterogeneous sources in the Sensor
Web, the relations between observations and inferred events should be made explicit in
a machine-readable form. Here, constructing an ontology is a promising solution as an
ontology can formally capture the knowledge of a domain, while making the domain
assumptions explicit (Noy and McGuinness 2001). Further, an ontology supports reason-
ing, thereby discovering implicit facts about the domain of interest. An ontology-based
query expansion is also useful to discover relevant information, as opposed to traditional
search queries based on relational constraints (Fu et al. 2005, Bhogal et al. 2007).

1.2. Goals and Scope

What is currently missing is a formal specification that elucidates concepts associated
with events that are particularly significant from a sensing viewpoint, and at the same
time are designed to reach Sensor Web applications. The goals of the paper are to:

a. Develop an ontology formally representing the relations between geographic events
and observations.

b. Exploit the ontological vocabularies with a reasoning and querying mechanism to
retrieve events and their sensing information.

The work described in this paper contributes to the research effort towards a generic
and formal model of events for the Sensor Web. Unlike existing work (Parent et al.
1999) dealing with multiple perspectives of the same geographic phenomena, the Sensing
Geographic Occurrences Ontology (SEGO) models events from a sensing point of view.
The ontology supports inferences of institutionalized events (Reitsma 2005) based on
the time-series produced by in-situ sensors. Institutionalized events refer to real-world
natural events whose definitions are institutionally defined. The ontology is kept at a
sufficiently general level as to be widely applicable and in accordance with the standard
observational data model (Cox 2007). We leave the technical details of sensors and sensing
procedures unspecified and to be supplied by a sensor-specific ontology such as Barnaghi
et al. (2010), Janowicz and Compton (2010).

The next section specifies related work. Section 3 presents the formal model, and
section 4 describes its implementation. Section 5 delivers the application of the model in
reasoning about blizzards over hourly time-series. A comparison between our approach
and alternative approaches is made in Section 6. Section 7 delivers conclusions.



4

2. Related Work

Table 1 provides a comparison of several semantic-based approaches to modeling and
reasoning about geographic events. The comparison provides insights for the development
of our formal model in Section 3. The

√
mark indicates that the listed approach has the

specified characteristic.
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E=Event ; P=Process E P E P E P E P E P E E E E E

REPRESENTATION
Event-Process Distinctions
An occurrence with well-defined temporal bounds, i.e.,
a beginning and an end.

√ √ √ √ √ √ √ √ √ √

An ongoing open-ended occurrence.
√ √ √

Emphasis on the whole happening, i.e., an occurrence
denotes a summary of what has happened.

√ √ √ √

Emphasis on mechanisms, i.e., a progression of related
phases over time.

√ √ √

Inter-relations between Occurrences
A composite event is made of other sub-events.

√ √ √ √ √

A durative event constitutes one or more processes.
√ √ √ √

A process constitutes one or more events.
√ √ √

A punctual event is an instantaneous temporal bound-
ary; it is not composed of any process.

√

Participants
Involvement of one or more participants in an occur-
rence

√ √ √ √ √ √ √ √

Characterization of the role of a participant.
√ √ √ √

Space and Time
The location of occurrences can be asserted to spatial
regions or named places.

√ √ √ √ √ √ √

The location of an occurrence is derived from the spa-
tial location of its participants.

√ √

Occurrences have a direct relation to time.
√ √ √ √ √ √ √ √ √ √

Sensing concepts
Sensor, sensing event, results, and observed property.

√ √

APPLICATION
Characterizing a natural occurrence and its temporal
parts.

√ √ √ √ √ √ √

Identifying geographic objects participating in an oc-
currence.

√ √ √ √ √ √ √

Reasoning about events from observations.
√ √ √

Occurrence-centric information searching and re-
trieval.

√ √ √ √

Table 1.: Representing and reasoning about events from sensor observations.

Events and Processes. A common agreement is that the distinctions between events
and processes are established on the basis of their temporal characteristics. Events are
described as having built-in terminations beyond which they cannot proceed, while pro-
cesses are not having any termination. The choice of representing these concepts is also
driven by the emphasis of an occurrence (Galton and Mizoguchi 2009, Yuan 2009, Clara-
munt and Thériault 1996). For example, one can center on events to indicate a summary
of what has happened and use processes to describe the progression of the occurrence.
Some authors assimilate events to facts. For instance, Shaw et al. (2009) considered an
event to be a record of history reported by some agent, e.g., a historian or journalist.



5

Rude and Beard (2012) focused on visualization and exploration of sensor observations
and introduced primitive events as units of change of sensing data streams. Grossner
(2010) specified historical-process as a theory of event relations. In Grossner’s terminol-
ogy, a process is known as activity. Any set of one or more activity instances given tempo-
ral boundaries is an event. Worboys (2005) does not distinguish events from processes, but
rather uses the term event to encompass all kinds of occurrences; events in his approach
are represented using algebraic approaches. Processes are also considered in the form of
actions that result in the changes of a geographic object. For instance, (Hornsby and
Egenhofer 2000) presented research on specifying identification-based change, whereas
Claramunt and Thériault (1996) defined three types of spatio-temporal processes to
specify the evolution of a single entity, the functional relationships between entities, and
the evolution of spatial structures. Recent work in this direction includes a logical frame-
work called Reasoning about Geographical Processes Campelo et al. (2011). The ontology
described in this paper does not rely entirely on the temporal character to distinguish
events from processes, but also analyzes these concepts from a sensing perspective. This
encourages an ontologically and practically sound representation. Yuan (2009) defined
an event as a notable occurrence that takes places when environmental or participants-
oriented conditions are met. This aspect is related to institutionalized events (Reitsma
2005), and has been adapted in our ontology (see Section 3.2).

Interrelation between Occurrences. There are several relations that may be defined
between events and between events and processes. For example, a complex event is com-
posed of several primitive events; an event may constitute one or more processes or a
process may constitute several events. Galton and Mizoguchi (2009), Grossner (2010)
suggested the relation between events and processes by looking at the way objects and
matter relate. This work goes back at least as far as (Bach 1986) emphasizing an event
is made of processes as an object is made of matter. In the same direction, Worboys
and Hornsby (2004) identified symmetries between events and objects, thereby suggest-
ing their relations in terms of taxonomy, composition and functionality. However, there
is redundancy between functional relations suggested between events (e.g., a perpetu-
ating event playing a positive role in the continuation of another event) and between
events and objects (e.g., perpetrator object). Our model supports both taxonomy and
composition relations; the difference is that the functional relations (Section 3.2.2) are
modeled only between objects and events due to the ontological commitment. Campelo
et al. (2011) proposed a process as a ‘chunking’ of the same type of event (e.g., spatial
changes) involving the same participants. While we agree that a process may exist by
virtue of a sequence of events, this is not a part of our ontological analysis. The main
focus of our approach is to infer information about events from observations produced
by sensors that are triggered by related processes occurring in the sensing environment.
Although the reasoning is focused on events, the notion of process is needed here to
explain how event descriptions are abstracted from the physical world; see Section 3.2.1.

Participants. Neither matter-object nor process-event is ontologically prior to the other.
This has been agreed upon by most of the existing approaches, which suggest a com-
mon participation relation. What is currently missing is the classification of functional
participatory relations (Worboys 2005). Some incorporate ‘roles’ to distinguish entities
participating in an event (Galton and Mizoguchi 2009, Scherp et al. 2009). Although
‘roles’ enable a conceptually sound model, it introduces another level of complexity in
terms of ontological representation and implementation (Probst 2007). For simplicity, we
do not accept this idea. We introduce several function-based participatory relations and
specify how these relations can be used to formulate observational queries (Section 3.2.2).
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Spatial and Temporal Information. Events have a direct relation to time. Similar to
existing approaches, our formal model includes representation of instants, intervals, and
temporal elements. Scherp et al. (2009, 2012) suggested that the spatial location of an
event is determined by the location of its participants. However, this does not necessarily
apply to all sensing applications. For further discussion and the proposed solution, see
Section 3.2.7.

Sensing Information. Most approaches lack formal vocabularies to describe how ob-
servations are related to a natural event. An exception to this generalization is the
O&M-OWL ontology supporting the Semantic Sensor Observation Service (SemSOS)
(Henson et al. 2009). The ontology classifies real world entities (e.g., object and event)
as instances of feature-of-interest (i.e., observation targets). While this is acceptable due
a different ontological commitment, the issue here is that the ontology also characterizes
an information object (e.g., coverage) as a feature-of-interest. As defined by O&M-OWL
ontology, “a coverage is a feature that acts as a function to return values from its range
for any direct position within its spatiotemporal domain”. Probst (2006) has shown that
this kind of overly-general notion prevents an ontologically sound representation, and
thereby inhibits semantics-based information discovery.

Applications. The existing events-oriented models have been employed in several use
cases. Few models have been applied to infer events from actual observations, e.g., Yuan
(2001), Rude and Beard (2012), Henson et al. (2009), Patni (2011). Yuan (2001) devel-
oped a hierarchical framework of events, processes, and states to derive storm events from
remotely-sensed layers; the work presented in this paper infers events from multiple sen-
sors producing only point observations. The model proposed by Rude and Beard (2012)
indicates the events’ spatial progression patterns over a sensed region, but it partially
covers sensing information; events and sensing information are represented implicitly.
Henson et al. (2009), Patni (2011) proposed an ontology-based approach for inferring
events in the Sensor Web. This work is the most closely related to the scope of the ap-
plication of our approach. Therefore, we compare these approaches with our approach in
terms of reasoning and querying support in Section 6.

3. An Ontology of Geographic Events for the Sensor Web

Figure 1 presents an overview of the proposed ontology. The ontological contributions
are summarized in Section 3.3. Throughout the remainder of this paper, typewriter
font is used for ontological categories and relations.

3.1. DOLCE Foundational Ontology

The foundational Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE) (Masolo et al. 2003) is adopted as a starting point for building the ontology.
The reason for choosing DOLCE is that it provides most of the general notions under
which the domain concepts can be classified. DOLCE is relatively mature in the sense
that several ontologies (Brodaric and Probst 2009, Kuhn 2009, Barnaghi et al. 2010,
Probst 2006) addressing different aspects of geospatial and sensing domains have al-
ready been aligned to DOLCE. The top categories of DOLCE are endurant, perdurant,
quality and abstract (Figure 1). Endurants exists as wholes at any time they are
present. At different times the same endurant may lose or acquire new parts, e.g.,
physical-object such as lake and forest, and amount-of-matter such as sediment and
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Figure 1.: An overview of SEGO ontology; sc, standing for subclass, represents a sub-
sumption relation.

water. Information-objects are non-physical-endurants (endurants with no mass),
e.g., time series and digital images. Perdurants extend over time; at any time at which
they exist they are only partially present, i.e., eventive occurrences such as flash floods
and storms, and stative occurrences such as raining and infiltration. Qualities are
temporal or physical properties we perceive or measure, e.g., the water level of a river
and the duration of a wildfire. A participation relation holds between an endurant and
a perdurant. A physical-quality (including a spatial-quality) is inherent-in a
physical-endurant, whereas a temporal-quality is inherent-in a perdurant. For
more information on the foundational ontology, see Masolo et al. (2003).

3.2. Ontological Categories and Relations

The following sub-sections provide descriptions clarifying these ontological questions:

a. What are the key concepts of geographic events and how can they be formally de-
scribed from a sensing perspective? (Section 3.2.1-3.2.2)

b. What are the sensing concepts required to associate observations to events, and how
can they be modeled? (Section 3.2.3-3.3.8)

3.2.1. Processes as Stimuli and Events as Inferred Occurrences

Galton (2006) advocated a theory of event-processes premised on the notion of “experi-
ential and historical” perspectives. As defined by Galton, “The experiential perspective,
EXP, relates to the world as we experience it, when it is present. [...] In contrast, the
historical perspective, HIST, relates to the faits accomplis, the historical record. It is used
to describe synoptic overviews that span a succession of instantaneous experiential snap-
shots” (Galton 2007, p.332). Kuhn proposed the notion of stimulus to link observations
to the physical world (Kuhn 2009). He specified that a stimulus can be conceptualized
as “a process (periodic or continuous) or an event (intermittent), playing the role of a
stimulus when an observer detects it” (Kuhn 2009, p.33). Galton proposed his theory
in representing geographic phenomena, but he did not analyze it from a sensor view-
point. Kuhn suggested a natural occurrence as a stimulus that triggers a sensor, but
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he did not elaborate further on its representation. We incorporate these two indepen-
dent positions to describe how events and processes link to a sensing domain. From an
observation perspective, geographic processes (geo-process) are conceptualized as “ex-
periential” entities. They are ongoing processes (geo-stimulus) that actuate a sensor
to produce observations. Not all geographic processes are necessarily stimuli. Therefore,
geo-process subsumes geo-stimulus. Geographic events (geo-event) are not directly
interacting with sensors, but rather they are “historical entities” inferred from observa-
tions. The beginning and the end of an event is identified based on certain properties
defined by a domain-of-interest. To illustrate, a series of wind speed measurements in-
dicates an ongoing airflow process triggering an anemometer. A high-wind event2 is
inferred by applying a delimiting condition over the time series. A complex example is a
combination of processes that actuate a sensor. Consider, for instance, a lysimeter that
estimates water loss from a plant-covered soil. The sensor involves water inflow (e.g.,
irrigation) and water outflow (e.g., water percolation) as its stimuli. DOLCE allows for
the possibility that a parthood or a constitution relation can exist between any instances
of perdurants (Masolo et al. 2003). Our proposal is that a complex event may have other
events as its parts (temporal-sub-event-of), and each of these sub-events is constituted
by (temporally-made-of) processes.

3.2.2. Participating Entities

The participants of an inferred event include the feature-of-interest observed by
a sensor. One way to distinguish participants from one another is by the different roles
they play in an event. In lexical semantics, these are known as thematic roles (Sowa
1996, Smith and Grenon 2004). An attempt to classify different kinds of functional par-
ticipation is presented in a lower module of DOLCE-Lite-Plus (DLP)3. However, these
relations are restricted to non-agentive-physical objects (e.g., social object) and
intentional-based types of perdurants (e.g., activity and action). Therefore, follow-
ing Sowa, Smith and Grenon (ibid.), we identify several types of participatory relations
specializing DOLCE’s participant-in relation (Table 2).

Participation Examples

Direct and agentive participation
performs, performed-by This is the parent relation of initiates, perpetuates and terminates.
initiates, initiated-by Amounts of precipitation initiate an infiltration occurrence.
perpetuates, perpetuated-by Amounts of sandy soil perpetuate an infiltration occurrence.
terminates, terminated-by A roadblock terminates the flow of traffic on a road.
Indirect and agentive participation
facilitates, facilitated-by A plot of vegetation facilitates the rainwater infiltration into the soil.
hinders, hindered-by An amount of saturated soil hinders quantities of rainwater from infiltrating

into the ground.
Primary product
produces, produced-by A snow storm produces a huge amount of snow on a specific region.
Secondary product
affects, affected-by The eruptions of Mount Merapi affected several settlements.

Table 2.: The functional participatory relations.

3.2.3. Observation Event

Barnaghi et al. (2010) classified an observation-event as a situation (i.e., a so-
cial object). Since we want to emphasize actual as well as scheduled sensing activities,

2http://forecast.weather.gov/glossary.php?word=HIGH%20WIND
3The DOLCE Lite (DOL) is the core version of the foundational ontology, whereas DLP contains all the basic
extensions (e.g., Descriptions, Places, Time, and Functional Participation) that are plugged to the DOL.

http://forecast.weather.gov/glossary.php?word=HIGH%20WIND


9

and how they lead to inferences of real events, we classify an observation-event as
a sub-class of DOLCE’s accomplishment. The observed properties, results, as well as
spatial and temporal details are associated with an observation event, not with a sen-
sor. This has the advantage that one can acquire information about distinct observation
events performed by the same sensor. An observation-event produces one or more
observation-result. Following Probst (2006), the observation-result is modeled as
a sub-class of the DOLCE’s information-object. A result can range from numerical
measurements (e.g., time-series) through categorical measurements (e.g., human weather
observations such as mild, windy and rainy) to images (e.g., aerial photographs).

3.2.4. Sensor

OGC’s SensorML specification describes sensors as entities capable of observing a
property and returning a value (Botts 2007). We model sensors as physical-object

responding to stimuli. For example, devices (e.g., a wind profiler or a stream gage) and
human observers (e.g., citizens supplying data about noise level in their neighbourhood).

3.2.5. Feature-of-Interest (FOI)

The O&M specification allows any entity to be classified as a FOI, such as sensing plat-
forms, regions, artifacts of sampling, events, sample media, and geographic objects (Cox
2007). Probst modeled the feature-of-interest4 as a subcategory of role in DOLCE,
but did not provide a full account of its representation. It is unclear how a FOI can begin
and cease playing a role, a role can be played by multiple entities, and an entity can play
multiple roles at the same time. In fact, Probst later acknowledged that “incorporating
roles into ontology engineering will yield philosophically sound ontologies at the price
of a drastically increased complexity”. For simplicity, we treat a feature-of-interest

as either a physical-object (e.g., a lake, a catchment or a volcano) or a feature5

(e.g., a gulf or a cross-section of a river) as defined in DOLCE. Most importantly, a
feature-of-interest shall be an identifiable entity from an application domain. It can
be an object itself (e.g., a river) or a part of the object that can be recognized and
observed (e.g., a branch of a river). Amounts seem to be not directly observable as it
is difficult to distinguish different portions of matter (Scheider et al. 2011). Therefore,
we do not regard an amount-of-matter as a feature-of-interest, but rather as a
constituent of a physical-object. For example, we can assign a lake (with some water
constituents) as the feature-of-interest that carries a water salinity property. This
practice of assigning indirect hosts as if they were the actual hosts is an essential part
of the conceptualization underlying natural language (Probst 2007), and is relevant to
retrieving information in a sensing domain.

3.2.6. Observed Property

We regard an observed-property as a physical-quality that inheres in a FOI. For
example, the temperature, the dissolved oxygen and the water level of a water body. We
do not consider non-sensorial, abstract properties such as a foreign-exchange rate.

3.2.7. Spatial Information

Some authors (Lombard 1986, Scherp et al. 2009) suggested that the spatial location
of an event is determined by the sum of the regions of space occupied by its participants.
This proposal will run into difficulties when the participants of an event cannot be fully

4Probst (2006) named this category as entity-of-interest.
5A feature is a tangible and “parasitic” entity that is dependent on a physical-object.
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represented. For example, from a sensing point of view, there is lack of resources with
which to describe which amounts of water participated in a stream overflow or which
puff of clouds is involved in a precipitation. In some cases, the question of where an event
takes place may refer to different aspects of the location of interest. An example of this
is the difference between the source location and the run-up location of a tsunami. From
an empirical point of view, an event can have a direct spatial location. Nevertheless, it
is not possible to model this in DOLCE, as a spatial-quality is only inherent-in

a physical-endurant; the spatial location of a perdurant comes indirectly from the
spatial location of its participants (Masolo et al. 2003). The solution is that we allow the
location of an event to be expressed in terms of physical locations (e.g., geo-coordinates)
or social conventions (e.g., administrative units).

An observation-ground is a physical-object where a sensing is assumed to be valid.
Its spatial extent is defined empirically, and implies the representative area of an inferred
event for a given in-situ sensor. For a ground in-situ observation, the sensor is in contact
with the FOI it observes, and deployed on the observation-ground, e.g., a weather
station. There can be cases where the FOIs are part-of an observation-ground

(e.g., a plot for sampling vegetation) or present near the ground (e.g., a layer of
moist air, an aquifer). For the latter, a FOI covers an observation-ground if it
is a one-sided-specific-constant-dependence ((Masolo et al. 2003, p.31)) on the
ground, and is not a part of the ground, e.g., a bush shelter covering the ground. A
feature-of-interest can be related to an observation-ground with spatial relations
such as underneath, surroundness, connectivity and containment. This aspect of research
has not been fully investigated and requires further exploration. Some of the relations
have been specified by Bittner et al. (2009), Parent et al. (2006).

3.2.8. Temporal Information

Several efforts have been made in the Semantic Web community to develop tem-
poral specifications, e.g., the DAML Ontology of Time6, the W3C’s Time Ontol-
ogy7, and the SWRL Temporal Ontology8. The observation-time specializes the
extended-proposition defined in the SWRL temporal ontology (O’Connor and Das
2011). We choose the temporal ontology due to its simplicity with considerable expres-
sivity. Further, it offers a set of rule-based built-ins that can be used to reason with
temporal information defined using the model.

3.3. Discussion I: Ontological Representation

Summarizing, we conceive a sensor as an object that responds to stimuli (e.g., geographic
processes), and thereby allows the observation of properties of a particular feature-of-
interest. A geographic event is inferred based on standardized rules expressed in terms
of observed properties. Its participants include the observed feature-of-interest. The fol-
lowing are several refinements that are applied to DOLCE.

a. In DOLCE, the event-process distinction is mainly based on two linguistic-
philosophically derived notions: homeomericity and cumulativity.9 However, from an

6http://www.cs.rochester.edu/~ferguson/daml/
7http://www.w3.org/TR/owl-time/
8http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.owl
9An occurrence is cumulative if it holds of the mereological sum of two of its instances, where it is homeomeric if
all its temporal parts can be described in the same way used for the whole occurrence.

http://www.cs.rochester.edu/~ferguson/daml/
http://www.w3.org/TR/owl-time/
http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.owl
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empirical viewpoint, geographic processes can be conceptualized as homeomeric only
up to a certain intrinsic granularity; such a granularity varies across and within sens-
ing applications. A human observer may conceive a snowing process that stops and
starts repeatedly as homeomeric, but a sophisticated sensor may observe small breaks
in between. Therefore, in the latter case, the process is regarded as anti-homeomeric.
We distinguish events from processes (stimuli) by means of their relations to a sensor,
and their temporal characteristics to cater theoretical and practical needs.

b. DOLCE allows a parthood relation between any types of perdurants, including pro-
cesses, events and states. If we follow the principle that the parthood relation can
relate only occurrences that share a similar temporal shape, then geographic pro-
cesses ought not to be specified as parts of a geographic event (or vice versa). We
specified the relation (i.e., constituent) between events and processes in analogy to
the way objects and matter relate (Bach 1986).

c. DOLCE also suggests that the spatial location of an occurrence comes indirectly from
the location of its participants. However, we have argued in Section 3.2.7 that from
an empirical point of view, an event can have its own spatial location. Therefore, we
introduce the category observation-ground to denote the location where an event
is detected. This proposal pertains to in-situ sensors.

Sensing concepts are developed here based on (Cox 2007, Kuhn 2009, Probst 2006, Bar-
naghi et al. 2010) representing observations and sensors. The existing specifications have
left a number of open questions. They have been resolved as follows:

a. Kuhn (2009) suggested both events and processes as stimuli triggering a sensor, but
he did not fully elaborate on their representation. We represent geographic processes
as stimuli that actuate sensors, and geographic events as inferred occurrences. This
proposal also clarifies the question addressed by Barnaghi et al. (2010) - “The clas-
sification of events in DUL is a work in progress. For instance, there is nothing said
about how processes differ from other kinds of events. Therefore, the pattern defines
a stimulus as a subclass-of DUL:Event”.

b. While a comprehensive specification may describe amounts as
features-of-interest, we take a pragmatic approach. We model features of
interest as something that can be identified wholly, e.g., physical-object or
feature in DOLCE.

c. Several functional relations have been specified to distinguish participants in an event.
They are meant to formulate meaningful observational queries (Section 6.2).

d. Barnaghi et al. (2010), Janowicz and Compton (2010) used the user-defined relations
to link an observation event to a sensor or an observation event to its results, without
referring explicitly to the participation relation. Probst (2006) described the relation
between an observation event and an instrument via the general participation re-
lation. We refine this with the functional participatory relations. For instance, the
produces relation indicates the primary product of an observation-event, which is
an observation-result. We specify the performs relation to link a sensor to its
observation-event as a sensor is conceptualized as the doer directly controlling an
observation event.

e. Figure 2 depicts several relations between sensing categories. Some of these relations
are inferred automatically with a rule-based mechanism, thereby eliminating the need
to specify them manually. This is described in Section 5.2.
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4. System Implementation

Figure 2 illustrates a system architecture which has been implemented using Java and
Semantic Web technologies. The ObservationManager retrieves and parses timeseries
from Climate Data Online10 and stores them in the observational database. The on-
tology repository consists of a three-layered ontology, in which a blizzard application
ontology specializes SEGO, and SEGO extends DOLCE. The application ontology rep-
resents blizzards and their related events with respect to properties observed by weather
stations. SEGO11 is expressed in the Web Ontology Language (OWL-DL). OWL DL
has its foundations in description logics. SEGO also incorporates the SWRL temporal
ontology to represent temporal information. The OntologyManager collates the obser-
vation data from the database into a knowledge base. The EventDetector supports the
OntologyManager to infer information about events, their temporal parts and their sens-
ing information from the ontological model. Here, standard and rule-based reasoning are
employed. Queries (Table 4) are expressed in SPARQL12 and executed using the Jena’s
SPARQL query engine on the Pellet-backed inference model. Inferred events and their
sensing details are accessible via the online clients (Figure 3).
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Figure 2.: System architecture. Figure 3.: Events timeline and timemap.

Standard Ontological Reasoning. The standard reasoning is done with the Pellet OWL
reasoner13 to check the logical consistency of the model, deduce new information and
update the model with inferred information. A consistency checking ensures that the on-
tology does not contain any contradictory facts. Consider for example, the domain and
range constraints on the observes relation: instance1 observes instance2. Constraints
on the relation restrict that instance1 must be a sensor and the instance2 must be
an observed-property. The reasoner will produce an ontological inconsistency error

10http://climate.weatheroffice.gc.ca/climateData/canada_e.html
11http://anusuriya.com/sego/SEGO.htm
12SPARQL is a W3C Recommendation. It is a query language for accessing data in the Semantic Web.
13http://clarkparsia.com/pellet/

http://climate.weatheroffice.gc.ca/climateData/canada_e.html
http://clarkparsia.com/pellet/
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if an instance of a geo-event is linked to an instance of an observed-property with
the relation. Similarly, assigning an individual to two disjointed categories (geo-event
and geo-process) will make the ontology inconsistent. Automated classification is also
possible on defined categories or relations through the reasoner. Consider the case where
we represent that every observed-property must have at least one has-bearer relation
with a particular feature-of-interest. This is declared as a necessary and sufficient
condition for membership in the category observed-property. When an individual satis-
fies such a condition, the reasoner automatically infers that such individual is an instance
of the specified category. Another example is when a relation (e.g., performs) has an
inverse relation (e.g., performed-by). By only asserting the first relation, the reasoner
will automatically include the latter relation. These examples show the benefits of in-
corporating an ontology-based approach within the application using an observational
database.

Rule-based Reasoning. Some inferences require additional reasoning beyond that sup-
ported by the standard reasoning with OWL-DL semantics. Therefore, we employed a
rule-based mechanism on top of the ontology. Rules are expressed in terms of ontological
vocabularies (Figure 1) using SWRL14; see Table 3 for examples of implemented rules. A
rule has the form: antecedent → consequent; this indicates that whenever the condi-
tions specified in the antecedent are satisfied, those specified in the consequent must also
be satisfied. For reasoning with the rules, we use the Jess15 inference engine. The SWRL
Rule Engine Bridge API supports the translation of OWL and SWRL rules to Jess facts
and rules, executing the rules engine, and importing the results back into the ontology.
The SWRL temporal built-ins support temporal reasoning, and the SWRL query built-in
(sqwrl:select) enables rule-based queries.

5. Use Case: Reasoning about Blizzards from Weather Observations

The ontology is evaluated by inferring blizzards from hourly time series supplied by
the Meteorological Service of Canada. Definitions for blizzards are varied, according to
whether the events occur south or north of the tree line. We use the definition of blizzard
applicable to the south of the tree line: (a) wind chill ≥ 1600 Wm−2; (b) mean wind speed
≥ 40kmh−1; (c) visibility ≤ 1km; (d) presence of blowing snow or falling snow; all the
specified conditions (a-d) are expected to last for ≥ 4 hours. A lull period of three hours
or less is allowed before a new event is logged (Lawson 2003). A lull period is judged
to be a minimal period before a new event is identified. In 2010, Environment Canada
changed the definition of a blizzard to harmonize the warnings and criteria across the
country.16 We use the old definition as our approach infers blizzards from the historical
data and verifies the results against published event reports.

5.1. Data Descriptions and Inference Results

To minimize missing data periods, we use timeseries of consecutive months (Nov-Dec,
1995-1997) from 8 selected stations in Manitoba. For the specified period, a total number
of 12 blizzards were inferred, including events that occurred within the same day, between

14http://www.w3.org/Submission/SWRL/
15http://herzberg.ca.sandia.gov/
16http://www.theweathernetwork.com/news/storm_watch_stories3&stormfile=what_is_a_blizzardij_010211

http://www.w3.org/Submission/SWRL/
http://herzberg.ca.sandia.gov/
http://www.theweathernetwork.com/news/storm_watch_stories3&stormfile=what_is_a_blizzardij_010211
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two days and events with lull periods. In addition, different types of weather events (e.g.,
snow and blowing snow) were also inferred based on timeseries from the Brandon Airport
station for the period 1958 to 1995 (see Figure 3). For some stations, wind chill values
were occasionally missing and influenced reasoning results. We estimate the missing
values with the provided wind speeds and temperates using the Siple-Passel formulae
(Siple and Passel 1945) recognized by the weather agency. For all selected stations, the
inference results match the number and duration of events as specified in the event
reports17. A tabular view of the results is also available on the timeline application.

5.2. Reasoning with Domain and Application-Specific Rules

Table 3 shows examples of domain and application specific rules related to the applica-
tion. Variables are marked by question mark prefix (?x) and represent the individuals.

Purpose Domain Rules

R1 Relate a geographic event
to its feature of interest

geo-event(?g) ∧ observation-event(?e) ∧ feature-of-interest(?f)

∧ has-obs-event(?g,?e) ∧ has-foi(?e,?f) → participant-in(?f,?g)

R2 Determine participants of
a complex event based on
its sub-events

geo-event(?e1) ∧ geo-event(?e2) ∧ physical-endurant(?o) ∧
participant-in(?o,?e1) ∧ temporal-sub-event-of(?e1,?e2) →
participant-in(?o,?e2)

R3 Identify the feature of in-
terest of an observation
event

observation-event(?e) ∧ observed-property(?p) ∧
feature-of-interest(?f) ∧ has-obs-property(?e,?p) ∧
has-bearer(?p,?f) → has-foi(?e,?f)

R4 Relate a sensor to its ob-
servation results

sensor(?s) ∧ observation-event(?e) ∧ observation-result(?r) ∧
performs(?s,?e) ∧ produces(?e,?r) → has-obs-result(?s,?r)

Purpose Application Rules

R5 Identify a blizzard’s sub-
events at a given station

blizzard(?b) ∧ blowing-snow(?s) ∧ observation-ground(?r) ∧
observation-event(?e) ∧ occurs-at(?b,?r) ∧ occurs-at(?s,?r)

∧ has-obs-event(?b,?e) ∧ has-obs-event(?s,?e) ∧
has-t-quality(?b,?tq1) ∧ has-t-quality(?s,?tq2) ∧
hasValidTime(?tq1,?tb) ∧ hasValidTime(?tq2,?ts) ∧
contains(?ts,?tb,temporal:Hours) → sqwrl:select(?b,?s,?tb,?r)

R6 Infer a blizzard’s partici-
pants

blizzard(?b) ∧ snow-event(?s) ∧ physical-endurant(?o) ∧
participant-in(?o,?s) ∧ temporal-sub-event-of(?s,?b) →
participant-in(?o,?b)

R7 Reclassify a general event
to a specific type of event

blizzard(?b) ∧ extreme-blowing-snow(?bs) ∧ snow-event(?s) ∧
temporal-sub-event-of(?bs,?b) ∧ temporal-sub-event-of(?s,?b) →
traditional-blizzard(?b)

R8 Identify the occurrence of
blizzards across neighbor-
ing stations.

weather-station(?s1) ∧ weather-station(?s2) ∧
neighbour-of(?s1,?s2) ∧ has-obs-result(?s1,?r1) ∧
has-obs-result(?s2,?r2) ∧ performs(?s1,?obs1) ∧
performs(?s2,?obs2) ∧ blizzard(?b1) ∧ blizzard(?b2)

∧ has-obs-event(?b1,?obs1) ∧ has-obs-event(?b2,?obs2)

∧ has-t-quality(?b1, ?tq1) ∧ has-t-quality(?b2,?tq2)

∧ hasValidTime(?tq1, ?tv1) ∧ hasValidTime(?tq2,

?tv2) ∧ overlaps(?tv1,?tv2, temporal:Hours) →
sqwrl:select(?b1,?b2,?s1,?s2?r1,?r2)

Table 3.: Domain and application-specific rules.

a. R1 automatically links an inferred event to the observation domain with a
feature-of-interest being the participant of the event. This rule is necessary as

17Atmospheric Hazards Northern and Prairie Region, http://pnr.hazards.ca/blizzard.html [accessed 15th Decem-
ber 2011]
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descriptions about a feature of interest are usually recorded during an observation
event, whereas information about an event is inferred later.

b. R2 implies that if an event is a temporal-sub-event-of another, then the partici-
pants of the latter include the participants of the former. This rule is generic and can
be applied to different types of events. For example, R6 describes how the participants
of a blizzard event are inferred on the basis of the participants of its sub-event, at a
particular observation site.

c. R3 relates an observation event to its FOI. This kind of rule is useful in case of the
information about a feature-of-interest is only available after a scheduled observation
is performed. For example, a storm-prone area (a feature-of-interest) that is identified
based on a weather radar observing the reflectivity of a catchment.

d. Observation-event is the central category holding other sensing categories. The cat-
egory should be specified in most of the queries retrieving sensing information. To
simplify observational queries, R4 infers a direct relation between a sensor and its
results based on their relations to the relevant observation events.

e. Various kinds of events can be inferred from the same observations depending on
events rules. Co-occurrence relations between these events can be identified via tempo-
ral reasoning. Both blowing snow and blizzard events are identified independently. R5
helps inferring the temporal part of a prolonged blowing-snow event corresponding to
a blizzard event. Apart from the temporal containment, this rule can also be modified
to support other temporal relations such as contains/during, overlaps/overlapped-by
and equal.

f. There are two types of blizzards - the traditional-blizzard and the
ground-blizzard. The primary difference is that the latter solely occurs when high
winds blow snow that is already present at the surface (NOAA 2009). This means
that a ground blizzard does not involve a snowfall event. R7 re-classifies an existing
blizzard to a specific type of blizzard.

g. An interesting aspect is to analyze how properties of an event change from one sen-
sor to another neighboring sensor. The weather agency suggests that nearby stations
refer to stations within a radius of 25km of a latitude/longitude. In our rule imple-
mentation, we use the Haversine formula18 to find neighboring stations that are within
the radius distance of a given station. With this, the selected station is linked to its
nearby stations with a symmetric neighbour-of relation. Using this relation and a
temporal operation, R8 retrieves the occurrence of blizzards across nearby stations.
The observed values associated with the blizzards are also included in the reasoning
results.

5.3. Discussion II : Reasoning Support

Although the use case focuses on a specific type of event (blizzards and related weather
events), modeling and reasoning about other geographic events are possible following a
similar approach, especially when it comes to institutionalized events and their inferences
based on point observations. We have kept the ontology generic enough to be reused for
other applications. After all, the aim of using ontology is to ensure its re-usability and
extension by an application ontology. Of course, this requires additional application-
specific classes and relations to be incorporated into the developed ontology. Since the

18http://www.movable-type.co.uk/scripts/latlong.html

http://www.movable-type.co.uk/scripts/latlong.html
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ontology is available online19, it can be imported into an ontology-development tool such
as Protege to accomplish such a task. Simple rules are embedded in the ontology, whereas
complex rules are included in the system implementation. Both can be overridden by
applications wishing to modify the rules.

There are several advantages of using rules in our approach. Unlike OWL DL semantics,
a complex relation between composed properties is formed via a rule-based mechanism,
e.g., R1-R8. These rules are specified in terms of SEGO vocabularies as SWRL has a
close association with OWL. Each of these rules represents a distinct separate unit of
knowledge that can be added, modified or removed independent of the other rules. For
example, R2 is modified to form R6. Both ontologies and rules are embedded in a common
logical language; this promotes rules sharing and re-usability. In addition, SWRL features
temporal and comparison built-ins that make the rules implementation easier, e.g., R5
and R8.

SWRL has the full power of OWL DL, but at the price of decidability (Motik et al.
2005). Decidability means that we can determine whether an argument expressed in the
language of the system is valid or not in a finite amount of time. In our implementation, we
handle this by DL-safe rules, i.e., a rule-extension of OWL DL and a decidable fragment
of SWRL. Practically, this means that the variables in rules are only bound to known
individuals, thereby making the rules decidable.

The OWL semantics adopts an Open-World Assumption (OWA), in which the valida-
tion is limited, e.g., there is no way to use negation as failure. Similarly, SWRL does not
allow non-monotonic negation in the rules. A ground blizzard is a blizzard that does not
involve a snowfall event. This definition is inherently closed world in the sense that the
information is assumed to be complete. Therefore, we identify ground-blizzards by using
the SPARQL filter expression not exists. This expression supports negation in SPARQL.
It can be used to verify the absence of a query pattern in an inferred model.

Another issue is that some rules include additional constructs to the actual individual
arguments that need to be considered during the reasoning. The “unwanted” proliferation
of rule constructs makes the reasoning cumbersome. For example, R5 and R8 include
additional rule expressions as the event’s temporal property from SEGO specializes the
temporal category in the external ontology.

6. Comparison With A Closely Related Approach

This section compares our approach with the Kno.e.sis Semantic Sensor Web20 project.
The comparison is made with respect to the ontological support for retrieving events
and their sensing descriptions. Within the Kno.e.sis project, there are two closely related
efforts: (a) A semantically enabled Sensor Observation Service (SemSOS) that introduces
an O&M-OWL ontology to support the retrieval of high-level knowledge from low-level
observations (Henson et al. 2009), and (b) another application implementing the ontology
to derive meaningful abstractions from data streams and publishing these as Linked Data
(Patni 2011).21

The similarity between our ontology and that of SemSOS lies in their covering the basic

19http://www.anusuriya.com/sego/SEGOv3.owl
20http://knoesis.org/projects/ssw
21Patni (2011), Patni et al. (2011) uses the O&M component of the Sensor and Sensor Network (SSN) ontology
prior to the modularisation and alignment of the ontology to DOLCE Ultra Lite. This component of the ontology
resembles the SemSOS O&M-OWL ontology.

http://knoesis.org/projects/ssw
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notions addressed by the OGC’s observational model. The differences between the two
approaches are in the way the relations between sensing categories, and between observed
properties and inferred events are represented. Two aspects covered by the SemSOS
ontology that are not fully specified in SEGO are descriptions of sensing methods, and
units of measurement. However, in our ontology, the relation between a sensor and an
observation-event is general enough to enable one to extend the respective categories
to describe the sensing methods based on Barnaghi et al. (2010), Janowicz and Compton
(2010). The categories observation-result and observed-property can be extended
with classes from ontologies such as the Measurement Units Ontology (MUO)22 and the
Ontology of Units of Measure (OM)23.

Query O&M-
OWL

SEGO

Group A: Asking sensing information.
(Q1) Specify the location and properties observed by the weather station [station id/name].   
(Q2) What are the observed properties of the [feature-of-interest] and which sensors ob-
serve them?

  

(Q3) What are the wind speed values and their observed time produced by the [station
id/name] on YYYY-MM-DD?

  

Group B: Asking information about events and their sensing information.
(Q4) What are the observed values associated with the blizzard detected by the [station
id/name] on YYYY-MM-DD?

H#  

(Q5) Which station detects more than one blizzard in YYYY and how long do these events
last?

H#  

(Q6) Are there any ground blizzards detected by the [station id/name] between YYYY-
MM-DD and YYYY-MM-DD?

N/A  

(Q7) How do observed values associated with a blizzard occurs on YYYY-MM-DD change
from the [station id/name] to its nearby stations?

H#  

Group C: Asking information about interrelation between events.
(Q8) Has a snow event occurred during the last HH hours of the blizzard [event id]? H#  
(Q9) How long does a blowing snow event last during the blizzard occurred at [observation
site] on YYYY-MM-DD?

N/A  

Group D: Asking information about participants and their roles.
(Q10) Which atmospheric features have involved in the snow event [event id]? N/A  
(Q11) Which atmospheric features have perpetuated the blowing-snow [event id]? N/A  
 Full Support H# Partial Support # Not Supported N/A: Not Applicable

Table 4.: The comparison of querying support by two ontological approaches.

6.1. Retrieving Events and Sensing Information

Previous work (Yuan and McIntosh 2002, Worboys and Hornsby 2004) suggested several
classes of queries that reflect information users would like to retrieve from an event-
oriented model. Following these suggestions, four groups (Group A-D) of application-
specific queries (Table 4) have been designed to compare both approaches. These queries
are also similar to scenarios proposed by Henson et al. (2009), Patni (2011), including
finding sensing information, higher-level events, and temporal relatedness between se-
quences of weather events. Examples of SPARQL translations of the queries are included
in Section 6.2. Note that the queries return results based on the information held in
the inferred model. Similar to SQL, they can be easily modified or extended to return
other relevant information. In Table 4, Full Support means that the specified query can
be performed with the vocabularies offered by the respective ontology. Partial Support
means that some of the vocabularies needed to form the query were missing, or that

22http://idi.fundacionctic.org/muo/muo-vocab.html
23http://www.wurvoc.org/vocabularies/om-1.6/

http://idi.fundacionctic.org/muo/muo-vocab.html
http://www.wurvoc.org/vocabularies/om-1.6/
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incomplete reasoning or unsatisfactory query results were found. N/A indicates that the
query is not within the scope of the approach.24

6.2. Discussion III: Querying Support

This section discusses how the differences in ontological representation and incomplete
reasoning mechanisms influence the retrieval of event-driven information.

Group A: Sensing Information: While both approaches can retrieve results from these
queries, the difference is that our approach simplifies the query formulation, as not
every query expression requires that an observation-event be specified. In the SemSOS
ontology, no relation is specified, for example, between a sensor and the properties it
observes, or between a sensor and its observation-result. We use rule-based reasoning
(e.g., Table 3 (R3, R4)) to automatically infer these relations. Thus, Q1 and Q3 are
performed without explicitly specifying an observation-event (see Listing 1).

PREFIX sego:<http :// data.observedchange.com/sego.owl#>
PREFIX xpth: <http ://www.w3.org /2005/ xpath -functions#>

SELECT ?sensor ?prop WHERE {
?prop sego:has -bearer ?foi.
?foi sego:has -name ?foiname.
?prop sego:observed -by ?sensor.
FILTER(xpth:contains(str(? foiname), <featureId >))}

Listing 1: (Q2) Identify properties and sensors based on a <featureId>.

Group B: Events and Observations: These queries retrieve inferred events and their
sensing information, e.g., Listing 2. For Q4 and Q5, there are discrepancies between the
published event report and the results produced by the alternative approach due to the
reasoning mechanism. The blizzard definition implies that an event is identified when
its duration is preceded by a time period in which the criteria are no longer satisfied,
then a further period that again meets the criteria. Our approach detected a blizzard
occurring for 5 hours at Winnipeg Richardson Airport from 7pm to 11pm on 9th January
1997. This matches the event record published by the weather agency. However, with the
blizzard observation rule proposed by (Henson et al. 2009), five individual events are
identified, as it infers a new event at each time instant when the measurements satisfy
the event’s condition. Our approach also supports more ‘realistic’ event reasoning as
it considers the post-condition of an event (i.e., a lull period) when identifying a new
event. For example, a blizzard is detected by our model from the same station on 8th
December 1995, from 7am until 8pm. This also matches the event record in the published
report. The time period of the event includes a lull interval (8am-9am), as during this
interval wind speed measurements do not satisfy the blizzard’s definition. However, the
alternative approaches failed to consider this in their rule-based mechanism.

To analyze the occurrence of an event beyond a particular station, one should identify
nearby stations and a temporal overlapping between inferred events. Q7 is not within
to the scope of the alternative research. However, a related aspect is that Patni (2011)
uses the GeoNames25 service to link the location of each weather station to its nearby
named location in GeoNames. This allows for the discovery of sensors near a given

24The alternative approaches infer events based on the definition specified by NOAA’s National Weather Service.
Since our implementation uses data from Environment Canada, we modify the rules specified by the approaches
to comply with the definition set by the weather agency.
25http://www.geonames.org/

http://www.geonames.org/
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named location. The same method can be adapted to find nearby stations of a selected
station26; however, the weather stations in our study area are not fully supported by
the service. Our implementation includes complete records of weather stations from the
weather agency. Therefore, we use a rule-based query (see Table 3 (R8)) to discover
related events across several neighboring stations. The radius determining a nearby
station can be overridden by applications wishing to modify the rule.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX dul: <http ://www.loa -cnr.it/ontologies/DOLCE -Lite.owl#>
PREFIX met: <http :// data.observedchange.com/meteo/blizzard.owl#>
PREFIX sego:<http :// data.observedchange.com/sego.owl#>
PREFIX time:<http :// swrl.stanford.edu/ontologies/built -ins /3.3/ temporal.owl#>
PREFIX xpth: <http ://www.w3.org /2005/ xpath -functions#>

SELECT ?station ?eventOfInterest ?obsEvent WHERE {
?station rdf:type met:weather -station. ?station sego:performs ?obsEvent.
?eventOfInterest rdf:type met:blizzard. ?eventOfInterest sego:derived -from ?obsEvent.
{

SELECT ?sensor ?sensingEvent WHERE {
?blz sego:derived -from ?sensingEvent.
?sensingEvent sego:performed -by ?sensor.
?blz dul:has -t-quality ?tq. ?tq time:hasValidTime ?st.
?st time:hasStartTime ?stime.
?st time:hasFinishTime ?etime.
FILTER(xpth:substring(str(?stime ) ,1 ,4)="1997" &&
xpth:substring(str(?etime ) ,1 ,4)="1997").
}
GROUP BY ?sensor ?sensingEvent HAVING (COUNT (?blz) > 1)

} FILTER (? station =? sensor && ?obsEvent =? sensingEvent) }

Listing 2: (Q5) Identify stations that detected more than one blizzard in 1997.

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX rdfs:<http ://www.w3.org /2000/01/ rdf -schema#>
PREFIX dul: <http ://www.loa -cnr.it/ontologies/DOLCE -Lite.owl#>
PREFIX met: <http :// data.observedchange.com/meteo/blizzard.owl#>
PREFIX sego:<http :// data.observedchange.com/sego.owl#>
PREFIX time:<http :// swrl.stanford.edu/ontologies/built -ins /3.3/ temporal.owl#>
PREFIX xpth: <http ://www.w3.org /2005/ xpath -functions#>

SELECT distinct ?blz ?snEvent ?startSnow ?endSnow WHERE {
?blz rdf:type met:blizzard. ?blz sego:occurs -at ?obsReg.
?obsReg rdfs:label ?regName. ?blz dul:has -t-quality ?tqBlz.
?tqBlz time:hasValidTime ?vtBlz. ?vtBlz time:hasFinishTime ?blzEnd.
?blz sego:has -temporal -sub -event ?snEvent. ?snEvent rdf:type met:snow.
?snEvent dul:has -t-quality ?tqSnow. ?tqSnow time:hasValidTime ?vtSnow.
?vtSnow time:hasStartTime ?startSnow. ?vtSnow time:hasFinishTime ?endSnow.
FILTER (? regName =" Brandon Airport" && xpth:substring (str(? blzEnd ) ,1 ,10)="1995 -12 -04") }

Listing 3: (Q8) Determine the occurrence of snow during a blizzard.

Group C: Interrelation between Events: Patni (2011) uses the “isBefore” relation to
represent the order in which the events are detected by the system. While this implies
that an event of the same type is detected before another, it is not possible to reason
about the temporal relation of different types of events detected by the same sensor or
between nearby sensors. In SEGO, the temporal information of inferred events is speci-
fied with the SWRL temporal ontology. Therefore, SWRLTemporalBuiltIns can be used
in rules to perform temporal operations at a particular granularity, e.g., duration, before,
after, overlaps, etc. For example, R5 in Table 3 is implemented to form a parthood rela-
tion (temporal-sub-event) between events inferred at an observation site. This relation
supports Q8 and Q9 (e.g., Listing 3). In our application ontology, the category snow
precipitation subsumes different types of snow events, e.g., snow squall and snow flur-
ries. With this subsumption relation, Q8 also considers all individuals that are instances

26This service returns the station closest to a given point: api.geonames.org/findNearByWeatherJSON?
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of the category snow precipitation. This is an example of the advantages of using an
ontology-based search over conventional search in terms of being able to make inferences
and matches not available to standard keyword retrieval.

Group D: Event-Object Participation: As we emphasized in Section 3.2.2, more in-depth
information about events should also include their participants. Consider observational
queries such as, Who initiated the Korean War in 1950? Does the bridge hinder smolt
from emigrating? How much rain was produced by the storm? Which US states were
affected by Hurricane Katrina? In SemSOS ontology, a feature can be characterized
as an information object (e.g., coverage) as well as a real world entity (e.g., object
and event). For the discovery of information sources it is important to know whether
the observation is performed on an individual real world entity or on an information
object (Probst 2006). Our ontology restricts feature-of-interest to real-world objects on
which an observation is performed, and they participate in an inferred event. With this
distinction, we can gain understanding about event-object interactions within a sensing
environment, e.g., Q10 and Q11. Another advantage of using an ontology-based search
is that Q10 is able to retrieve all the features playing different roles in a snow event.
The features roles are represented by the functional participatory relations, which are
a sub-property of DOLCE’s participant relation (Table 2). Due to this sub-property
assertion, it is inferred that these features are also participants of the event.

In short, SEGO formally captures the descriptions of events, their sub-events, partici-
pating entities, and their sensing information. By leveraging these ontological descriptions
with reasoning capabilities, meaningful queries over simple observations are supported.

7. Conclusions and Future Work

The contribution of the research lies in the development of SEGO, which constitutes
common building blocks for constructing application ontologies that account for infer-
ences of institutionalized events from in-situ observations. The paper has shown how
the ontological vocabularies are exploited with reasoning mechanisms to infer informa-
tion about events and their sensing information. This is particularly useful in the Sensor
Web in which observations are often presented in a purely syntactic way, and higher
level inferences of events based upon them are missing. The strengths and limitations
of the proposed approach have been discussed in terms of representation (Section 3.3),
reasoning (Section 5.3) and queries (Section 6.2).

An interesting follow-up is to use SEGO to develop test cases concerning institution-
alized events. For instance, in the meteorology domain, weather agencies have published
the definitions of weather events in their official glossaries. Future work should also make
the location of an inferred event more explicit, through spatial reasoning of representative
areas of several stations. Related work in this aspect is representing spatial progression
patterns of an inferred event over an observed region (Rude and Beard 2012). We have
used time-series produced by an in-situ sensor. It is also possible that a number of events
that actually occurred cannot be identified fully, as the weather station might not produce
sufficient information, for example, due to the absence of one or more observations re-
lated to the event criteria. The use of this approach, combined with concepts representing
ground-measured and satellite-derived observations as well as human observations, will
be valuable for reasoning about events. The characteristics of similar geographic events
may differ considerably and are region-dependent. To illustrate, despite the classification
of tropical cyclones being driven from wind strength, they are described differently by
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the Regional Specialized Meteorological Centres worldwide. A useful extension of the for-
mal model is to communicate these differences to aid global information access. Related
approaches in this topic are Parent et al. (2006), Brodaric (2008), Scherp et al. (2012).
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