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Abstract 

Big data has shifted spatial optimization from a purely computational-intensive 

problem to a data-intensive challenge. This is especially the case for spatio-

temporal Land Use / Cover Change (LUCC) research. In addition to greater 

variety, for example from sensing platforms, big data offers datasets at higher 

spatial and temporal resolutions; these new offerings require new methods to 

optimize data handling and analysis. We propose a LUCC-based Geospatial 

CyberInfrastructure (GCI) that optimizes big data handling and analysis, in this 

case with raster data. The GCI provides three levels of optimization. First, we 

employ spatial optimization with graph-based image segmentation. Second, we 

propose ST Atom Model to temporally optimize the image segments for LUCC.  

At last, the first two domain spatio-temporal optimization is supported by the 

computational optimization for big data analysis. The evaluation is conducted 

using DMTI (DMTI Spatial Inc.) Satellite Streetview imagery datasets acquired 

for the Greater Montreal area, Canada in 2006, 2009, and 2012 (534 GB, 60cm 

spatial resolution, RGB image). Our LUCC-based GCI builds an optimizing 

bridge among LUCC, spatio-temporal modelling, and big data. 

Keywords: LUCC; Geospatial CyberInfrastructure; Optimization; Spatio-

Temporal Object Model 

1. Introduction 

Geographic Information Science (GIScience) and Remote Sensing (RS) research into 

big data has been triggered by increasing spatial, spectral, and temporal resolutions of 

sensing systems and Web 2.0 platforms (McAfee et al., 2012). That is, we simply have 

magnitudes’ larger volumes of data, which are arriving at increasing velocity, and with 



greater variety in data structures. Big data has forced a rethinking of numerous aspects 

of GIScience, from spatial data collection and storage to sampling, analysis, and 

visualization (Hampton et al., 2013; Liang et al. 2010; Zaslavsky et al. 2013). Big data 

also requires a new architecture for managing those methods.   

Big data has the potential to shift research on detection of Land Use/Cover 

Changes (LUCC). The field of LUCC has been explored for over 50 years (Singh, 

1989). LUCC detection addresses three questions: (1) Is there any change of interest 

when comparing two or more temporally distanced datasets?; (2) What are these 

changes quantitatively?; and (3) What are the change trajectories and corresponding 

rates? Because big data affects spatial and temporal domains simultaneously, it impacts 

all three questions. Higher volumes and velocity may allow us to detect finer grained 

changes that may have been missed with datasets at coarser spatial resolution and 

temporal periodicity. Techniques in quantitative detection of LUCC should enable 

multi-temporal analysis (comparison of more than two raster datasets) and handle 

heterogeneity in spatial, spectral and temporal resolutions. Big data dramatically 

increases the number of potential changed objects (since more objects can be extracted 

from higher spatial and spectral resolutions and more object changes can be detected 

with improved temporal resolutions). Big data promises greater LUCC but renders the 

trajectories of those changes—time—more difficult to delineate.  

Additionally, big data poses significant computational challenges, such as the 

need for scalable data storage, flexible computing resource provisioning, and dynamic 

workflow management. Solutions to these challenges should be integrated with the 

domain demands of LUCC to increase accuracy of results and shorten computation 

time.  



In this paper, we propose a LUCC-based Geospatial CyberInfrastructure (GCI) 

that seeks to optimize the geospatial handling and analysis of big data. This 

optimization is three-fold. A domain-based layer handles spatial optimization through 

energy cost minimizations of pixel clustering into feature objects. Because LUCC in big 

data likely requires handling multiple time slices, our GCI temporally optimizes via 

what we call a Spatio-Temporal (ST) Atom Model. Third, our GCI optimizes 

computing resource provisioning, data decomposition, and workflow. Figure 1 shows 

how these optimizations function in our GCI. 

 [Figure 1 here] 

The paper is organized as follows. In Section 2, we discuss research to date on LUCC 

and spatio-temporal modelling. We describe our LUCC-based GCI, which attempts to 

optimize along space, time, and data handling in Section 3. We deploy and evaluate the 

optimization methods in Section 4. We conclude with opportunities for future research.  

2. LUCC and ST Optimization 

In this section, we review the related works about employing spatial optimization in 

LUCC. Then we delineate the needs of using temporal information to optimize an 

object-based LUCC. We also discuss literature on computational optimization within 

GCI for LUCC support.  

2.1 Optimization Challenges in LUCC 

Spatial optimization has been studied in LUCC for a long time (Tong and Murray, 

2012). Jenerette and Wu (2001) utilize spatial optimization to simulate the LUCC in the 

central Arizona–Phoenix region of U.S., while Ligmann‐Zielinska et al. (2008) 

optimize generative models for land-use allocation. Most of these works focus on 

spatial optimization at a given time, but temporal information has rarely been integrated 



into the optimization process.  

A traditional approach in LUCC for identifying change has been pixel-based. The pixel-

based approach relies on pixel-level calculation to generate a “difference image” (e.g., 

the subtraction of two images) to identify the relative amounts of change. This approach 

is frequently utilized for bi-temporal analysis, and generally requires imagery datasets 

to match in spatial and spectral resolutions (Singh, 1989). Reviews of LUCC (Singh, 

1989; Lu et al., 2004; Jianya et al., 2008) have revealed a gradual shift in research from 

pixel-based to object-based approaches, which work with groups of pixels as objects. In 

part, this is because increasing spatial resolutions afforded by big data allow for pixels 

that are significantly smaller than objects of interest. Object-based approaches have the 

additional advantage of moving us beyond traditional raster-vector divides that separate 

RS from GIScience.  

Blaschke (2010) terms the shift to objects as OBIA. OBIA groups similar image 

pixels as objects, calculates object features, and then applies classification algorithms 

(Congalton 1991) to label various types of changes. Walter (2004) argues that OBIA is 

less sensitive than pixel-based analyses to different spatial and spectral resolutions of 

datasets because comparing object properties (e.g., texture and shape) can identify 

change. According to Tong and Murray (2012), OBIA is a type of district optimization, 

which spatially optimize the change areas for multi-temporal LUCC. Also, because 

pixels are grouped into and then conceptually handled as objects via spatial 

optimization (Baatz and Schäpe, 2000), OBIA attempts to represent some degree of 

spatial topology in each original image with these objects.  

OBIA has its drawbacks. First, if parts of the object change from time t1 to t2 

then OBIA may mark the entire resultant object as “changed”. Figure 2 illustrates this 

issue. Second, the temporal topology is not retained in the OBIA process. The lack of 



temporal topology change information impedes integration of OBIA into multi-temporal 

LUCC, which tracks the impact of one object’s change on its neighbours over several 

periods (Pijanowski et al., 2002). If we choose OBIA then we should find techniques 

that optimize the integration of change information in both spatial and temporal 

dimensions, including the between-time topology. 

[Figure 2 here] 

Figure 2 illustrates the problems in OBIA with two images of Montreal, Canada, 

at 2009 (t1) and 2012 (t2). We show sample objects generated from clustering: at t1, a 

forest object and at t2, a forest-“donut hole” object and a building object. The building 

object compared to the spatial extent of the forest object t1 results in the whole object 

being labelled as “changed”. From Figure 2, we can see only using spatial optimization 

for image segmentation cannot solve the partial object challenge, so we need to use the 

temporal information to further optimize the OBIA.  

Before we arrive at objects, we need to group pixels according to their 

similarities. This is called image segmentation and follows three general types: spatial 

segmentation, feature-based clustering, and graph-based methods. Spatial segmentation 

extracts regional entities from imagery datasets based on the spatial structure 

information, while feature-based clustering algorithms rely on similarities of image 

features to group pixels. Graph-based image segmentation method combines elements 

of spatial- and feature- based image segmentation methods (Shi and Malik, 2000). The 

core idea of the graph based method lies in constructing a weighted graph, where each 

vertex represents pixels (regions) in the image and the weight of each edge connecting 

two pixels represents the likelihood of segmentation. The weight, which is usually 

calculated by combining feature and spatial information, forms a cost energy function. 

Minimization of the energy cost is considered a traditional spatial optimization, where 



the image is cut into several segments (Tong and Murray, 2012). Graph based 

segmentation algorithms have been studied extensively for object extraction (Sumengen 

and Manjunath, 2006; Jermyn and Ishikawa, 2001; Wu and Leahy, 1993).  

The spatial optimization found in energy cost minimization suffers from difficulties in 

determining initial values and is easy to trap with the local optimal solutions (Celik and 

Yetgin, 2011). Various parametric learning and optimization approaches have been 

applied with graph based segmentation methods to address these problems. For 

example, parametric maxflow (Gallo et al., 1989) integrates non-local feature into the 

optimization process; Kolmogorov et al. (2007) present case studies using maxflow 

approach. Lempitsky et al. (2012) propose a global optimization method called “branch-

and-mincut” for graph based image segmentation with segmentation mask and non-

local parameters. To handle multi-label image segmentation, Boykov and Funka-Lea 

(2006) supply α-expansion and αb-swap-move based algorithms.  

Building the graph and the minimization of the energy cost function are highly 

computation-intensive, and may take a long processing time. Since most research 

projects have time constraints, it is very tempting to consider High Performance 

Computing (HPC). With big data, this process becomes both data-intensive and 

computationally-intensive, so it becomes more difficult to consider this optimization 

process separately from the computation. We conclude that optimization in big data 

LUCC requires a combination of spatial, temporal, and computational optimization 

methods.  

2.2 ST Modelling and Temporal Optimization in LUCC 

Different ST models have been integrated with LUCC (Radke et al., 2005). These 

include statistical distribution modelling of the change and non-change areas (Bazi et 

al., 2005), predictive models (Veldkamp and Lambin, 2001), and cellular automata 



simulations (Li and Yeh, 2002). These applications advance temporal and spatial 

components, but not the two components equally (Deng et al., 2009; Pan et al., 1999).  

Over the years, GIScience researchers have proposed various methods to 

effectively and elegantly integrate temporal and spatial dynamics. Yuan (1996) 

provided the first survey of ST models, which illustrated their pros and cons in 

representing LUCC. More recently, Nandal (2013) reviewed ST models, and 

categorized them into ten types: snapshot model (Armstrong 1988), space-time 

composite data model (Langran and Chrisman, 1988), data models based on simple 

time-stamping (Allen, 1991), event-oriented model (Peuquet and Duan, 1995), three 

domain model (Yuan, 1999), history graph model (Van Der Wal and Pye, 2003), 

Spatio-Temporal Entity-Relationship (STER) model (Parent et al., 1999), Object-

Relationship (O-R) model (Coppin et al., 2004), ST object model (Huang and 

Chandramouli, 2009), and moving object data model (Erwig et al., 1999).  

A predominant reason why so many models have been created is that it is 

difficult to determine how best to generate and store the changes. For example, missing 

state information creates difficulty in applying event or process based temporal 

modelling (i.e., event-oriented model, O-R model, STER Model, and moving object 

data model). A challenge in applying, for example, the space-time composites model 

occurs when attempting to compare imagery datasets with heterogeneous resolutions, 

which prevents the direct overlay of temporal snapshots of land use (Nadi and Delavar, 

2003). Likewise, the difficulty of extracting semantics from imagery datasets impedes 

the employment of the three domain model. Most ST models are vector based, at least 

in their deployment; whereas, RS imagery datasets are generally raster data. ST models 

need to provide interfaces to ease the vectorization process. The simple time stamping 

and the history graph model method present difficulties in vectorizing RS datasets. ST 



models, we argue, pose a significant optimization problem that will only get worse with 

big data. 

2.3 GCI Related to LUCC 

GCIs have been designed to handle challenges found in big data research and in 

computation intensive jobs found in GIScience and RS (Wang, 2010). For example, 

Liang et al. (2010) used GCI to enable sharing and visualization of big environmental 

sensing datasets. Yue et al. (2010) proposed a semantic web based GCI to provide on-

demand RS big data products. A GCI was also developed to perform data mining from 

volunteered geographic information harvested over the Internet (Gao et al., 2014).  

GCI can provide the integration of domain specific optimization and computing 

techniques for GIScience. Consequently GCI research is intertwined with specific 

hardware and software platforms for distributed data handling. An example of this 

intertwining is Xia et al.’s (2010) hardware solution—a CUDA (Compute Unified 

Device Architecture) based GCI to accelerate inverse distance weighting and viewshed 

analysis. CUDA exacts a cost in host-device data transfer, which cannot be neglected in 

large volume transfers (Yang et al., 2008).  

Compared to hardware (e.g., CUDA, grid computing), Yang et al. (2011) 

conclude that cloud computing affords the best platform for geospatial big data. Specific 

cloud solutions include Google’s development of MapReduce, which is a software 

platform to distribute computing tasks over multiple machines. Hadoop, an open source 

implementation of MapReduce, is highlighted by Yang et al. (2010) for its capacity to 

process big spatial data.  

Hadoop is the preferred choice for GCIs due to its scalability and flexibility 

(Nurian et al., 2012). Nonetheless, it has problems. Lee et al. (2012) highlight the 

weakness of dataflow management in MapReduce. They also note the low input-output 



efficiency of MapReduce. Some researchers have begun to explore data streaming, 

which is defined as a continuous sequence of datasets. Researchers have implemented 

data streaming to analyze radar datasets (Plale 2006). Another study utilized data 

streaming for environmental observation analysis in cluster computing (Tilak 2007). 

Neither study calls their work GCI; however, they resemble GCIs in that geospatial 

analysis is conducted with distributed computing environment and the emphasis is on 

the underlying architecture. 

GCIs have not been widely applied for big data analysis in LUCC. First, domain 

specific optimization challenges in LUCC require scalable and flexible computing 

resource provisioning. Second, the massive data exchange among different computation 

process which shape LUCC are much more complicated than a collection of batch 

processing. Third, a LUCC workflow also needs to be optimized for better data transfer 

and less computation time. Therefore, the optimization of computing resource 

provisioning and workflow management need to be twisted together with LUCC 

studies. In this paper, we propose LUCC-based GCI, to provide the integrated GCI-

based optimization.  

3. LUCC-based GCI 

[Figure 3 here] 

Figure 3 illustrates the architecture of our LUCC-based GCI. This GCI provides the 

integration of domain specific optimization methods with computation optimization 

techniques. Specifically, our spatial and temporal optimization methods extract what we 

call ST atoms from multi-temporal images to detect any changes, where the ST atoms 

stand for image pixel groups that either remain or completely change across the time 

span. The whole process is supported by data streaming, Voronoi image decomposition, 

workflow optimization and scalable cloud computing resources. In the era of big data, 



we argue that we should consider optimization as a combination of domain knowledge 

and computation (Wang, 2010). Otherwise, excessively long processing times incurred, 

for example by “oversplitting” of big data due to insufficient understanding of a domain 

like LUCC, can hinder the knowledge discovery in big data.  

3.1 Optimization in the Domain Layer 

[Figure 4 here] 

Figure 4 shows the workflow of our domain layer, focusing on our optimization 

methods. First, we implement a graph-based image segmentation process to extract 

objects with spatial and spectral similarities from multi-temporal RS imagery datasets. 

Second, we use temporal topology rules to find the ST atoms with the image segments. 

Finally, we generate the change trajectories based on the ST Atom Models by applying 

classification and ST object modelling. 

3.1.1 Graph Based Image Segmentation with Spatial Optimization 

We use Xt1={x1,1, x1,2, …, xI,I}to denote an image that is recorded in time t1 with I×J 

pixels and b bands. X t1 is modelled as an undirected graph G: (V, E), where the pixel in 

spatial position (i,j) is linked with a vertex vi,j ÎV, and e i,j;t,u ÎE is the edge that 

connects vi,j to its neighboring pixel vt,u. In this paper, we consider the neighbouring 

system 𝑁 as a 4 connected grid, which consists of ordered pixel pairs (xi,j, xt,u). We 

introduce L ={1, 2, … , K} and K labels. K labels are defined for the given image, for 

multi-object segmentation. Let 𝑓 = {𝑓%&,(|𝑣+,,𝜖𝑿𝒕𝟏}  (𝑓%&,(𝜖𝑳) be the collection of all the 

pixel-label assignment. The spatial optimization is found via an energy cost function. 

The energy function of our graph based image segmentation is formulated, according to 

Boykov et al. (2001) ,as: 

𝐸(𝑓) = 𝜆∑ 𝐷(𝑓%&,()%&,(9𝑽 +	∑ 𝑉(𝑓%&,( , 𝑓>,?)%&,(,%@,A9B                         (1) 



The term 𝐷(𝑓%&,() is called the data term and 𝑉(𝑓%&,( , 𝑓%@,A) is named the smoothness term. 

𝐷(𝑓%&,() represents the cost of assigning label 𝑓%&,( to pixel 𝑣+,,; whereas 𝑉(𝑓%&,( , 𝑓%@,A) 

penalizes spatial inconsistency and tends to assign the same label to neighbouring 

pixels. Minimizing 𝐸(𝑓) will optimize segmentation in the image graph. A solution to 

the multi-labelling problem is achieved by the α-expansion algorithm (Boykov et al., 

2001). Given a labelling f and a label α, a move from f to fα is called an α-expansion if 

𝑓%&,( ≠ 𝑓%&,(
D → 𝑓%&,(

D = 𝛼. The α-expansion algorithm iterates over all labels α to find the 

best α-expansion until convergence. The drawback is that α-expansion might trap the 

local optima. The trapping problem means that a local optima (either maximum or 

minimum) within a neighbouring set of candidate solutions is mistakenly considered as 

the global optima of all the candidates. To overcome this problem, we utilize the global 

optimization branch-and-mincut algorithm (Lempitsky et al., 2012).  

To achieve the minimal value in the energy cost function, we use the branch-

and-mincut spatial optimization method. This method tends to find the global optimal 

solution by a top-down propagation of the active node in the feature space, which is 

organized as a binary tree. This technique is built on top of graph cut and branch-and-

bound algorithm (Quesada and Grossmann, 1992). Lempitsky et al. (2012) has proved 

its effectiveness in different image segmentation studies.  

We turn to the data term and smoothness term in Eq (1). It is quite difficult to 

calculate the data term 𝐷 G𝑓%&,(H = − log Pr(𝑓%&,(|𝐹%&,() directly, where 𝐹%&,(is the observed 

geometric feature vector for pixel 𝑣+,,. Liu et al. (2008) propose a super-pixel and SVM 

(Supporter Vector Machine) classification-based method to approximate the distribution 

of Pr(𝑓%&,(|𝐹%&,(). We adopt Liu et al.’s (ibid.) approach in this paper.  



𝑉(𝑓Q, 𝑓R) reflects the weight among pixels in the graph. The weight exists to 

penalize assigning different labels to adjacent pixels. The RBF (Radial Basis Function) 

kernel (Camps-Valls et al., 2008) is used for its (relative) simplicity: 

𝜔+,,;>,? = 𝑒
VWX&,(VX@,AYZ

Z

Z[Z\&]@(X&,(,X@,A)                (2) 

where Ii,j is the intensity of  xi,j , dist (𝐼+,,, 𝐼>,?) stands for the spatial distance, and  s is 

the Gaussian width. We illustrate image segmentation using RS image Xt1. The 

equations will be similar when comparing multiple images. Using the graph based 

optimization method, we can obtain a collection of image segmentations for multi-

temporal RS imagery datasets.  

3.1.2 Spatio-Temporal Atom Extraction and Labelling 

We now need to extract ST atoms using temporal optimization, which guarantees the 

ST atoms either remain the same or completely change through the study time span. The 

ST Atom Model is proposed to handle the partial object changes in Figure 2, and amend 

the lack of temporal topology in LUCC. To implement the ST atoms in LUCC we use 

the largest homogeneous units that hold their spatial and temporal features. We find that 

the object concept in ST model and OBIA can most easily be applied to the ST atoms. 

ST atoms can be viewed as hybrid vector-objects, which become the lingua franca 

between OBIA and the ST object model in LUCC. 

For pre-processing, we need to first “snap” the image segments into objects. The image 

segmentation boundary pixels obtained in Section 3.1.1 might be discrete and out of 

order. For example, the boundary of image segments may not form neat lines and may 

contain numerous small variations. To facilitate the employment of ST atom extraction, 

we utilize a chain-code (Li et al., 1995) to connect the boundary pixels and then we 



implement the Douglas-Peucker algorithm to turn the region boundary into polygons 

(Saalfeld, 1999). These processing steps turn the image segments into objects. Then 

object matching is conducted using coordinates of image registration to find the 

corresponding objects in the other time periods.  

[Table 1 here] 

The most important part of our temporal optimization is retaining the temporal 

topology. The temporal optimization process can be defined as finding the largest ST 

atoms with the constraints of temporal topology rules. Egenhofer and Al-Taha (1992) 

and Müller and Zeshen (1992) provide a set of spatial rules that explain spatial relations 

among objects (Table 1). Concepts of “equal”, “contain”, “split”, “overlap”, “merge”, 

and “covered-by” rules (Egenhofer and Al-Taha, 1992) are useful to model the 

interactions between two ST atoms with similar spatial extents. [Other topology change 

rules, like, “disjoint” in Egenhofer and Al-Taha (1992) are not included as they have 

little impact on the ST atom extraction.] In addition to considering the spatial distance 

between objects (Egenhofer and Al-Taha, 1992), we highlight the temporal topological 

changes from t1 to t2. We introduce the state of “partial change” to describe situations in 

which Object A cannot be considered having completely changed into one or more 

objects. An example of this would be parts of a roof on a hypothetical Building A that 

are re-painted. The “expand” and “shrink” topology change rules describe changes that 

involve all neighboring objects (Müller and Zeshen, 1992). The key idea is to keep ST 

atoms as the largest temporally homogeneous object. An object is split into ST atoms, 

which will be entirely changed or unchanged across the LUCC study time span. There is 

no partially changed ST atom after the employment of these rules.  



Nine rules for bi-temporal topology change are listed. More complicated 

topologies can be represented by combining two or more of these nine basic rules. For 

example, we can obtain three objects from Figure 2 t1 by simply applying the “contain” 

rule twice with a bi-temporal image pair. The ST atom extraction also can be 

parallelized to fit the distributed computing environment in our LUCC-based GCI. The 

ST atom extraction process thus becomes the temporal optimization process for OBIA.  

We first implement change masks. Change masks serve as templates for any 

interpolation, for results of temporal rule application, and for difference images that will 

then be overlaid onto the original objects to extract the atoms. Image interpolation is 

applied if the two candidate objects do not have the same spatial resolution (Lam, 

1983). We perform interpolation at this stage, instead of at the pre-processing stage, 

because the graph based image segmentation and classification parameters are very 

sensitive to the noise generated by overall image interpolation (Lempitsky et al., 2012). 

Then we utilize the univariate image differencing technique (Singh, 1989) to generate 

the “difference image”. By employing k-means clustering algorithms (Rui and Turi, 

1999) and a thresholding technique (Lu et al., 2004), the difference image is clustered as 

several change areas. Temporal topology rules are applied to each change mask, which 

are overlaid onto the original objects to generate ST atoms. Atom extraction processes 

are applied in an iterative bi-temporal way. Each time we apply one entry in Table 1 to 

extract ST atoms with the bi-temporal image pairs. An iterative application of temporal 

topology rules transforms the objects into ST atoms (more details in Section 4). 

The final process employs a classification algorithm, where the ST atoms are 

given labels to represent the actual LUCC types (e.g., forest, buildings, roads, and 

grassland). Because we use OBIA, the label is not ascribed to individual pixels but to 

ST atoms. A broad range of classification algorithms can be used to generate the labels 



(Walter, 2004). We use the SVM classification algorithm due to its high classification 

accuracy and low sensitivity to noisy data in RS analysis (Melgani and Bruzzone, 

2004). 

We create a ST LUCC optimization that can be widely applied with RS imagery 

datasets that possess a high level of variety. The increased variety of big data suggests 

that LUCC must be adjusted according to imagery datasets with heterogeneous spectral 

and spatial resolution. To some extent, our OBIA with optimization technique 

eliminates spatial and spectral heterogeneity (Chen et al., 2010); whereas temporal 

topology rules addresses the temporal heterogeneity. We also note if the spatial and 

spectral resolutions are very different (e.g., one with 0.6m spatial resolution and the 

other one with 600m), our LUCC optimization may fail.  

3.2 HPC and Workflow Management Optimization 

Workflow management is a large portion of any GCI. The LUCC-based GCI 

dataflow management layer partitions the big datasets as shown in Figure 3. We use the 

Voronoi diagram and Fortune’s Sweepline algorithm as described in Xing and Sieber 

(2014) to better decompose large datasets. This method provides rough load balancing 

and minimizes the influence of the splitting borders in LUCC. It serves as a way to 

optimize splitting tiles so that features are retained as much as possible. 

Our Voronoi-based partitioning method uses data streams afforded by Apache 

Storm, which also serves the HPC. Storm is a free and open source software project of 

the Apache Software Foundation. Storm relies on data streaming as part of real-time job 

scheduling to improve parallel computing support for big data analysis. Data streams 

can be fed into any number of processing nodes with minimum couplings in parallel. 

Storm characterizes streams as an unbounded sequence of data tuples. Data tuples may 

contain image tiles, object or ST atoms. Tuples are continuously pushed into processing 



nodes in parallel. Storm manages the network of these data streaming communications, 

which is called topology management. The Storm framework is the development tool to 

build the data stream topology and provide fault-tolerance functionalities in our LUCC-

based GCI.  

The optimization of LUCC detection computation can be formulated as the 

minimization of computation time with respect to limited computing resource. Graph 

image segmentation and ST atom extraction illustrate how Storm, the software, and data 

streaming, the concept, achieve computational optimization. Given equal computing 

resources (i.e., virtual machines {VMs} with identical configuration), it is unlikely that 

all nodes running the image segmentation tasks will finish at the same time. There will 

be a moment when some nodes finish their tasks while others are still running. Our 

LUCC-based GCI streams image segments to ST atoms extraction VM, while other 

image segmentation jobs are still running.  

[Figure 5 here] 

We choose Storm as opposed to Hadoop. Compared with a Hadoop based GCI 

(Li et al., 2011), we argue that Storm in our GCI offers better flexibility and efficiency 

in job scheduling and dataflow management. Figure 5 shows a comparison between 

Storm and Hadoop. A Hadoop based GCI must wait until all VMs finish their image 

segmentation tasks. ST atom extraction can be scheduled in parallel with image 

segmentation on Storm. Another advantage of a Storm based GCI is the use of data 

streams instead of intermediate data storage (e.g., HDFS {Hadoop Distributed File 

System} in Hadoop) for image segmentation results. This reduces input-output costs. At 

last, the cloud computing is employed to provide the scalable and flexible computing 

resource provisioning.  



4. Results 

We designed two case studies to test our LUCC-based GCI. The first case tested the 

performance of our LUCC-based GCI to optimize the LUCC detection. The second case 

compared two different spatial optimization algorithms in multi-temporal LUCC 

detection.  

Figure 6 and Table 2 show details of the implementation. The test bed was 

deployed on the Amazon Elastic Cloud Computing platform (Amazon EC2, 2014). 

Seventy-one VMs were utilized, with one local GCI controller and 70 nodes in the EC2 

cloud. Sixty data streams were configured, with 30 streams connecting graph image 

segmentation VMs to ST atom extraction VMs. Twenty were utilized for the iterative 

ST atom extraction communication. The ST atom extraction VMs were connected to 10 

classification and ST modelling VMs via 10 streams.  

We used the Storm framework to map connections between VMs. During the 

implementation on Amazon, we utilized Amazon Kinesis to perform the actual data 

streaming. Kinesis is a data streaming service to manage real-time communication 

among Amazon cloud computing components (e.g., VMs) (Amazon Kinesis, 2014). 

Kinesis replaces the default stream of Storm and has been found to exert no impact on 

Storm’s functionality (Bhartia, 2014). Then we utilized the topology interface of Storm 

to specify the topology of computing nodes and data streams.  

[Figure 6 here] 

The evaluation imagery datasets were collected in 2006, 2009, and 2012 for the 

Greater Montreal area, Canada (DMTI, 2006, 2009, 2012), with total size of 

approximately 534GB. The DMTI StreetView RGB satellite images are recorded at 

0.6m spatial resolution; we assume that no object is smaller than one pixel. We employ 

radiometric correction, geometric rectification, image registration to each of the testing 



datasets, and Voronoi image decomposition on the local controller node. Figure 6 shows 

the three steps of our ST Atom Modelling are hosted on Amazon EC2 cloud computing.  

[Table 2 here] 

4.1 ST Optimization 

We first tested our ST Atom Modelling in the LUCC-based GCI. After pre-processing, 

image tiles (i.e., Voronoi polygons) were uploaded onto Amazon cloud. A week was 

required to upload image tiles onto Amazon S3 cloud storage (Amazon S3, 2014), 

which highlights the input-output challenges in big data. The second column of Table 3 

lists the computation time of each step in our LUCC-based GCI.  

We first needed to parameterize the graph cut. We used a subset of the tiles (i.e., 

5 image tiles sampled from different areas of Montreal) to extract parameters for the 

cost energy function. Parameters were applied to the whole dataset for image 

segmentation. To avoid over-fitting, a cross validation technique was applied (Hall and 

Koch, 1992). One hundred ground truth points were selected from other image tiles to 

fine-tune the parameters. Then graph cut image segmentation was executed with the 

branch-and-mincut optimization. Finally, we followed Blaschke et al. (2000) and 

filtered objects unrelated to LUCC (e.g., vehicles).  

The graph based image segmentation method generated 42,628 objects in 2006, 

49,894 objects in 2009, and 47,742 objects in 2012. This represents relatively small 

differences (+17% and -4%) and reflects a depressed retail and residential market 

relative to other North American cities (e.g., CMHC, 2012). The Greater Montreal area 

has regions of dense urbanism but also is composed of agriculture and forest. We found 

a large number of objects located in urban portions of our study area, due to a high 

mixture of land uses. 



ST atom extraction began with pre-processing, which included spatial 

interpolation, chain-code, and Douglas-Peucker algorithm. We did not employ spatial 

interpolation since all datasets matched in spatial and spectral resolutions. We found 

some instances of non-contiguous potential atoms so we utilized chain code together 

with a regression technique (Esbensen et al., 1992) and Douglas-Peucker to “snap” 

potential atoms in objects.  

Temporal topology rules were applied to the change masks, which were then 

applied to extract the ST atoms from objects. The most applied temporal topology rules 

were “overlap” and “split”, which resulted in the large number of ST atoms. For 

example, the forest area in Figure 7 for 2006 was split as finer ST atoms, which either 

changed into buildings or remained forest across the whole study time span. Because 

there is some overlapping of the temporal topology rules (i.e., an object change can be 

classified as both "contain" and "partial change") and occasionally multiple rules can 

apply to one ST atom extraction. Building 4 in Figure 7 could utilize both “split” and 

“contain” rules. We chose the “split” rule because we utilized the 2006 objects as the 

“Object A” in Table 1. When multiple temporal topology rules are applicable, it is the 

implementation of the rules that determines the order of the rules’ application. So care 

must be taken in coding. The bi-temporal ST atom extraction output 228,683 ST atoms. 

The tri-temporal process, which compared 2006-2009 and 2009-2012, generated 

750,402 ST atoms. 

Finally, we used the SVM classification algorithm to label seven different types 

of atoms (i.e., forest, grass, farmland, bare ground, water, roads and buildings). The 

SVM training process was conducted according to Melgani and Bruzzone (2004) with 

ST atom features, like brightness, shape, and texture. SVM classification and ST 

modelling labelled 750,402 ST atoms with the pre-defined seven classes, time-stamp the 



classified atoms, and linked them in time sequential order as ST Atom Models. “Forest” 

occupied the largest areas in greater Montreal; whereas “building” class dominated in 

number.  

One thousand ground truth sampling points were randomly chosen to evaluate 

the performance of our ST optimization. These 1000 points were visually inspected and 

assigned labels. The highest accuracy was achieved in forest areas, approximately 97 

percent. The lowest accuracy is found in complex urban areas, approximately 85 

percent. The reason for this reduced accuracy is that ST atom extraction generates 

excessive numbers of atoms when there are complex object mixtures and numerous 

iterations of temporal topology rules. This results in poorer classification performance. 

For example, temporal topology rules may split one road into small blocks due to road 

repair in one study time period. Small roadblocks may possess very similar geometric 

and texture attributes and may be misclassified as buildings.  

Figure 7 shows an example of new buildings that were constructed in a forest in 

2009. Our ST optimization was able to detect these changes and presented them as ST 

atom models. Our ST Atom Model assures no partial ST atom changes across the study 

period (the “forest” ST atoms either remain as “forest” {ST Atom1 and 2} or 

completely into “buildings” {ST Atom 3 and 4}), because we optimize change 

information in both spatial and temporal domains. This evaluation proves the LUCC-

based GCI can address partial object changes using ST Atom Modelling for big data 

analysis.   

[Figure 7 here] 

4.2 Spatial Optimization Comparison 

Image segmentation optimization plays a pivotal role in our GCI-based optimization 

framework. We assessed its effect by comparing the min-cut/max-flow and branch-and-



mincut algorithm. Another 1000 ground truth points were selected to evaluate two 

instances of LUCC from 2006 to 2009, and 2009 to 2012 in greater Montreal area, 

Canada. We used a simple atom change/no-change error matrix (Macleod and 

Congalton, 1998) with reference data to test the performance of the two optimization 

algorithms. We used average accuracy from the change of seven predefined classes, and 

merged them as “change” and “no-change” super-classes. Overall accuracy can be 

calculated by adding the true change (change/change) and true no-change (no-

change/no-change) percentage in Table 4. For 2006-2009 LUCCdetection, min-

cut/max-flow achieved 97.2 percent in overall accuracy; whereas branch-and-mincut 

was 98.0 percent. Min-cut/max-flow optimization produced 96.6 percent in 2009-2012 

LUCC detection, but branch-and-mincut slightly outperformed with 97.3 percent. Both 

algorithms generated satisfying results, but the performance of branch-and-mincut was 

slightly better than min-cut/max-flow. The reason could be the best-first branch-and-

bound search mechanism of branch-and-mincut, which determines the global optima 

with searching tree techniques (Lempitsky et al., 2012). Nonetheless, this result does 

not guarantee branch-and-mincut will always outperform the min-cut/max-flow 

algorithm in graph based image segmentation. Further study is needed to find a suitable 

global optimization technique for LUCC detection. 

[Table 4 here] 

To evaluate our temporal optimization, we use the same 1000 ground truth points 

to compare the performance between the ST Atom Model and a standard OBIA change 

detection method (Chen et al. 2010). The overall accuracy of OBIA was 77.4 percent, 

which was 19.9 percent less than our ST Atom Model. We visually inspected the points 

and found OBIA mismarked 146 unchanged points as “change”, which were caused by 



the partial object changes (see Figure 2). Additionally, the standard OBIA output 

temporally isolated objects, which prevented the generation of change trajectories.  

Finally, we tested the computing optimization induced by Storm with a Hadoop 

version. Results are shown in Table 3. Hadoop required 168.7 hours, 29.6 percent more 

than the streaming implementation. Extra time was induced by HDFS based data 

exchange and unnecessary waiting time (Figure 5). Delays from the previous step 

accumulated in later steps, which explained the increasing delay in ST atom extraction, 

and classification and modelling steps in the Hadoop implementation.   

5. Conclusion 

In this paper, we presented and evaluated a GCI-based ST optimization for LUCC. 

Optimization techniques play important roles in the GCI, including the spatial, temporal 

and computational optimization techniques. With GIScience become data-driven (Miller 

and Goodchild, 2014), GCI shifts as an important knowledge discovery approach. Thus 

we can say the boundary between domain optimization and computation optimization 

will disappear in the future research.  

With the ever-increasing amounts and speed of data, GCIs should integrate new 

methods for improving input-output and computing task scheduling. Despite new 

algorithms, more prosaic optimization of data handling is likely to constrain usage of 

GCIs. Advanced optimization algorithms also should be explored to improve the 

accuracy of image segmentation and LUCC detection. For example, algebraic geometry 

optimization (Wang, 2014) can improve image segmentation, and swarm optimization 

can optimize change/unchange thresholds (Liu et al., 2014). This paper provides a 

preliminary step in re-shaping optimization as a combination of domain knowledge and 

computation. More work can be done to optimize ST models for LUCC. The ST model 

cannot express change rates explicitly and has limitations in describing changes 



semantically. This challenge might be solved by using Yuan's (1999) three domain 

model to include additional semantic information in the form of description tags for 

changes. On the other hand, the relationship between domain specific optimization and 

different computation optimization techniques also calls for further exploration. 

Hopefully, new methodologies of ST optimization within GCI will remain a focus in 

future research.  
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Figures and Images 

 

 

Figure 1. GCI-based Multi-dimensional Optimization for LUCC Research 

  



 

Figure 2. Example of drawbacks of OBIA Change Detection. Fine grained changes 

occurring at t2 will fail to be recorded when compared to change area at t1. Samples are 

extracted from Montreal Streetview satellite images 2006 and 2009 (Source: DMTI 

Inc.). 

  



 

Figure 3. LUCC-based GCI and the Multi-dimensional Optimization 

  



 

 

Figure 4. Workflow of our LUCC Framework, with input/output illustration of each 

step.  

 

  



 

Figure 5. Comparison Between Hadoop GCI and Apache Storm in Change Detection 

GCI 

  



 

Figure 6. Implementation Details of Change Detection GCI for Montreal 2006-2012. 

The test bed includes 70 VMs in Amazon EC2 and 60 Amazon Kinesis data streams. 

  



 

Figure 7. Examples. of forest changing to buildings in suburban area with results of 

image segmentation, ST atom extraction, and ST atom classification and modelling. 

Streetview image collected in 2006, 2009, and 2012 from Greater Montreal Area 

(Source: DMTI Inc.) 

 

 

 

  



Table 1. Temporal Topology Rules Chosen for ST Atoms Extraction 

 

 

  



Table 2 Testbed Configurations 

 Number 

of VMs 

Instance 

Type 

VCPU VMemory Local 

Storage 

      

Pre-Processing and 

Image Decomposition 

1 Private 

Cloud 

8 32.0 1TB 

Image Segmentation 30 m3.large 2 7.5 32 GB SSD 

ST Atom Extraction 30 m3.large 2 7.5 32 GB SSD 

Classification and ST 

Atom Modelling 

10 m3.large 2 7.5 32 GB SSD 

 

  



Table 3. Computing Time for Steps in Change Detection Implementation. Then 

compared to a second implementation in which Hadoop replaces Storm. 

Steps Change Detection GCI 

(Hours) 

Hadoop based GCI  

(Hours) 

Pre-Processing and Image Decomposition 91.4  91.4  

Image Segmentation with Optimization 19.7 26.5 

ST Atom Extraction 4.6 19.3 

Classification and Modeling 14.4 31.5 

Total 130.1 168.7 

 

 

  



Table 4. Comparison between min-cut/max-flow and branch-and-mincut optimization 

algorithms 

  2006-2009 Reference 2009-2012 Reference 

  Change 

(%) 

No-

Change 

(%) 

Total 

(%) 

Change 

(%) 

No-

Change 

(%) 

Total 

(%) 

min-cut/max-

flow 

Change 

(%) 

6.7 1.4 8.1 5.2 0.8 6.0 

No-Change 

(%) 

1.4 90.5 91.9 2.6 91.4 94.0 

Total (%) 8.7 91.3 100.0 7.8 92.2 100.0 

branch-and-

mincut 

Change 

(%) 

6.9 1.2 8.1 5.3 0.7 6.0 

No-Change 

(%) 

0.8 91.1 91.9 2.0 92.0 94.0 

Total (%) 7.7 92.3 100.0 7.5 92.7 100.0 

 

 

 

 

 


