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Abstract: Visibility modelling calculates what an observer could 7 
theoretically see in the surrounding region based on a digital model of the 8 
landscape. In some cases it is not necessary, nor desirable, to compute the 9 
visibility of an entire region (i.e. a viewshed), but instead it is sufficient 10 
and more efficient to calculate the visibility from point-to-point, or from a 11 
point to a small set of points, such as computing the intervisibility of 12 
predators and prey in an agent based simulation. This paper explores how 13 
different line-of-sight (LoS) sample ordering strategies increases the 14 
number of early target rejections, where the target is considered to be 15 
obscured from view, thereby improving the computational efficiency of 16 
the LoS algorithm. This is of particular importance in dynamic 17 
environments where the locations of the observers, targets and other 18 
surface objects are being frequently updated. Trials were conducted in 19 
three UK cities, demonstrating a robust five-fold increase in performance 20 
for two strategies (hop, divide and conquer). The paper concludes that 21 
sample ordering methods do impact overall efficiency, and that 22 
approaches which disperse samples along the LoS perform better in urban 23 
regions than incremental scan methods. The divide and conquer method 24 
minimises elevation interception queries, making it suitable when 25 
elevation models are held on disk rather than in memory, while the 26 
hopping strategy was equally fast, algorithmically simpler, with minimal 27 
overhead for visible target cases. 28 
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 30 

1 Introduction 31 

Visibility modelling is used to calculate what is theoretically visible from a specified 32 

location, with consideration given to the observer’s height and surrounding topography. 33 

Increasingly surface objects (e.g. buildings, vegetation) are included in surface models 34 
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derived from Light Detection and Ranging (LiDAR) point clouds, expanding the range 35 

of uses of visibility analysis in urban regions. Viewshed analysis calculates the regions 36 

visible from a specific location, requiring every cell in a raster surface to be accessed 37 

making it computationally expensive. However it is not always necessary to calculate 38 

the visibility from an observer to a region, but instead the visibility between defined 39 

point locations. For example computing the intervisibility between vehicles in an urban 40 

transport simulation, or animals in a predator-prey agent based model (ABM), requires 41 

visibility to be modelled from each observer’s viewpoint. In such cases computing the 42 

viewshed (i.e. region visible) for each observer would be very computationally 43 

expensive and highly inefficient as much of the calculation time would be spent 44 

computing the visibility of cells not relevant to the result. This is particularly relevant in 45 

dynamic multi-observer simulations where the locations of agents (e.g. cars, people) are 46 

frequently updated. In these instances point-to-point ray casting offers a more suitable 47 

solution, by determining if an unbroken line-of-sight (LoS) exists between set members. 48 

 This research assesses the impact that the sample order has on performance in 49 

point-to-point LoS calculations for urban regions, where only a Boolean target visibility 50 

result is required (i.e. target is visible or not visible). The paper begins with a review of 51 

visibility modelling, followed by a short introduction to the LoS model implementation, 52 

before exploring a variety of LoS sampling strategies. The sample order strategies are 53 

variations of the order in which points along the LoS are tested to determine if the target 54 

is visible or not. An ideal sampling strategy would be one that consistently resulted in 55 

early rejection of obscured targets (i.e. it avoids scanning all intermediate elevation 56 

values between object and target). Five different sampling orders were assessed across 57 

three UK cities, concluding that fivefold performance gains were possible where a 58 

divide and conquer or hopping method were used. The hopping method included a 59 

parameter for hop size, and trials showed that hop sizes of 20 to 30 metres were optimal 60 

in urban regions. An explanation for this was sought by constructing synthetic city 61 

elevation models of varying road width, revealing a strong positive correlation between 62 
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hop size and road width. The paper concludes with comments about how the LoS 63 

performance improvement may be used, with suggestions for follow up research. 64 

 65 

2 Background 66 

Visibility modelling is included in the majority of Geographic Information Systems  67 

(De Smith et al. 2007), and has become one of the most commonly used analysis tools 68 

(Davidson et al. 1993).  It is used for a range of research including landscape planning 69 

(Fisher 1996), locating the most scenic or most hidden routes (Stucky 1998), siting 70 

radio masts and wind turbines (De Floriani et al. 1994a), modelling spatial openness in 71 

built environments (Fisher-Gewirtzman and Wagner 2003), and in military exercises as 72 

a weapon surrogate (Baer et al. 2005).  73 

 Isovists (Tandy 1967, Benedikt 1979, Turner et al. 2001) have tended to be used in 74 

modelling urban visibility where a map of building footprints is available but for which 75 

there is no height information. In these cases the heights of the buildings are considered 76 

to be infinite, and the limits of visibility are determined by a building’s walls. A better 77 

approximation of visibility is possible when a Digital Surface Model (DSM) is 78 

available, typically collected using LiDAR, offering a 2.5D dataset that includes the 79 

height of surface objects such as buildings and vegetation. In these cases a viewshed 80 

(Tandy 1967, Lynch 1976) may be calculated which shows the regions visible from a 81 

specified observation location. 82 

 The computational efficiency of isovist and viewshed models has received much 83 

attention (De Floriani et al. 2000, Rana and Morley 2002, Rana 2003, Ying et al. 2006). 84 

If every terrain cell in a line-of-sight path is considered between an observer and target 85 

it is referred to as the ‘golden case’ (Rana and Morley 2002). This approach can be 86 

computationally expensive; techniques have therefore been developed to reduce the 87 

number of calculations by considering only visually important cells. For example a 88 

Triangulated Irregular Network (TIN) (De Floriani and Magillo 1994) represents the 89 
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terrain as triangles and can be used to reduce surface noise by only depicting large 90 

elevation changes. This and other terrain filtering techniques, can be used to reduce the 91 

number of observer-target pairs considered in viewshed generation (Rana and Morley 92 

2002) but are more suited to rural landscapes than the densely varied urban landscape.  93 

 The efficiency of viewshed algorithms may also be improved (Seixas et al. 1999), 94 

including strategies such as sweeping LoSs to a set of perimeter cells a fixed distance 95 

from the observer (Franklin and Ray 1994), replacing sightlines with reference planes 96 

(Wang et al. 2000), and using voxels (Carver and Washtel 2012). There are also 97 

benefits from maintaining partial blocking information using a balanced binary search 98 

tree (Van Kreveld 1996), or lists (Andrade et al. 2011),  to reduce duplication in the 99 

computation of visibility for multiple LoSs passing over a cell.  100 

 Furthermore processing times may be reduced by parallelisation across multiple 101 

cores (De Floriani et al. 1994b), across distributed systems (Mills et al. 1992), or on a 102 

Graphics Processing Unit (GPU) (Xia et al. 2010, Gao et al. 2011). The reduction in 103 

wall-clock time is not due to greater efficiency but from the computation being divided 104 

into tasks that run concurrently on multiple processing cores.  105 

 Historically visibility modelling research has focussed on rural settings using digital 106 

elevation models of the bare earth topography, but the situation has changed with the 107 

availability of LiDAR datasets that also capture surface features (e.g. buildings). The 108 

morphology of urban regions is quite different to rural regions, with more rapid 109 

elevation changes between buildings and streets, forming more densely packed ridges 110 

and valleys (Gal and Doytsher 2012).  While the best views in rural areas are from the 111 

higher elevations (hilltops), in urban space the observer is usually in the equivalent of a 112 

‘valley’, between the buildings, where dramatic changes in the visibility of features and 113 

landmarks can fall in and out of view in a matter of a few strides. As a result there is a 114 

need to revisit visibility modelling algorithms for a range of new uses in these 115 

environments. Consider for example the requirement of a location based game running 116 

on a smartphone, which can model user intervisibility. For such an application each user 117 

would provide a location (point) and require a list of which users should be visible, 118 
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without the cost (limited CPU and battery life) of determining all surrounding visible 119 

regions. Other applications of point-to-point visibility modelling include modelling the 120 

view to junctions, traffic and signals, for vehicle navigation systems (Bartie and Kumler 121 

2010, Tarel et al. 2012), GNSS shadow matching (Groves 2011), label removal for 122 

obscured features in Augmented Reality applications (e.g. Nokia City Lens), and 123 

simulations where more lifelike interactions are modelled by including visibility (e.g. 124 

predator - prey ABM, transport simulations). In these cases each observer and target can 125 

be adequately represented by a point location on the map surface, and visibility 126 

calculated using a LoS between those locations. This paper focuses on that aspect of 127 

visibility modelling, to improve the efficiency of point-to-point LoS modelling for 128 

urban environments in anticipation of their growing use within highly dynamic 129 

applications. 130 

3 Line of Sight Calculation 131 

LoS algorithms compare the vertical angle created from an observer to a specified target 132 

at another location, against the vertical angles from the observer to all cells in between 133 

(Fisher 1993). To reduce the computational cost, only the ratios need to be compared 134 

rather than actual angles. If any intermediate cell creates a viewing ratio greater than 135 

that of the observer to target ratio, then the target is considered to be obscured (Figure 136 

1). The assumption is that the target is considered to be visible until proven otherwise, 137 

and that the ratio from observer to target is the first calculation to which all other ratios 138 

are compared. As soon as an intermediate viewing ratio is calculated above that of the 139 

target, then the search may be aborted as the target has been shown to be obscured from 140 

the observer (for example in  Figure 1, 0.75 > 0.167 indicating an obscured target). 141 

 142 

 143 
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 144 
Figure 1: A line-of-sight approach calculating view ratios from observer to target. 145 

The ratio from observer to target is lower than to cell (A) therefore the target is 146 
obscured. 147 

 148 
If every terrain cell in a line-of-sight path is considered between an observer and target 149 

it is referred to as the ‘golden case’ (Rana and Morley 2002), but for a Boolean point-150 

to-point visibility result these intermediate values are not required. A simple sampling 151 

strategy is to check the ratio for each cell incrementally from the observer to the target 152 

and determine if the target cell is obscured. If it is not blocked then the next 153 

intermediate cell is tested, until either all cells along the line-of-sight have been checked 154 

and the target is considered visible, or the target is calculated to be below the current 155 

view ratio and therefore obscured from view, resulting in early scan termination. This 156 

research seeks to find if the sample ordering strategy yields performance gains for 157 

point-to-point LoS calculations in urban environments. 158 

It is important to acknowledge the impact of data structure and type on the 159 

implementation. Elevation data may be stored as a Digital Elevation Model (DEM) or a 160 

Triangulated Irregular Network (TIN) (Lee 1991); each model has associated benefits 161 

and drawbacks (Kumler 1994). For this urban study a high resolution (1 metre) DSM, 162 

based on a LiDAR dataset, was found to be more suitable than using a TIN equivalent. 163 

To maintain the vertical resolution the TIN equivalent become extremely large, and 164 

despite using spatial indexes the ray-surface intercept performance was found to be 165 

significantly inferior. This was probably a result of the complexity of the urban 166 
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morphology which can be more easily represented in a cell based data format where 167 

indexes are implicit, and ray-surface intercepts may be retrieved more rapidly.  168 

4 Line of Sight Sampling 169 

There are a number of ways to sample the values from DSM cells between an observer 170 

and target. These include using a vector line which is sampled at given intervals along 171 

its length (Figure 2a – vector ray), and a raster approach such as the Bresenham's line 172 

algorithm, which uses integer addition to determine sample cells in order along a path 173 

from an observer to a designated target (Figure 2b – raster ray). 174 

 175 

 176 

(a)                                 (b) 177 
Figure 2: Cell sampling approaches based on (a)vector and (b) raster lines 178 
  179 

For this research the vector approach was adopted due to the ease with which sample 180 

locations can be re-ordered. Samples were located by projecting a point from the 181 

observer (Figure 2a - point A) a given distance, determined by the sample method used, 182 

at a specified angle towards the target (Figure 2a - point B).  The sample ordering 183 

approaches used are illustrated in Figure 3. These were the normal forward incremental 184 

ordering (A) and reverse ordering (B), to test if obstructions near the observer or target 185 
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would result in early-target rejection.  A first/last (C) sampling strategy was also 186 

included to give equal weighting to cells near the observer and cells near the target. For 187 

a more even priority across the length of the LoS a divide and conquer sample approach 188 

was used (D) which recursively divided the LoS by half, and a hopping strategy (E) 189 

whereby samples were taken at intervals (e.g. every 2m) along the LoS from the 190 

observer to the target. In cases where the target was visible each method would result in 191 

all intermediate sample locations being scanned. 192 

 193 
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Figure 3: Example outputs for each of the LoS sample orderings used   195 
 196 

The Python code to generate each sample order is shown below. The sample value is 197 

converted into a coordinate by projecting the value as a point along the LoS from the 198 

observer towards the target; a scaling factor may be introduced to accommodate 199 

different raster cell resolutions. The target’s visibility is considered on each iteration 200 

until there are no more samples remaining (target visible), or the target is considered 201 

obscured (early rejection). The code for methods C and D are noticeably longer than the 202 

code required to implement the simpler incremental sampling strategies (A, B, E). 203 

 204 

 205 
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# [METHOD A] -- STRAIGHT ORDERING 206 
 207 
tar_dist=distance(ObstoTar) 208 
 209 
for s in range (1,tar_dist+1): 210 
    if (visibility(s)==False): 211 
        return False 212 
 213 
return True 214 
 215 
#  [METHOD B] -- REVERSE ORDERING 216 
 217 
tar_dist=distance(ObstoTar) 218 
 219 
for s in range (tar_dist,0,-1): 220 
    if (visibility(s)==False): 221 
        return False 222 
 223 
return True 224 
 225 

#  [METHOD C] -- FIRST, LAST ORDERING 226 
 227 
tar_dist=distance(ObstoTar) 228 
 229 
near_marker=0 230 
far_marker=tar_dist+1 231 
 232 
for d in range (1,tar_dist+1): 233 
    if (d%2!=0): 234 
        near_marker = near_marker+1 235 
        if (visibility(near_marker)==False): 236 
            return False 237 
 238 
 239 
    else: 240 
        far_marker = far_marker-1 241 
        if (visibility(far_marker)==False): 242 
            return False 243 
 244 
return True 245 
 246 
# [METHOD E] -- HOP ORDERING 247 
tar_dist=distance(ObstoTar) 248 
hop_n=2 #hop size in metres 249 
 250 
for offset in range (1,hop_n+1): 251 
    for s in range (offset,tar_dist+1,hop_n): 252 
        if (visibility(s)==False): 253 
        return False  254 
 255 
return True     256 
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#  [METHOD D] -- DIVIDE AND CONQUER ORDERING 258 
class Node: 259 
    def __init__(self,l=None,r=None): 260 
        self.left=l 261 
        self.right=r 262 
 263 
    def midway(self): 264 
        return (self.right-self.left)/2 + self.left 265 
     266 
 267 
class Queue (object):   268 
    def __init__(self, q=None): 269 
        if q is None: 270 
            self.q = [] 271 
        else: 272 
            self.q = list(q) 273 
    def pop(self): 274 
        return self.q.pop(0) 275 
    def append(self, element): 276 
        self.q.append(element) 277 
    def length (self): 278 
        return len (self.q) 279 
     280 
def div_conq (nodelist): 281 
    if (nodelist.length() >0): 282 
        current_node = nodelist.pop() 283 
        midway=current_node.midway() 284 
        if (visibility(midway)==False): 285 
            return False 286 
        if (midway < current_node.right-1): 287 
            n=Node(midway,current_node.right) 288 
            nodelist.append(n) 289 
        if (current_node.left < midway-1): 290 
            n=Node(current_node.left,midway) 291 
            nodelist.append(n) 292 
        return div_conq(nodelist) 293 
    else: 294 
        return True 295 
 296 
# ----Main Routine---- 297 
tar_dist=distance(ObstoTar) 298 
n=Node(1,tar_dist) 299 
if (visibility(n.left)==False): 300 
        return False 301 
if (visibility(n.right)==False): 302 
        return False 303 
 304 
nodelist = Queue() 305 
nodelist.append(n) 306 
div_conq(nodelist) 307 

 308 
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For these trials the application ran on a single thread so that relative differences 309 

in observed processing time were the result of changes to the sampling order, rather 310 

than any parallelisation implementation. However, this is an embarrassingly parallel 311 

case as observer-to-target LoS calculations could be run simultaneously across all 312 

available CPU cores, for example sets of agents in an ABM could model visibility to 313 

other agents in parallel limited only by the number of processing cores available. 314 

Furthermore parallelisation may be included within each LoS so that sets of surface 315 

intercept calculations are computed simultaneously; this would incur a minor 316 

computational overhead when a thread had determined the target to be obscured making 317 

other active threads redundant. However, these parallelisation solutions do not address 318 

the issue central to this research – namely performance improvements from different 319 

sampling order strategies and the reduction of processing overhead (e.g. to minimise 320 

battery usage). 321 

 Trials were conducted using a PC with 3GB RAM and a 2.4GHz Intel Duo CPU 322 

with power management set to high performance mode, recording the processor 323 

execution time to avoid timing variations resulting from other OS background 324 

processes. The software was written in C# .NET 4.5.1 using Visual Studio 2013 with 325 

code optimisation enabled. The DSM was loaded into memory at the start of the 326 

experiment to remove variations from disk activity. These initial trials were conducted 327 

using a 6.7km by 4.3km DSM at 1m resolution for the city of Edinburgh, Scotland 328 

(Figure 4). 329 
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 330 

Figure 4: Perspective view of a section of Digital Surface Model used for trials in 331 
Edinburgh (Scotland), looking towards Edinburgh Castle with Old Town on the left, 332 
and New Town on the right 333 

4.1 Trial 1 – Single Point to Point  334 

Random pairs of observer-target locations were selected within the study region 335 

(Edinburgh) until a pair were found where the target was calculated to be visible using 336 

the golden case (i.e. scanning all points along the LoS) and the observer was located in 337 

a pedestrian accessible space (i.e. road, open space), to simulate observers at ground 338 

level and avoid calculations from roof tops. The selected observer-target pair was a 339 

distance of 1.2km apart, but to increase the workload for timing purposes the visibility 340 

calculation was carried out 5000 times in succession without caching.  341 

The results indicated no performance benefit among the approaches A,B,C and 342 

E, as all intermediate cells are sampled between the observer and target (Table 1 – 343 

Visible case). Minor performance differences are due to overheads in the ordering 344 

algorithm implementations. Method D showed an increased calculation time (121%) 345 

due to the more complex queueing and dequeueing methods required to generate the 346 

sample order, as seen in the code outlined previously.  347 



 Point-to-Point LOS Visibility Modelling 13 

 

 

 

 

A second observer-target pair was then randomly chosen with the conditions of 348 

also being 1.2km apart and pedestrian accessible, but where the target was not visible. 349 

The CPU times for those calculations are shown in Table 1 (Not Visible case), and 350 

reveal significantly shorter calculation times than the visible case. These faster times 351 

result from early rejections made possible when a target is calculated to be obscured, 352 

and allowing the LoS to terminate before scanning all intermediate cells. The quicker 353 

execution times are evident for all methods, but the most significant performance gains 354 

arise from the methods that distribute the sampling locations along the ray length rather 355 

than scan incrementally (i.e. methods A,B,C). Notably Method D (divide and conquer) 356 

returned ’target obscured’ in 13.2% of the time taken by Method A (straight ordering), 357 

while Method E (hop) completed the task in 27.2% of the time of Method A.  358 

The performance benefits from the not visible case will be influenced by the 359 

specific topography and observer-target locations used in the trial but this initial trial 360 

does reveal differences in the overheads for visible cases, and that sample ordering does 361 

impact overall LoS efficiency. Further trials were undertaken with a random mix of 362 

visible and non-visible targets to establish the typical benefits from LoS sample 363 

reordering in urban landscapes. 364 

 365 
Table 1: Visibility trials using different sampling orders for a visible and non-visible 366 

observer-target pairs 1.2km apart.  CPU times are given in seconds for 5000 trials, the 367 
hop distance (Method E) was 5m. 368 

 369 

 

Case 

Order A B C D E 

(N=5m) 

Visible  Time 

(sec) 

3.837 3.900 3.884 4.648 3.900 

 % of A 100.0 101.5 101.0 121.1 101.5 

Not 

Visible 

Time 

(sec) 

0.114 0.202 0.233 0.015 0.031 

% of A 100.0 177.2 204.4 13.2 27.2 
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4.2 Trial 2 – Multiple Observer-Target Pairs 370 

For the second set of trials, locations were selected randomly around Edinburgh city 371 

with a restriction that they must be in pedestrian accessible locations, as shown in 372 

Figure 5. Edinburgh is a hilly city, and consists of an Old Town with narrow winding 373 

streets (to the south), and a New Town (to the north) which has wider roads and a more 374 

grid like street pattern. Trial 2A was conducted using 2000 locations within the Old 375 

Town, while Trial 2B used 2000 locations within the New Town. The trials involved 376 

casting a LoS from each sample location to all others in that trial set, resulting in 4 377 

million ray casts per trial. An additional Trial 2C was conducted using the combined 378 

4000 locations to include views between Old and New Towns, resulting in 16 million 379 

rays cast. 380 

 381 

 382 
Figure 5: Randomly selected locations in Edinburgh (Scotland) for Trial 2 383 

(Background map: © OpenStreetMap contributors) 384 
 385 
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A check was carried out after each trial to ensure the results matched the golden case 386 

(Method A). The calculations were not reflexive as an elevation offset of 1.8 metres was 387 

applied to the observer, to model the user’s eye-height, and an elevation offset of 0.5 388 

metres was applied to the target to reduce impact of minor data noise in the surface 389 

model. The results from these trials are shown in Table 2, with times given in seconds, 390 

and where the hop size for Method E was set to 5 metres. 391 

 392 

Table 2: Comparing the performance differences in sample order strategies for 393 
computing the visibility from locations around Edinburgh’s Old town (2A) and New 394 
town (2B) and the combined samples from both regions (2C). CPU times are given in 395 
seconds, and the hop distance for E was 5m. 396 

 397 
  398 

 

Trial 

Sample 

Order 

A 

 

B C D E 

 (N=5m) 

2A Time (sec) 89.653 89.295 74.880 17.893 28.048 

 % of A 100.0 99.6 83.5 19.9 31.3 

2B Time (sec) 86.892 99.232 80.683 16.348 30.076 

 % of A 100.0 114.2 92.8 18.8 34.6 

2C  Time (sec) 339.212 334.426 293.668 62.731 103.907 

 % of A 100.0 98.6 86.6 18.5 30.6 

 399 
As a percentage the calculation times are fairly consistent across the different trials, 400 

despite different street patterns and topography, ranking D, E, C, A/B in order of 401 

performance from most to least efficient.  402 

This more comprehensive trial showed the additional computational overhead 403 

from sample reordering was outweighed in the majority of cases (i.e. all cases apart 404 

from 2B-B), and confirmed that the most impressive reductions resulted from strategies 405 

that spread the sample locations along the LoS – the divide and conquer approach (D), 406 

and the hop method (E).  407 

4.3 Trial 3 – Varying the hop size  408 

In the previous example the hop size was set to 5 metres, however to determine if a 409 

more appropriate value could be used, two further trials were conducted using the same 410 
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random locations from Trials 2A and 2B but adjusting the hop size value on each run. 411 

As before each trial resulted in 4 million LoS to calculate the intervisibility between the 412 

2000 sample locations. The locations for these trials were centred on different parts of 413 

the city in order to assess the sensitivity of the hop value to urban morphology. 414 

 For larger hop sizes fewer samples are required on each pass but there is an 415 

increase in the number of subsequent ‘in filling’ passes to ensure that all the sample 416 

locations are sampled (Figure 6). This is necessary so that all cells are sampled along 417 

the LoS from observer to target in visible cases. The optimum hop size occurs when 418 

there is the highest chance of an early rejection of the target's visibility, when the tested 419 

viewing angle is greater than that of the target.  420 

 421 

Observer Target

[Pass 1]        Hop Size = 4 Offset=0

[Pass 2]        Hop Size = 4 Offset=1

[Pass 3]        Hop Size = 4 Offset=2

[Pass 4]        Hop Size = 4 Offset=3

0 4 8 12 16

1 5 9 13 17

2 6 10 14 18

3 7 11 15 19

 422 

Figure 6: Example of the hop sample ordering where hop size is 4 and the offset is 423 
incremented by 1 424 
 425 

 426 

The results from these two trials are shown in Figure 7, and exhibit very similar 427 

patterns, whereby the optimum hop size is between 25-35 metres. The optimal hop size 428 

for Trial 2A was 25m, while hops of 30m yielded marginally faster times in Trial 2B. 429 

The greatest performance gains are made until the hop size reaches 15m, after which 430 

there is a plateau until around 40 metres. Beyond 40m there is a marginal increase in 431 

execution time, as more infilling sample locations are required. In cases where the hop 432 

size is greater than the distance from observer-target then only the offset parameter 433 

plays a part, and effectively the sampling strategy mimics Method A (straight ordering). 434 

 435 
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  436 

Figure 7: Execution times with varying hop sizes for two trials in different parts of 437 
Edinburgh City (Trial 2A - Old Town and Trial 2B - New Town)  438 
 439 
 440 

Table 3 summarises the findings for the improved sampling strategies D and E, 441 

compared to the incremental forward scan (A). After adjusting the hop sized this offered 442 

comparable speed improvements to the Divide and Conquer method, yet without any 443 

overheads in visible cases (as per Table 1). 444 

 445 

 446 

 447 

 448 

 449 

 450 
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Table 3: Result Comparison Summary – Edinburgh trials 451 

 452 

 

Trial 

 Order A D E 

 

E 

 

2A  Time 

(seconds) 

89.653 17.893 28.048  
(N=5m) 

17.253 
(N=25m) 

  % of A 100 19.9 31.3 19.2 

2B  Time  

(seconds) 

86.892 16.348 30.076 
(N=5m) 

17.971  
(N=30m) 

  % of A 100 18.8 34.6 20.7 

 453 

 454 

4.4 Trials for Other Cities 455 

Further trials were undertaken in two other UK cities (Birmingham and Nottingham) to 456 

determine if methods D and E exhibited similar performance benefits in different urban 457 

morphologies. These cities were chosen due to their different street patterns, 458 

topography, and the availability of LiDAR datasets from which 1 metre resolution 459 

DSMs could be generated. The trials were conducted using a 4km by 4km region 460 

around the city centre, and as before 2000 random pedestrian accessible locations were 461 

selected around the city (Figure 8). As with the Edinburgh trials particular attention was 462 

taken to ensure that sample locations did not fall on building or tree top locations. This 463 

was done by rejecting randomly selected sample locations where focal statistics 464 

indicated nearby road elevation values were more than 1m lower than the selected cell 465 

(i.e. current road cell is 1 metre or more above the surrounding road level). 466 
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 467 

Figure 8: Sample locations for Birmingham and Nottingham city trials  468 
(Background map: © OpenStreetMap contributors) 469 
 470 

The intervisibility from each sample to all others within each city was calculated using 471 

Methods A-E (Table 4). The results exhibit a very similar pattern to that noted for the 472 

Edinburgh trials (Table 2).   473 

 474 

Table 4: Visibility calculations times for each sampling methods in Nottingham and 475 
Birmingham cities 476 

 

Trial 

Sample 

Order 

A 

 

B C D E 

 (N=5m) 

Birmingham Time 

(sec) 

98.655 122.257 80.808 18.142 31.153 

 % of A 100.0 123.9 81.9 18.4 31.6 

Nottingham Time 

(sec) 

61.916 75.925 49.951 16.536 23.524 

 % of A 100.0 122.6 80.7 26.7 37.9 

 477 

 478 
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As before method D shows the biggest performance improvement completing the 479 

calculations in 18.4% (Birmingham) and 26.7% (Nottingham) of method A. The 480 

optimum hop size was 30 metres for Nottingham, and 25 metres for Birmingham 481 

(Figure 9), though it should be noted that beyond 20m the impact on execution time is 482 

minimal and for this range of urban morphologies individualised hop sizes are not 483 

necessary.   484 

 485 

Birmingham (Method D)

Nottingham (Method D)

486 
  487 

Figure 9: Trials to determine optimum hop size for Birmingham and Nottingham 488 
cities, showing Divide and Conquer times (Method D) for each city as a comparison 489 

 490 
These results for Birmingham and Nottingham show a similar trend to that noted in the 491 

Edinburgh trials, with processing times reducing significantly until the hop size reaches 492 

15 metres. From 20 metres upwards the performance benefits are fairly consistent, with 493 

a minor decrease in performance as the hop size increases above 50 metres.  494 

 495 
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Based on the trials across three UK cities, of varying urban morphology, the results 496 

demonstrate a consistent performance improvement in using a Divide and Conquer 497 

approach, or a hopping strategy with a hop size of between 25 metres and 30 metres.  498 

 499 

 500 

 501 

The DSM query rate can be calculated for each method as a ratio of the number of DSM 502 

queries required when casting a ray from observer to target divided by the processing 503 

time. Table 5 shows the average number of samples per millisecond achieved by each 504 

method, across all of the city trials. It reveals that despite the shorter processing times of 505 

the Divide and Conquer approach (D) it has the slowest sampling rate, due to the added 506 

complexity of the algorithm, meaning each iteration took longer. However as the 507 

number of iterations required was lower than other approaches this method would be 508 

the most suitable where DSM access had a high cost, such as for very large terrains 509 

stored on disk rather than in memory. 510 

 511 

Table 5: Efficiency of method based on DSM query rate 512 

Method 

 

A B C D E 

Average 

Samples per 

Millisecond 

1398.4 1092.4 1344.7 689.6 1186.1 

 513 

Based on the sample rates achieved it is possible to illustrate the benefit of using a 514 

point-to-point sampling strategy rather than generating a viewshed for each observer in 515 

multiple-observer scenarios where Boolean target visibility results are sufficient. At a 516 

rate of 1398 samples per millisecond (Method A) it would take at least 11 seconds to 517 

compute a viewshed for the 4km by 4km DSM at 1m resolution. As a comparison the 518 

same PC takes around 23 seconds to compute a viewshed using ESRI ArcGIS 10.2 for a 519 

single observer on the Birmingham DSM. Therefore to calculate a viewshed for each of 520 

the 2000 observers, to establish which targets are visible, would take in excess of 6 521 
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hours. In comparison the Boolean visibility of observer-target pairs using Ordering 522 

Methods D or E is around 30 seconds or better (see Table 3 and Table 4). This illustrates 523 

that despite possible repetitions of calculations for intermediate DSM cells there is still 524 

a big advantage in using LoS rather than viewsheds in such applications. 525 

 526 

To gain a better understanding of the relationship between urban morphology and hop 527 

size a further trial was undertaken using a synthetic city design, as explained in the next 528 

section. 529 

 530 

4.5 Analysis of Results and Synthetic City Trials for the Hop Method (E) 531 

It is likely that the geographical scale of urban space has an impact on the hop size, as 532 

despite differences in the average building sizes in the three cities (Birmingham 95.1 sq 533 

m; Nottingham 95.7 sq.m; Edinburgh 143.0 sq.m) the road widths are similar at 534 

between 15 metres and 30 metres wide. When you consider that the observer locations 535 

are most probably near a road, it is likely that a sample will soon encounter a building 536 

resulting in an early termination of the LoS. To gain a better understanding of the 537 

relationship between hop length and road width, six synthetic cities were constructed. 538 

These had a uniform grid structure with buildings of 80 metres by 80 metres. One 539 

thousand pedestrian accessible points were chosen randomly, and the LoS from each to 540 

all other locations were calculated (1 million LoS calculations per synthetic city). The 541 

distance to the first interception with a blocking object (i.e. building) was recorded 542 

along with the last interception with that object (Figure 10), giving a range of distances 543 

for which a hop length would result in an early termination of the LoS.  For example a 544 

hop length of between 17m and 75m would result in an early LoS termination in the 545 

synthetic city dataset with road widths of 10m (from Table 6). 546 

 547 
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 548 

Figure 10: Illustration of the Entry and Exit Obstacle Distances for LoS in Synthetic 549 
City 550 

 551 

 552 

Table 6: Relationship between Road Width and LoS Obstacle Distance for Synthetic 553 
Cities for 1 Million LoS calculations (see Figure 11). 554 

 555 

Road 

Width 

(m) 

Observer to 

Obstacle 

Entry (m) 

Observer 

to 

Obstacle 

Exit (m) 

Range (m) 

10 17 75 58 

15 23 83 60 

20 32 92 60 

25 40 100 60 

30 48 109 61 

35 56 117 61 

 556 

The Pearson product moment correlation between road width and the first obstacle 557 

distance is 0.999 (3dps), showing a very strong positive relationship that effective hop 558 
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size increases with wider roads. In these trials on synthetic cities the building size was 559 

fixed at 80 metres by 80 metres in all cases, and it is interesting to note that the first 560 

intersection was consistently around 1.6 times the road width, and the range was a fairly 561 

consistent 60 metres in these cases with the 80 metre square buildings.  562 

Analysis of the trial data exhibits similar patterns but with the added 563 

complexities of a more diverse urban fabric and topography. Figure 11 shows the 564 

geographical pattern of performance gains that can be made using a dispersed sample 565 

strategy (here a comparison is made to Method E but the results are very similar for 566 

Method D) as a result of the urban morphology when calculating the visibility to the 567 

2000 target locations in Trial 2B. This section of New Town in Edinburgh was selected 568 

as it demonstrated a range of interesting results within a small geographic region.  569 

Narrow streets (e.g. Figure 11, A) have restricted views and require few samples 570 

to determine target visibility, thereby limiting the efficiency gains possible.  Similarly 571 

when the observer is surrounded by tall buildings particular on curved roads (Figure 11, 572 

C) the opportunity for sample reduction is minimal. The largest efficiency gains are 573 

made in the more open expanses such as North Bridge (Figure 11, B), and where wide 574 

entry and exit roads meet at a roundabout (Figure 11, D), on the longer wider straight 575 

roads (Figure 11, E) and at junctions (Figure 11, F) where the space is more open giving 576 

way to longer views. In these places the dispersed sampling strategies reduce the total 577 

number of samples required dramatically (Method E up to 17 times reduction, while 578 

Method D up to 47 times reduction for Trial 2B). The correlation in efficiency gains 579 

between Method D and Method E (hop = 30m) when compared to Method A was 0.872 580 

(3dps), indicating that both methods benefit similarly from the surrounding geography. 581 

The overall performance of the various algorithms is a result of the reduction in 582 

the number of samples required based on the geographic surroundings, and also the time 583 

taken per sample based on the ordering efficiency. In narrow corridors the room for 584 

performance improvement is minimal, while greater efficiencies can be made in the 585 

more open spaces, along wider streets, and near junctions.  586 
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 587 

Figure 11: An excerpt from the map of New Town, Edinburgh, showing the reduction 588 
for Trial 2B in total samples used by Method E (N=30m) compared to Method A  589 
(Background Map : © OpenStreetMap contributors)  590 

 591 

 592 

5  Conclusion  593 

This research has shown that sampling order has a significant impact on the calculation 594 

times for computing Boolean visibility for observer-target pairs. The two most 595 

impressive performance improvements resulted from methods which distribute the 596 

samples from observer to target, rather than scan incrementally. A Divide and Conquer 597 

approach, which recursively subdivided the space, offered a robust fivefold increase in 598 



26    

 

 

 

execution performance, however the more complex algorithm overheads led to an 599 

increase in processing times for visible cases. A hopping strategy also showed a fivefold 600 

performance increase when using a sampling hop of around 30 metres, with minimal 601 

processing overhead for visible cases. Trials in three UK cities revealed that the 602 

improvement was robust for hop lengths in the range 20-40 metres. Future work could 603 

compare the results across a wider range of cities in different parts of the world, and 604 

also in more rural areas to determine the range of hop sizes suited to different 605 

topographies. Trials on synthetic datasets indicate the hop length and road width are 606 

strongly related. This fact considerably simplifies the tuning of the hop algorithm. 607 

 This work is not beneficial for searching for site locations where all cells in a 608 

study region need to be calculated to determine suitable candidates. In these cases a 609 

sweep algorithm would be more suitable (Franklin and Ray 1994, Andrade et al. 2011). 610 

However the optimisation presented in this paper is suitable where a Boolean visibility 611 

result is required in point-to-point scenarios, particularly in multi-observer dynamic 612 

situations. This algorithm has been used successfully implemented in a client-server 613 

setup to support natural language generation of wayfinding instructions for LBS clients, 614 

and is soon to be included in an urban simulation package.  Other examples of where it 615 

could be used include person-to-person evasion (e.g. military applications), geosensor 616 

networks (e.g. determining if other sensors are in direct line of sight), event triggering 617 

(e.g. building entrance or junction visibility in LBS applications), location based 618 

gaming, and simulations (e.g. crowd modelling, predator-prey agent based models).  619 

Salomon et al (2004) suggested that up to 40% of processing time can be attributed to 620 

LoS queries in simulations, and there is an increasing need to optimise as advances in 621 

acquisition and storage technologies have enabled ever greater precision in reality 622 

modelling with a commensurate increase in the number of obstacles against which LoS 623 

queries must be tested. 624 

There are also benefits for client-server setups where a server may be supporting 625 

many concurrent users (e.g. friends in view on a location based service), or where 626 

calculations are carried out on mobile devices with more limited processing and power 627 
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resources (e.g. smartphone clients). In these cases reducing the actual computation 628 

(rather than increasing available processing power through parallelisation) significantly 629 

reduces power consumption.  630 

 This work has assessed the relative efficiency of LoS algorithms for ‘visible / 631 

not visible’ cases in the context of urban environments. The work has wide ranging 632 

importance particularly in the context of highly dynamic urban environments where 633 

mobile devices are required to process very large volumes of data, and agent based 634 

modelling.  It is also relevant to applications that span gaming (in real and synthetic 635 

worlds), location based services, and augmented reality more generally. Future work 636 

will look at its suitability in rural areas, where the topography is less angular and more 637 

softly undulating. 638 
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