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Abstract 

Spatial objects can be interconnected and mutually dependent in complex ways. In 

GIScience, spatial objects’ topological relationships are not discussed together with 

their attributes’ dependencies, and the vagueness of spatial objects is often ignored 

during the spatial modelling process. To address this, a spatial fuzzy influence diagram 

is introduced. Compared to the traditional statistical or fuzzy modelling approach, the 

influence diagram brings advantages in helping decision makers structure complex 

interdependency problems. A questionnaire was developed to evaluate the applicability 

of using an influence diagram in modelling spatial objects’ dependencies. As a case 

study, a spatial fuzzy influence diagram is applied to tree-related electric outages. The 

result of the case study is represented as a vulnerability map of electrical networks. The 

map shows areas at risk due to tree-related electric outages. The results were first 

validated by using a visual comparison of the vulnerability map and electricity fault 
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data. In the second validation step, the percentage of fault-data, which has received 

values in different vulnerability categories was calculated. The results of the case study 

can be used to support the decision-making process of electrical network maintenance 

and planning. 

Keywords: influence diagram, spatial fuzzy influence diagram, critical infrastructure, 

tree-related electric outages, fuzzy logic 

1. Introduction 

In geographical information science (GIScience) literature, spatial objects’ attribute 

dependencies are not often discussed together with topological relationships. A typical 

example of this combined relationship is critical infrastructure dependency. For 

instance, if critical infrastructure such as electricity distribution and telecommunication 

networks are modelled as spatial objects, the dependency relationships between the two 

networks can be seen from two perspectives. The first one is attribute dependency: the 

failure of an electrical network will cause the failure of a telecommunications network 

because a telecommunications network needs electric power to work. The second one is 

topological dependency: an electricity distribution failure may cause failures in the 

telecommunications network in a specific geographical area; this is the case where 

spatial thinking should take place. Critical infrastructure dependencies have been well 

discussed in the literature (Chang et al., 2007; Espada et al., 2015; Utne et al., 2011; 

McDaniels et al., 2007; Rinaldi et al., 2001). However, these studies mostly focus on 

attribute dependency without considering topological dependency and spatial context.  

The motivation for this research work came from a research project called 

Alueellinen Varautuminen (ALVAR) (Rautvuori, 2014), funded by the National 

Emergency Supply Agency of Finland. This project involved several major critical 
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infrastructure companies of Finland with the goal of studying failure dependencies of 

critical infrastructure from an emergency management point of view. The project 

attempted to solve several problems. First, critical infrastructures are highly 

interconnected and mutually dependent in complex ways, which makes the 

interpretation of failure dependencies difficult. Second, expert knowledge is important 

in defining failure dependencies, but this knowledge is difficult to collect and represent 

in the modelling process. In the ALVAR project, experts from different critical 

infrastructure companies were asked to participate in several brainstorming sessions to 

collect ideas of how the failure of one critical infrastructure could affect others. 

However, there were difficulties in building common semantic models between the 

experts since they all had different backgrounds. Their opinions on critical 

infrastructure failure dependency were difficult to represent in the model in a unified 

way. In addition, all the experts thought spatial context should be involved in the failure 

dependency modelling process, but did not know how best to do so. Spatial context is 

important, as the failure of an electrical network will only affect other critical networks 

within a specific spatial distance. Moreover, involving spatial context can create a big 

data problem since the geographical data can become large and complex when the 

number of spatial objects and their dependencies increases. Therefore, there is a need to 

develop a general framework, which considers two types of dependencies (attribute and 

topology), data vagueness, and how expert knowledge could be better collected and 

represented in the modelling process.  

In this article, a new methodology, a spatial fuzzy influence diagram (SFID) to 

model the dependencies of spatial objects, is proposed. Using a spatial influence 

diagram for decision-making is not new. For example, Zhu et al. (1996) modelled 

spatial object dependencies as a knowledge-based decision support system, where a 
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spatial influence diagram was used to support the decision-making process of land use 

planning. However, the vagueness of their data was not discussed in their work, and 

there was no decision node in the spatial influence diagram. Both are important issues 

for this research. Therefore, a spatial influence diagram, like Zhu’s, can be extended by 

using a fuzzy approach. Compared to simple spatial fuzzy modelling, an influence 

diagram allows decision makers to structure complex dependency problems. An 

influence diagram is a conceptual modelling tool that graphically represents the causal 

relationships between decisions, uncertainties, and outcomes. The decision process will 

become more efficient when the decision structure is clear and all the decision elements 

are specified in advance.  

Spatial data are often not precise and have inherent uncertainties (Longley et al., 

2005). If the spatial object is poorly defined, the definition of a class or set within the 

universe is a matter of vagueness or ambiguity, which can be treated by using a fuzzy 

set theory (Fisher et al., 2006). In fuzzy set theory, values of an object are described as 

linguistic values and fuzzy set membership functions instead of crisp values, which 

allows the incorporation of uncertainty (i.e., vagueness) in the modelling process 

(Zadeh, 1996). This is an advantage for solving real-life problems, where linguistic 

information is frequently hard to quantify using classical mathematical techniques, 

while at the same time very important, as it represents subjective expert knowledge. For 

instance, fuzzy set theory has been used in this context for decision-making in the fields 

of transportation engineering (Teodorović,1999), power system control (Kripakaran et 

al. 2014), and telecommunications (Sawhney et al., 2014). Additionally, while human 

reasoning plays an important role in every type of spatial data analysis and modelling, it 

is complex and therefore difficult for a computer to replicate. Fuzzy logic is one of the 

methods that facilitates computer emulation of some aspects of human reasoning, by 
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generating fuzzy membership functions and sets of if-then rules using expert 

knowledge. This has been demonstrated to be useful in various GIScience studies. For 

instance, Zhang et al. (2014) developed a fuzzy multiple-attribute decision-making 

model for vulnerability analysis on the basis of population information for disaster 

management. Expert knowledge was collected using a dynamic questionnaire, which 

was used to define the fuzzy membership function and fuzzy rules, and acted as one 

important parameter in model validation. Sicat et al. (2005) demonstrated a fuzzy 

modelling of farmers’ knowledge for agricultural land suitability classification. Zhu et 

al. (2001) combined expert knowledge and fuzzy modelling with GIS for soil mapping.  

A fuzzy influence diagram models data vagueness using fuzzy reasoning instead 

of probabilities. It contains a set of nodes, which can be used to describe decision 

problems. If the values of the nodes are represented as probabilities, such as using the 

Bayesian theorem, the diagram is called a Bayesian network (Neapolitan, 2004). The 

Bayesian network has been often used in GIS applications (Aspinall, 1992; Li et al., 

2010; Stassopoulou et al., 1998). However, it has a number of disadvantages, for 

example, the value of the node cannot be assigned numerically or expressed as a 

probability (Mateou et al., 2005). In such cases, fuzzy logic is more suitable than using 

a Bayesian framework. For example, Zhi and Jin (2010) used a fuzzy influence diagram 

to support safety risk assessment for highway tunnel construction.  

In this article, a spatial influence diagram is combined with fuzzy modelling to 

create a new representation of the critical interdependencies: a spatial fuzzy influence 

diagram (SFID). This approach is applied to a case study on tree-related electric outage 

data from the ALVAR project. The purpose of this research is to introduce this method, 

which can then be utilised by experts to produce accurate scientific results using their 

own knowledge and study data. Furthermore, a questionnaire is developed in order to 
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investigate the applicability of using an influence diagram to model spatial objects’ 

dependencies.  

The rest of the article is organized as follows: section 2 gives an overview of the 

theoretical background relevant to the development of SFID. The general structure of 

SFID and the survey questionnaire are also presented in this section. Section 3 

introduces the motivation and the background of a tree-related electric outage case 

study, as well as implementing SFID on the case study scenario. The results of the case 

study and validation of the results are illustrated in section 4. Sections 5 and 6 present 

the discussion and conclusion. 

2. Methodology  

In this section, the basic concepts of an influence diagram, fuzzy logic, and spatial 

component integration are introduced. This section also covers how to combine all these 

concepts to solve complicated decision-making problems using SFID.  

2.1 Influence diagrams  

An influence diagram graphically describes the structure of a decision problem, where 

relationships are shown with nodes and arcs (Howard and Matheson, 2005). A decision 

represents sets of mutually exclusive and exhaustive actions that a decision maker can 

take. Figure 1 illustrates an example of an influence diagram, which consists of three 

kinds of nodes and links (Tatman and Shachter, 1990). A chance node corresponds to a 

random variable that cannot be controlled by the decision-maker and is represented as 

oval shape in the diagram. Value nodes (octagon shaped) correspond to the utility 

functions, which represent a decision maker´s preferences. A decision node corresponds 

to each decision that needs to be made, and is represented as a rectangle in the diagram. 
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Functional arcs end in value nodes and indicate that the utility function is a function of 

all the nodes that are connected to it. Conditional arcs end in chance nodes, and indicate 

that the uncertainty at their heads is probabilistically conditioned on all the nodes at 

their tails. Informational arcs ending in a decision node indicate that the decision at their 

heads is made with the outcome of all the nodes at their tails known beforehand.  

Figure 1 Somewhere here. 

2.2 Fuzzy logic 

Fuzzy set theory was first introduced by Zadeh (1965) as a mathematical theory of 

vagueness. He defined a fuzzy set as: If X is the universe of discourse, and its elements 

are denoted by x, then the fuzzy set A in X is defined as a set of ordered pairs called a 

membership function (MF) of x in A. The MF maps each element of X to a value 

between 0 and 1. A fuzzy MF can be described in terms of linguistic variables such as 

low, middle, and high. For instance, a mathematical form of a triangular fuzzy MF curve 

is shown by equation 1 (Kaufmann and Gupta, 1985). The parameters a, b, c (with 

a<b<c) determine a x coordinate of the three corners of the triangular MF.  
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A triangular MF is simple and commonly used, while other types of MFs such as 

Gaussian or Sigmoidal shapes are more complicated and computationally expensive 

(Zhao and Bose, 2002).  

Figure 2 illustrates an example of a fuzzy MF and fuzzy rules. In this example, 

there are two input variables x and y, and each of them has three triangular MFs. The 
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degree of membership function µ is used to measure how likely an input value belongs 

to a corresponding MF. For instance, input value x more likely belongs to low MF than 

middle MF if the value of µx(low) is greater than µx(middle). Fuzzy rules are then used to 

obtain the relationships between the input and output values. These rules work as 

follows (Zimmermann, 2001): the if part (antecedent part) of the rule partitions the 

input space into a number of fuzzy regions (MFs), and the then part (consequent part) 

describes the behaviour of the system in these fuzzy regions. An example of a fuzzy 

rule is: ‘If input X is high and input Y is high then output Z (decision maker´s 

preference) is low.’ Fuzzy operators OR, AND and NOT in the fuzzy rule can be used 

to describe a fuzzy union, intersect, or complement operations of the input MFs. The 

mathematical expressions of the fuzzy operators are illustrated in Equations 2, 3 and 4 

where ߤ஺ሺݑሻ and ߤ஻ሺݑሻ are MFs.  

μ୅∩୆ሺ୶ሻୀ୫୧୬ሼஜఽሺ୶ሻ,ஜాሺ୶ሻ ሽ ୶∈ଡ଼ ሺ୅୒ୈ ୭୮ୣ୰ୟ୲୭୰ሻ (2) 

μ୅∪୆ሺ୶ሻୀ୫ୟ୶ሼஜఽሺ୶ሻ,ஜాሺ୶ሻ ሽ ୶∈ଡ଼ ሺ୓ୖ ୭୮ୣ୰ୟ୲୭୰ሻ (3) 

μ୅ഥୀ1 െ μ୅ሺxሻ, x ∈ X (NOT operator) (4) 

 

Figure 2 Somewhere here. 

2.3 Spatial fuzzy influence diagram  

In the SFID, an uncertain spatial object is modelled as a chance node with attributes and 

geometry data, as shown in Figure 3. In this SFID, the two spatial objects’ chance nodes 

X and Y are connected to two types of fuzzy value nodes. A fuzzy value node translates 

spatial object data values into MFs, which represents the vagueness of the spatial object 

from the decision maker´s perspective. A spatial value node represents the topological 
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dependency of spatial objects and provides a space in the diagram where spatial 

information can be integrated into the links. A spatial node represents the spatial value 

of an uncertainty node and demonstrates how a spatial value can be represented in fuzzy 

value nodes. For instance, a spatial overlay function can be used to help a decision 

maker select which uncertainty node is closer (touches or intersects the other 

uncertainty node at a specific distance). Only the uncertainty nodes of spatial interest 

will be selected and represented in a fuzzy value node. A spatial node can also be used 

to demonstrate the spatial dependencies of different types of critical infrastructure and 

help to create MFs in the fuzzy value nodes. The fuzzy output MF value node represents 

the consequent part of the fuzzy rules as MFs according to the decision maker’s 

preferences. The decision node (rectangular shaped) uses fuzzy rules to describe 

decisions for a specific decision problem. The antecedent part of a fuzzy rule comes 

from the MFs, which are created in the fuzzy input MF value node; the consequent part 

is derived from the fuzzy output MF value node. Fuzzy operators can be used to connect 

the antecedent part and consequent part of the rule. 

The SFID can be applied to different spatial decision-making applications by 

adding more nodes, modifying chance nodes’ corresponding value node membership 

functions or re-computing fuzzy rules in the decision node.  

Figure 3 somewhere here. 

2.4 Evaluation survey 

An influence diagram is a graphical representation of a decision problem which helps 

decision makers to understand and formulate decision problems. However, the 

efficiency of using an influence diagram is often difficult to quantify since it represents 

the decision makers’ problem structuring and knowledge discovery process. This article 
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claims that SFID can be used to structure complex decision problems, which are related 

to spatial objects’ dependencies. Therefore, it is interesting to show how useful this 

approach can be. For this reason, a questionnaire is developed to evaluate the 

applicability of using influence diagrams in modelling spatial objects’ dependencies.  

Twenty GIS experts participated in this survey. Most of the participants had 

worked with GIS before, but none of them had experience with influence diagrams. The 

questionnaire contains an introduction to influence diagrams, and example failures of 

four types of critical infrastructures (e.g. electricity, telecommunication, transportation 

network and water supply), and a scenario map. The participants were first encouraged 

to consider the failure dependencies of critical infrastructures without using an influence 

diagram. In the next step, a map that contained different types of critical infrastructures 

and houses was given to the participants. They were asked to formulate a decision 

problem, draw an influence diagram and record the time that they used in completing 

the task. Finally, they were asked to assign a grade from 1 (didn’t help at all) to 5 (yes, 

helped me) to evaluate the applicability of using an influence diagram to model spatial 

objects’ dependencies. The results of the survey are presented in section 4. 

3. Case study: tree-related electric outages 

The vulnerability of electric infrastructure is a crucial issue for modern society. One 

scenario that leads to electric outages is a tree falling or leaning onto power lines, which 

causes a so-called tree-related electric outage. This scenario is usually weather related 

because extreme weather conditions such as storms can cause trees to fall and damage 

electrical networks. This problem is more serious in countries with a high level of forest 

cover (such as Finland), where electrical networks run through or parallel to forested 

areas. In Finland, this has to some extent been addressed through a line clearance tree 
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trimming programme, which is carried out each year to improve the reliability of the 

electrical network. In Finnish urban areas, critical electric cables have also been moved 

underground to avoid tree-related electric outages. However, the electrical networks 

face many further challenges that can impact the reliability of the electric supply. For 

instance, it is hard to know the average number of hazardous trees and their locations. 

Re-locating cables underground, monitoring tree health and growth, and making 

judgements about appropriate inspections for the line clearance tree trimming 

programme are expensive and time consuming. Therefore, tree-related outages are not 

only a risk to human safety but also a financial and economical liability. 

Tree-related outages have been extensively studied in literature. Guggenmoos 

(2003) studied the effects of tree mortality on power line security. Rees et al. (1994) 

designed a testing approach to identify factors in tree health, customer concerns, and 

tree outage relationships. Simpson and Bossuyt (1996) collected data on 22 factors that 

describe the conditions of tree-related outages. In addition, various types of forest and 

vegetation simulators were used to estimate the number of trees that are either dead or 

in a declining condition, which have a higher probability of falling (Croft, 2008; Janney, 

2008). The relationship between weather conditions and electric outages have also been 

studied in the literature (Guggenmoos, 2011). If the electrical network and trees are 

modelled as spatial objects in a spatial data model, tree-related outages can be 

considered as the outcome of their dependency: electric outages are caused by fallen 

trees. Most of the literatures on tree-related outages only consider attribute dependency 

between trees and electrical networks, and ignore topology aspects.  

In this article, an SFID is proposed to identify areas in the electrical network that 

are vulnerable to tree-related outages. In the end, the results are validated against real 

tree-related outages data to demonstrate the suitability of the proposed method.  
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3.1 Factors causing tree-related outages 

Factors that cause tree-related outages can be classified into four categories: 1) factors 

related to nature, 2) weather conditions in the area, 3) the condition of the electrical 

network, and 4) the risk distance from the electrical network (the so-called clear width). 

Considering that tree-related outages are typically due to falling trees, the characteristics 

of the condition of a tree, such as height, age, and species are the main factors that need 

to be taken into consideration. The stability of individual trees also heavily depends on 

root size, with larger roots leading to higher stability (Coutts et al., 1999). 

Soil types and tree species have a major impact upon the structure of the roots. 

Pyatt et al. (2001) proposed soil classification using three dimensions: climate, soil 

moisture regime, and soil nutrients. Crow (2005) further developed soil classification 

into seven classes according to how well the soil can support root growth. In Finland, 

the Scots pine (Pinus Sylvestris), the European white birch (Betula Pubescens), and the 

Norway spruce (Picea Abies) are the most common tree species. Table 1 illustrates how 

deep these three species’ roots can grow in different soil types (this table is reworked 

from the study by Crow, 2005): a higher rank number represents shorter (poorer) roots. 

The ranks of pine, birch and spruce are totalled for each soil type category and the 

results are sorted.  

The risk of tree-related outages is also directly related to the number of trees 

within striking distance of the electrical network (the so-called clear width). 

Guggenmoos (2003) proposed a probability chart and shows how the risk of tree-related 

outages changes with the clear width.   

Table 1 somewhere here. 
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3.2 Applying spatial fuzzy influence diagrams to the problem of tree-related 

electric outages 

The aim of this case study is to use the SFID to identify the locations in the electrical 

network that have a high risk of tree-related outages during extreme weather conditions. 

The following data were used in the study: forest resource data, soil type data, and 

electrical network data along with the locations of tree-related outages. The forest 

resource dataset is in raster format, containing information on height, age, and location 

of trees. It was retrieved from the National Resources Institute Finland (LUKE). Soil 

type data (also in raster format) were retrieved from the Geological Survey of Finland 

(GTK). This dataset originally categorises soil into 14 classes. The electric distribution 

network dataset and the network outage dataset were retrieved from our company 

partner. The electric distribution network dataset contains power line data from a 

specified area. The network outage dataset contains 223 fault locations, which describes 

registered tree-related outages within the study area from 2013 to 2015. 

Figure 4 illustrates the SFID developed to model tree-related electric outage 

problems. In the first step, four spatial object chance nodes were created: a soil type 

node, a tree age node, a tree height node, and an electrical network node. In the second 

step, a decision node, trees and soil are within the clear width, was created and it was 

conditioned on the outcome of the chance nodes. This decision node indicates that the 

trees and soils that are located within a clear width of the electrical network are of 

interest. Guggenmoos (2003) found that the clear width of an electrical network should 

be between 10 and 18 meters according to a statistical analysis. In the tree data set, the 

tallest tree is 23.7 meters tall; therefore, the clear width limit was set at 30 meters, 

which also takes into account the error in the data set. One of the geoprocessing 

methods, buffer analysis, was used to create a 30 meter buffer zone around the electrical 
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network and select trees and soils located inside the buffer to be studied. This buffer 

analysis tool was represented as spatial value node in the diagram.  

In the third step, a decision node, hazard tree, was created. It represents a tree 

that has poor roots and is located in an area with a soil type that is not good for tree 

growth, and is therefore at a higher probability of falling (see Table 1). On the other 

hand, the tree is only hazardous if it is located within the clear width of the network, so 

the classification of a hazard tree is made depending on the outcome of the decision 

node trees and soil are within the clear width of the electrical network.  

The decision node hazard tree is defined by reclassifying the selected soil type, 

the tree’s height, and age according to a risk value (1 to 5) – these reclassifications are 

shown in Table 2 and Table 3 for tree and soil properties, respectively. Guggenmoos 

(2003) found that the tree’s mortality rate is positively correlated with the tree’s age and 

starts to increase rapidly when the tree is over 30 years old. The increased mortality rate 

can be related to hazard trees; therefore, the boundary of the first age category is set at 

30 years (Table 2). Trees have a higher risk value if the height is higher because it is 

impossible for small trees to fall onto the network if their height is lower than the height 

of the network. The quality of tree height reclassification can be improved in the future 

when there is the electrical network height data available. 

Finnish soil types can be categorized based on how well they can support the 

root growth according to Crow’s (2005) soil classification table (Table 1). Finnish soil 

type data was later merged into 12 classes according to their similarity and presented in 

the first column of Table 3. The second column is soil classification according to 

Crow’s (2005) work, and the number refers to the ID number in Table 1. The third 

column refers to its corresponding suitability for root growth, and the value comes from 

a rank value column in Table 1. A New Rank column was created according to the value 
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of the Old Rank column, so the higher Old Rank value received a higher New Rank. The 

value in the New Rank column will be used for soil reclassification and it represents soil 

vulnerability, which causes trees to fall. 

Table 2 somewhere here. 

Table 3 somewhere here. 

In the last step, SFID is extended with the fuzzy logic to model the vagueness of 

the decision. The decision node, risk area, represents vulnerable locations of the 

electrical network, which contains hazard trees within the clear width of the network. In 

addition, tree-related outages occur more often under extreme weather conditions, 

therefore, the weather condition chance node is also considered.  

There are many vagueness factors involved in defining risk areas. For instance, 

it is difficult to say exactly how tall or how old a tree constitutes a high risk of hazard, 

or which types of soil will cause a tree to grow a poor root network. Therefore, the 

classifications of high or low risk network areas on the basis of tree and soil data sets 

should not have clear boundaries, and a fuzzy approach is more reasonable to use. Three 

value nodes were created to translate reclassified soil types, tree age, and tree height 

risk values into MFs. According to the fuzzy set theory (see section 2.2), variables x1, x2, 

and x3 represent the reclassified soil type, tree age, and tree height data values. For each 

input variable, three triangular MFs were constructed and are illustrated in Figure 4. 

According to Equation 1, a, b and c are equal to 1.5, 3, and 4.5 respectively for the 

middle MF of soil type data. The peak value of the middle MF was defined as 3, which 

is the middle value of the input data that varies from 1 to 5. By doing so, low and high 

MFs can be placed on the left and right side of the middle MF’s peak value 

symmetrically. The peak value of the low MF is assigned to be 1, which refers to the 

smallest input value. A degree of MF µ represents how likely it is that the input value 
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belongs to a corresponding MF. For instance, an input value of 1 will belong to a low 

MF since it doesn’t touch the other MFs curves at all, and the µ is equal to the 

maximum µ value of 1. In another example, the input value 1.7 touches both the low 

and middle MFs’ curves, but the µ value for low MF is higher than for middle MF, 

which indicates the input value more likely belongs to low MF.  

Finally, a value node fuzzy output MFs was used to describe output MFs 

(consequent part) of the fuzzy rule, which represents the vulnerability value of the 

electrical network segments (see fuzzy rules in Figure 4). Here vulnerability refers to 

the degree to which a system (e.g. electrical network segments) responds adversely to 

the occurrence of hazardous events. Each electrical network segment has its unique ID, 

location information, and vulnerability value. The unique ID is used as a key to 

incorporate the computation results into its corresponding electrical network segment on 

the map to observe the vulnerability of the electrical network segments spatially. In the 

risk areas decision node, 27 fuzzy rules were constructed and used to represent decision 

makers’ decisions (Figure 4). Those MFs are used as inputs (antecedent part) of the 

fuzzy rules. The fuzzy OR operator, which returns the maximum value (or union) of the 

fuzzy MFs, was used because the research focus is to identify which places have a high 

risk of tree-related outages. This refers to a place, evaluated based on reclassified soil 

type, tree age, or tree height data values, that has more hazard trees.   

Figure 5 illustrates an example of a surface view of the fuzzy rules where the X 

and Y axes represent the tree’s height and soil type’s reclassified risk value, 

respectively, and the Z axis represents the area’s vulnerability value. The fuzzy surface 

view indicates that the vulnerability value of the network increases when the input 

variables’ reclassified risk value increases. In this research work, expert knowledge that 

was used to create fuzzy MFs and fuzzy rules was obtained through a literature review 
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of the domain problem area. On the other hand, all the MFs, the MFs’ shapes, and fuzzy 

rules are not developed by the actual domain experts, such as electricity companies and 

forestry department personnel, but it is possible that real domain expert knowledge 

could be explored for this purpose in the future.  

Figure 4 somewhere here. 

Figure 5 somewhere here. 

4. Results 

4.1. Results of the evaluation survey 

Results of the questionnaire are illustrated in Table 4. The average time used to 

complete an influence diagram, with an average of 5 chance nodes, 1 value node, and 2 

decision nodes, was 13.44 minutes. The average grade for measuring the usefulness of 

using influence diagrams for modelling spatial objects’ dependencies was 3.1, which is 

higher than the middle of the grade range (1 to 5). The highest and the lowest grades 

that the participants gave were 4 and 1. Eighteen participants graded the usefulness 

measure higher than 3, one participant gave the measure a 2, and one participant gave 

the measure a 1. 

Table 4 somewhere here.  

 

4.2. Results of the case study 

The results of the case study are represented as a vulnerability map (Figure 6), where 

the vulnerability of the electrical network segments refers to the value of fuzzy output 

MFs of the fuzzy rules in the SFID model. That is, the vulnerability is given as the 

degree that network segments will suffer from tree-related outages and is evaluated on 

the basis of the number of hazard trees located within the clear width of the segments. 
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On this map, the colour red represents extremely high vulnerability values and light 

green represents low vulnerability values. Note that the location of the case study is 

removed due to the data privacy agreement with our company partner in the ALVAR 

project, therefore the results can be only presented as a schematic map of the network. 

To validate the model, the vulnerability map was overlaid with the timestamped 

tree-related outage data (fault data), and each fault location was annotated with its 

corresponding weather information. There are 223 fault data points. In Figure 6, 

numbers on the map refer to the fault locations with their corresponding wind speed 

(km/h). A visual comparison of the vulnerability map with these faults provides a 

possibility to observe the match between the predicted vulnerability value of the 

network and the fault location. Theoretically, the electrical network segments that have 

higher vulnerability values should refer to the locations of fault data, and therefore 

receive a yellow or a red colour on the map. According to the results shown in Figure 6, 

most of the electric fault locations are in the main branches and in the southern part of 

the electrical network. In some places, such as the southwestern and southeastern 

branches of the electrical network, there are good matches between fault values and 

extremely high vulnerability values. 

To further validate the method, the percentages of the fault locations that 

received values for different vulnerability categories were calculated (Table 5). For this, 

the vulnerability raster map was first converted into points, where each point 

represented the centre location of the original raster cell. Then, a spatial join between 

the electrical network fault data and the point vulnerability map was created so that each 

fault data point would have all the attribute information of the nearest vulnerability map 

point. Finally, the fault locations that received extremely high vulnerability values were 

counted by selecting the fault points that have a vulnerability value greater than 0.5889 
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(see Figure 6). According to Table 5, 19% of fault points that were theoretically 

expected to receive at least a high vulnerability value received a low value instead. On 

the other hand, over half of the fault data received at least a high vulnerability value. 

Table 5 somewhere here. 

Figure 6 somewhere here.  

5. Discussion 

In this article, the general structure of an SFID is proposed, which can be used to model 

spatial objects’ dependencies. The emphasis of an SFID is on the knowledge-based 

expert system design, which is a new way of structuring both software and information 

systems that closely match the human reasoning process.  

Most participants (18 out of 20), after generating their own influence diagrams 

to solve a specific decision problem, favourably graded the usefulness of the influence 

diagram (grade 3 or higher). This indicates the potential of the influence diagram to 

facilitate the easier formulation of a decision problem. Two participants, however, 

evaluated the diagram unfavourably (grade 2 or less). They claimed that their low 

grades were due to the difficulty of understanding the influence diagram theory since 

none of them had used an influence diagram before. However, their performance in 

drawing an influence diagram contradicts this: both of them used less than 6 minutes to 

complete the task where the average time used to generate a diagram was 13.44 

minutes. This suggests that the outlying results from these two participants are due to 

individual preferences and opinions rather than actual ability to generate an influence 

diagram.  

It is also interesting to see the complexity of the participant-generated influence 

diagrams, as shown by the number of the nodes in the average participant’s diagram. 
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According to the results, the average number of chance nodes, value nodes, and 

decision nodes are 5, 1, and 2, respectively, which indicates that most of the participants 

could formulate a reasonably complex decision structure even without being previously 

familiar with this representation. This, together with the participants’ favourable 

perception of the influence diagram (an average grade over 3), indicates that an 

influence diagram could be a potentially useful way for structuring spatial decision 

problems. However, given the limited number of participants the our study, larger 

evaluation studies are necessary, with experts not only in GIScience, but also in various 

domains where SFID could be useful, such as the partners in the ALVAR project.  

Moreover, some implications of the case study results related to identifying the 

vulnerability of the electrical network to tree-related outages are discussed. According 

to these results, the main branches and southern part of the electrical network received 

most of the electric faults. There are 15 fault points with a low wind speed value but 

high segment vulnerability value in the northeastern branch of the electrical network. 

This indicates there are many hazard trees in this area and since trees can fall onto a 

power line with even low wind speed, more investigation should take place in the 

future.  

The network outage dataset contains only 223 fault locations and many 

vulnerable locations of the electrical network do not have fault data available to 

validate, which causes inaccuracy in the validation results. Therefore, more fault data 

should be included in the future to make the validation process more complete and 

accurate. In addition, a new literature study of how Finnish soil types support tree root 

growth should be developed in order to improve the soil type risk reclassification, as 

well as take into consideration more tree species. SFID is an expert based system, so 

fuzzy MFs and fuzzy rules should be developed by electricity management and forestry 
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experts in the future. In this article, weather data is mainly used to visually explore how 

fault data is related to corresponding weather conditions. In the future, dynamic weather 

data can also be used as input parameters to SFID in order to make the results more 

realistic. 

From a methodology point of view, the SFID represents a set of geoprocessing 

tools used to model topological dependencies of spatial objects. When the number of 

spatial objects increases, traditional software tools used to implement research work 

will not be able to handle large raster datasets. Work is ongoing to evaluate cutting edge 

cyberGIS approaches (Wang et al. 2013; Wang et al. 2015) to enable SFID for both 

computation-intensive and data-intensive problem solving. It is also useful to consider 

sensitivity analysis as part of SFID to see how results change according to the variations 

in expert knowledge.  

6. Conclusion  

In this article, a new methodology, SFID, was proposed to model spatial object 

dependencies by taking into consideration both the topological relationship and the 

attribute dependency of the object. Compared to traditional influence diagrams and 

fuzzy influence diagrams, the spatial context of the objects can be incorporated into the 

SFID, which provides the possibility to visualize the results on a map and answer the 

question: where are the areas that are at risk? For instance, buffer analysis was used to 

create a 30-meter clear width buffer zone around the electrical network since trees are 

hazardous to the electrical network only if they are within the buffer. In addition, the 

structure of an SFID is easily adapted for different applications. Decision nodes were 

added to the diagram to enable decisions to be made as the outcome of the diagram. 

Fuzzy logic can systematically emulate human reasoning, and allows for experts’ 
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knowledge to be incorporated into the modelling process. Moreover, fuzzy logic was 

also used to model the vagueness of spatial objects. Compared to spatial fuzzy 

modelling, SFID uses the structure of an influence diagram to help decision makers 

formulate decision problems, which are related to spatial objects’ dependencies. The 

usefulness of using an influence diagram in this study is evaluated by using a 

questionnaire and most of the participants thought influence diagrams could be a useful 

way to model spatial objects’ dependencies.      

SFID was tested with a tree-related electric outages case study, and the results 

showed that SFID is a suitable method to model tree-related electric outages. As a 

result, vulnerable locations of an electrical network were visualised on a map in order to 

support electrical network maintenance and planning. For instance, decision makers can 

prioritise areas for a tree-trimming programme or optimise repair resources in the case 

of outages caused by extreme weather conditions.  
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Tables 

Table 1. Soil type classification and its corresponding suitability for tree root growth 

(Crow, 2005). Root size for pine, birch, and spruce tree according to soil classification.   

1: root size <4 m, 2: root size < 3 m, 3: root size < 2 m, 4: root size < 1.5 m, 5: root size 

<0.5 m, 6: not good for growth 

 

ID Soil Type Pine Birch Spruce Total 
Score 

Final 
Rank 

1 Loose, deep well drained soils 1 3 3 7 1 

2 Shallow soils over rock 5 5 6 16 7 
3 Intermediate loamy soils 3 3 3 9 2 
4 Impervious subsoils  3 5 5 13 4 
5 Soils with moisture retaining 

upper horizons 
6 4 5 15 6 

6 Soils with wet lower horizons 6 4 4 14 5 
7 Organic rich soils (drained) 4 4 4 12 3 
8 Organic rich soils 

(waterlogged) 
6 6 5 17 8 
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Table 2. Tree height and tree age data with reclassification.  

 

Tree Height 
(meters) 

Tree 
Age 

(years) 

Reclassified 
Value (risk value)  

0-5 1-30 1 
5.1-10 31-80 2 
10.1-15 81-130 3 
15.1-20 131-180 4 

20.1-23.7 181-239 5 
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Table 3. Soil type data with reclassification. 

 

Soil	Type Soil 
Classification 

(Table 2) 

Old 
Rank 

(Table 2) 

New Rank 
(risk value)  

Fragmented rock, bedrock physical trauma 2 7 5 
Gravel and sandy till 1 1 1 
Silt moraine  5 6 4 
Hill moraine 1 1 1 
Moraine esker or moraine covered gravel 
and sand deposit 

1 1 1 

Esker outside gravel and sand deposit 1 1 1 
Litho gravel and sand deposition 1 1 1 
Stream deposition 6 5 3 
Homogeneous clay and silt deposition 5 6 4 
Clay and silt composition 5 6 4 
Peat composition  7 3 2 
Bedrock outcrops 2 7 5 
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Table 4. Questionnaire results.  
 

 Number 
of 

Chance 
Nodes 

Number 
of 

Value 
Nodes 

Number 
of 

Decision 
Nodes 

Time Grade GIS 
working 

experience 
(years) 

Mean 5 1 2 13.44 3.1 4.175 
Range 9 3 7 40 3 13 
Median 5 1 1 11 3 2.5 
Mode 4 1 1 10 3 0 
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Table 5 Validation results of the case study. 

 

Predicted 
Vulnerability  

Number of 
Fault Points 

Percentage 
of Fault 

Data 
Low 42 19% 
Middle 61 27% 
High 80 36% 
Extremely High 40 18% 
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