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Abstract

To assess micro-scale population dynamics effectively, demographic variables should be available 

over temporally consistent small area units. However, fine-resolution census boundaries often 

change between survey years. This research advances areal interpolation methods with dasymetric 

refinement to create accurate consistent population estimates in 1990 and 2000 (source zones) 

within tract boundaries of the 2010 census (target zones) for five demographically distinct counties 

in the U.S. Three levels of dasymetric refinement of source and target zones are evaluated. First, 

residential parcels are used as a binary ancillary variable prior to regular areal interpolation 

methods. Second, Expectation Maximization (EM) and its data-extended version leverage housing 

types of residential parcels as a related ancillary variable. Finally, a third refinement strategy to 

mitigate the overestimation effect of large residential parcels in rural areas uses road buffers and 

developed land cover classes. Results suggest the effectiveness of all three levels of dasymetric 

refinement in reducing estimation errors. They provide a first insight into the potential accuracy 

improvement achievable in varying geographic and demographic settings but also through the 

combination of different refinement strategies in parts of a study area. Such improved consistent 

population estimates are the basis for advanced spatio-temporal demographic research.
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1. Introduction

Today’s challenges in urban and rural planning efforts require the implementation of 

effective measures of development and population growth trends based on the evolution of 

demographic characteristics at local and regional scales. Therefore, there is an urgent need 

for fine-resolution population distributions aggregated within temporally consistent small-

area reporting units. However, due to changing enumeration boundaries at the small-area 

level among census surveys (Schroeder 2007), the units are inconsistent, which impedes any 

meaningful temporal comparison and remains a persistent challenge in the field of 

GIScience.
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Recent research has begun to invest in the development of analytical solutions based on areal 

interpolation to produce fine-resolution population distributions for multiple points in time 

within temporally compatible analytical units (Schroeder 2007, Schroeder and Van Riper 

2013). While applying dasymetric refinement to enhance areal interpolation has shown great 

potential in creating consistent units over time and population estimates of higher accuracy 

(Ruther et al. 2015, Zoraghein et al. 2016), these attempts are often constrained to the use of 

binary ancillary variables that simply limit where the population is expected to reside (Leyk 

et al. 2013), thereby assuming binary relationships between these ancillary variables and 

population characteristics. Such an assumption can lead to large estimation errors if 

population density shows high degrees of variability. Thus, more research is needed to 

identify methodological solutions that make more effective use of advanced dasymetric 

modeling techniques and employ related ancillary variables in order to reflect nuanced 

relationships between ancillary variables and population attributes for more accurate 

estimation. Related ancillary variables can amplify or curtail the likelihood of a place being 

populated (Leyk et al. 2013).

Dasymetric modeling employs ancillary datasets correlated with the variable of interest to 

map it from a set of aggregated source zones in a choropleth map to a set of target zones that 

reflect its statistical surface more precisely (Wright 1936, Fisher and Langford 1995, Eicher 

and Brewer 2001, Mennis 2003, Langford 2006). The methodology, which is covered 

extensively in the literature, is commonly used to downscale population from large 

aggregated census units to smaller target zones and has many applications, including crime 

analysis (Mennis 2016), environmental health justice (Maantay et al. 2007, Mennis 2015) 

and historical population estimation (Holt et al. 2004, Buttenfield et al. 2015, Ruther et al. 

2015, Pavía and Cantarino 2016) to name a few. With widespread availability of various 

remote sensing products and growing analytical capabilities in geospatial software tools, 

dasymetric modeling has become a common spatial analytical approach for population 

reallocation and demographic small area estimation (Mennis 2009).

This study revisits the application of areal interpolation of dasymetrically refined census 

units to create temporally consistent population estimates and focuses on the integration of 

related ancillary data sources to improve the effectiveness of the dasymetric modeling step. 

These experiments build on recent research, in which the performance of areal interpolation 

methods such as areal weighting (AW) or target density weighting (TDW) could be 

improved by employing simple binary dasymetric refinement that geometrically adjusts 

source and target zones. While this research resulted in time series of more accurate and 

consistent population estimates, it still showed large errors in regions with rapid or 

unexpected population growth that may not be fully reflected by the expansion of developed 

land (Buttenfield et al. 2015, Ruther et al. 2015, Zoraghein et al. 2016). Given the 

effectiveness of related ancillary variables in dasymetric modeling in one point in time (Leyk 

et al. 2013, Nagle et al. 2014), it can be expected that the integration of related ancillary 

variables may also benefit the areal interpolation of census units from different points in 

time by overcoming limitations in using only binary ancillary variables to create consistent 

population estimates. The selection of ancillary variables, and how they are incorporated are 

key points that determine the performance of dasymetrically refined areal interpolation. This 

research establishes three refinement levels of increasing complexity, and for each, 
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systematically reviews the performance of a selection of areal interpolation methods for 

creating consistent population estimates over time.

The findings of this research benefit disciplines such as demography, geography, economics, 

political science and sociology by providing more accurate delineations of how population 

has evolved using consistent micro-scale units. The approach is tested in five U.S. counties 

for both 1990–2010 and 2000–2010 time periods to transfer total population from census 

tracts in 1990 and 2000 (source zones) to census tract boundaries in 2010 (target zones), 

respectively.

2. Study Area and Data

2.1. Study Area

The five counties used in this study to test the methods represent different geographic and 

demographic settings that can be characterized by the urban/rural proportion of population, 

the extent and the population growth rate. They include Hennepin County, Minnesota, 

Mecklenburg County, North Carolina, Broward County, Florida, Hillsborough County, 

Florida and Worcester County, Massachusetts. Figure 1 depicts the five selected counties, 

the most recent boundaries of their seats, as well as their census tracts in 2010 with 

population densities of people per square kilometer.

Hennepin County includes the urban region of Minneapolis in the east and rural areas in the 

west. According to the U.S. Census, a low total population growth rate of 11% (from 

1,032,431 to 1,146,195) has been observed between 1990 and 2010. Mecklenburg County 

includes the urban region of Charlotte at the center, which covers the majority of the county 

area, and rural census tracts on the fringe. The total population growth rate in this fast-

growing county is 80%, an increase from 511,433 to 919,628 during the 1990–2010 time 

period.

Hillsborough County contains urban census tracts of Tampa in the west and rural areas in the 

east. Densely populated census tracts in this county are not limited to the city limit of Tampa 

but appear scattered all over the county except in the eastern parts. The population of the 

county has observed a rather fast growth rate of 47%, increasing from 834,027 to 1,229,226 

during the 1990–2010 time period.

Most of Broward County is composed of census tracts with medium to high population 

density in the east. There is also a large sparsely populated census tract in the west. The 

population of the county has grown by 39%, an increase from 1,255,462 to 1,748,066 

between 1990 and 2010.

Worcester is the county with the highest proportion of sparsely populated census tracts with 

only a few more densely populated tracts within the city limits of Worcester at the county 

center. The population of the county has grown by 12% and increased from 709,705 to 

798,552 during the 1990–2010 time period.

The selected counties include different proportions of high and low population density areas, 

making them ideal case studies to evaluate the performance of each method under different 
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conditions. More specifically, Mecklenburg, Hillsborough and Broward represent counties 

with fast population growth whereas Worcester and Hennepin indicate counties with a 

medium/low population growth rate. Testing the methods across these different histories of 

population development will help better understand their performance in different 

demographic settings.

2.2. Data

The boundaries of census tracts in 1990, 2000 and 2010 along with their total population 

counts found in the census summary files are the focus in this study. Census blocks represent 

the smallest enumeration units published by the Census. Therefore, blocks in 1990 and 2000 

as well as their population values are used as reference data to evaluate the estimated total 

population counts at the tract level. The tract-level and block-level population values and 

boundaries for 1990 were retrieved from the National Historical Geographic Information 

System (NHGIS) (Minnesota Population Center 2016) whereas population counts and 

boundaries for 2000 and 2010 were extracted from U.S. Census Bureau (2016a) and U.S. 

Census Bureau (2016b), respectively.

Three ancillary variables associated with the distribution of total population are used in this 

study. They include residential parcels of each study area accessed from the corresponding 

county or state GIS data portal (Mecklenburg County GIS 2013, Hennepin County GIS 

2016, MassGIS 2016, University of Florida GeoPlan Center 2016), the National Land Cover 

Database (NLCD) in 1992, 2001 and 2011 (Homer et al. 2015, Multi-Resolution Land 

Characteristics 2016) and TIGER/Line road networks in 2000 and 2010 (U.S. Census 

Bureau 2016b).

3. Methods

The areal interpolation methods for creating consistent population estimates at different 

points in time in this study are tested for three levels of dasymetric refinement, using 

different types of ancillary variables. The first-level refinement approach uses geometric 

footprints of residential parcels as the binary ancillary variable to spatially refine source and 

target zones to their developed subareas. The second approach incorporates housing 

characteristics found in parcel attributes as an additional dimension, employing them as a 

related ancillary variable to explore nuanced statistical associations between population 

density and different categories of residential parcels. Finally, the third approach extends the 

former two by integrating a composition of ancillary datasets, including parcels, NLCD 

developed classes and road buffers.

All areal interpolation methods and dasymetric refinement scenarios were implemented 

using Python scripts and ArcPy® geoprocessing functionalities. The scripts can be accessed 

at Zoraghein (2018) or requested from the corresponding author.

3.1. First-level dasymetric refinement using residential parcels as the binary ancillary 
variable

The first level of dasymetric refinement is employed through the use of binary ancillary 

variables such as residential parcel footprints. Well-known methods such as AW (Goodchild 
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and Lam 1980) and TDW (Schroeder 2007) are adjusted to subareas of source and target 

zones (related to two different points in time) delineated by residential parcels of the five 

study areas following the approaches described in Zoraghein et al. (2016), in which accuracy 

improvements in population estimation were reported.

AW is the most basic areal interpolation method and assumes population density is constant 

within source zones. The method estimates source population in target zone boundaries 

based on the overlapping area between source and target zones (i.e., intersections or 

“atoms”). The population of each target zone is then simply calculated by summing 

population counts of all atoms within it.

Spatially refining source zones prior to areal interpolation is supported by different ancillary 

variables and modifies the underlying assumption as follows: population is homogeneously 

distributed within the developed land of a source zone, and no population is assigned to non-

developed parts. This assumption is expected to be more realistic and generally results in 

more precise reapportionment of population counts from units in one time (source zones) to 

boundaries in another time (target zones).

Schroeder (2007) introduced TDW as an areal interpolation method appropriate for temporal 

analysis of census data. TDW is based on the assumption that the spatial distribution of 

population densities among atoms within a source zone in the source year remains 

proportionally the same over time. For example, if population density is distributed in a 2:1 

ratio between two atoms in 2010, it is assumed that this ratio was the same in 2000.

Based on previous studies, TDW often outperforms AW (Schroeder 2007, Schroeder and 

Van Riper 2013), suggesting that it is more reasonable to assume that the ratio of population 

densities of atoms in one source zone remains constant than to assume that population is 

homogeneously distributed within source zones.

Refined TDW employs developed/built-up areas within both source and target zones 

(Buttenfield et al. 2015, Ruther et al. 2015, Zoraghein et al. 2016). This refinement implies 

that the underlying assumption of unrefined TDW be modified. In the first step, source and 

target zones are spatially refined using developed areas labeled by the ancillary variable. 

Then TDW is applied to these refined areas under the assumption that the ratio of refined 

population densities of atoms to refined population densities of source zones remains the 

same over time. While refined AW uses developed areas only in the source year, refined 

TDW incorporates this refinement in both source and target years. Zoraghein et al. (2016) 

provide a detailed description of the mathematical equations underlying AW, refined AW, 

TDW and refined TDW.

3.2. Second-level dasymetric refinement using residential parcels as the related ancillary 
variable

The first-level dasymetric refinement does not differentiate between different types or 

densities of residential units such as low-density single-family parcels as compared to high-

density condominiums. Since it is well-known that associations between population and 

ancillary variables are not binary in nature, an approach to employ ancillary data to adjust 
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and amplify population densities, appropriately, would have great potential to further 

improve the accuracy of population estimates. This type of association is addressed below 

by incorporating related ancillary variables into the dasymetric refinement for areal 

interpolation based on the Expectation Maximization (EM) algorithm. Housing 

characteristics of residential parcels, including single-family residential, multi-family 

residential and condominiums, were employed to establish nuanced associations between 

such housing types and population density.

3.2.1. EM with control zones based on residential types—The EM algorithm 

(Dempster et al. 1977) can be used as an iterative process to optimize population density 

weights under different conditions defined by the ancillary variable, thereby offering an 

appropriate framework for implementing the second-level dasymetric refinement.

The algorithm provides a robust framework for model fitting and maximum likelihood 

estimation in settings of incomplete data. First, the expectation (E) step “completes” the data 

by computing the conditional expectation for missing data, given a set of observed data and 

estimated model parameters. The maximization (M) step then fits the model, estimating 

model parameters by maximum likelihood given the “complete” data from the E step. A 

feedback loop between E and M steps is established and repeated until convergence 

(Schroeder and Van Riper 2013).

Flowerdew and Green (1994) demonstrated how the EM algorithm can be applied to areal 

interpolation applications, and Ruther et al. (2015) applied it to areal interpolation using land 

cover classes as the ancillary data to define control zones. In this study, control zones are 

defined by residential parcels that have the same housing type, and then EM is used to 

calculate a population density weight for each control zone. Finally, distinct population 

density weights of control zones are transferred to target zones. This approach is justified by 

the expectation that different housing characteristics relate to varying average population 

densities, and accounting for such variation is expected to improve resulting estimates for 

target zones.

In the E step, the algorithm estimates ysc , i.e., the population count of the intersection 

between source zone s and control zone c:

ysc = ys(
λcAsc

Σk λkAsk

) (1)

Where ys is the population count of source zone s, λc is the estimated density of control zone 

c, Asc is the area of intersection between s and c, and k is a second control zone index, 

independent of c to reflect all control zones intersecting s. The first E step is essentially 

similar to AW and assumes equal weights for all housing types. Then, the M step re-

estimates all λc values using the equation below:
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  λc =
( Σs ysc)

Ac
(2)

Estimates of λc from the M step are used to re-estimate ysc in the next E step, which is 

followed by another M step, and so on until the system converges. The algorithm stops when 

the maximum absolute difference between current population density weights and those 

calculated from the previous run is less than 0.001. Finally, ysc values are used to calculate 

the population count of target zone t (yt):

yt = Σs Σc
(Atscysc)

Asc
(3)

Where Atsc is the area of intersection between target zone t, source zone s, and control zone 

c.

3.2.2. Extending dasymetric refinement in EM to create more homogeneous 
control zones—EM assumes population density is constant within each control zone. 

However, this assumption can become problematic. For example, if residential parcels of the 

same type that form a control zone are diverse in area or number of units, the assumption of 

one constant population density for the whole control zone becomes unrealistic. This 

research extends the dasymetric refinement step in EM to address this issue.

In this extended refinement approach, control zones (parcels with the same housing type) are 

further divided into more similar and homogeneous sub-control zones based on the area of 

parcel units and unit density criteria within a parcel. First, those control zones with the 

highest number of residential parcels are identified to guarantee a sufficient number of 

parcels per sub-control zone. Those control zones with high degrees of variation in areal 

extents of their underlying parcels are divided into sub-control zones based on area quartiles. 

For some control zones such as condominiums, the number of units per parcel can be 

derived. Therefore, a unit density measure is computed by dividing the number of units by 

the area of the encompassing parcel, and then sub-control zones are created based on 

quartiles of unit density. This new set of more homogeneous sub-control zones is then input 

to the EM algorithm as described above.

In this study, the 6 most frequent housing types in each county and time period were selected 

as initial candidate control zones because they accounted for more than 98% of all parcel 

units in each county. Selecting more types would have increased the simulation time without 

any noticeable accuracy gain. All other housing types per county and time period remained 

unchanged. Out of those initial candidates, different combinations of 4 and 5 classes were 

iteratively selected for further categorization into more homogeneous sub-control zones 

based on similarity in either area or unit density. Among those 6 initial candidates, typically 
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one or two control zones were identified as ineffective, minimizing the accuracy 

improvement in final population estimates. Using subsets of 4 and 5 control zones for further 

refinement facilitated the identification of the most effective class combinations.

To make an objective decision about control zones that should be further categorized and a 

reasonable number of subcategories per selected control zone, a simulation framework tested 

all combinations of 4 and 5 initial candidate control zones, as well as different numbers of 

subcategories (i.e., 5 to 7) per selected control zone to identify the optimum solution. 

Section 1 of the Appendix includes the selected control zones for further categorization (i.e., 

4 or 5 from the 6 most frequent control zones per county) and their number of subcategories 

(i.e., 5 to 7) that resulted in the optimum solution in each county. Whereas a numerical and 

objective simulation was conducted, it is acknowledged that the number of selected control 

zones (4 or 5) and the tested number of subcategories (5 to 7) were subjective decisions, 

supported by exploratory tests, to prevent the simulation time from being excessively high. 

The optimum solution was the one that minimized the error metrics that will be introduced 

in Section 3.4. Figure 2 illustrates the workflow of this extended refinement approach for 

EM.

The processing time differed based on the method and study area. Generally, the processing 

time per method, time period and study area did not take longer than a few minutes on a 

common desktop computer. However, for the extended refinement approach for EM, the 

processing time multiplied because 2673 implementations of EM over various combinations 

of control zones and different numbers of categories had to be tested.

3.3. Third-level dasymetric refinement using a composition of ancillary variables

The third-level refinement strategy is not confined to only residential parcels and specifically 

targets rural settings, where large residential parcels are known to overestimate built-up land 

areas while developed land cover classes commonly underestimate development (Leyk et al. 

2013, 2014). To mitigate these effects, this approach leverages additional complementary 

ancillary variables such as NLCD-derived developed classes and road buffer zones, 

assuming that population most likely resides where developed land can be found, or if 

developed land cannot be found, population would be expected close to roads. NLCD grids 

published in 1992, 2001 and 2011, which approximately match the three census years, and 

the available TIGER road networks in 2000 and 2010 are employed to derive additional 

ancillary variables. The largest residential parcels in each county, i.e., the upper 10%, are 

identified as candidate parcels that are more likely to be located in rural areas and potentially 

benefit from this compositional refinement. These candidate parcels are refined as follows: if 

a residential parcel contains developed land as classified by the NLCD, only those instances 

are used for dasymetric refinement, thereby geometrically adjusting the residential parcel. If 

no developed land exists, the intersection between the parcel and road buffers (using 50m 

buffer distance) is used to spatially constrain the area of the parcel. Figure 3 demonstrates 

the process of the third-level dasymetric refinement. Residential developed land is defined 

by classes 21 and 22 in NLCD 1992 and classes 21, 22 and 23 in NLCD 2001 and 2011, 

following recommendations in other studies (e.g., Ruther et al. 2015).
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Once candidate residential parcels are spatially refined using developed lands and road 

buffers, the resulting dataset is input to AW, TDW and EM (indicated by the label 

“modified” before the abbreviation). It is expected that the accuracy of population estimates 

will improve because they are adjusted to more precise locations of likely human settlement 

in potential rural settings where errors are commonly high due to the large extent of 

residential parcels. This third-level dasymetric refinement cannot be implemented with the 

extended refinement approach for EM in its current form since area and density attributes 

are used for population weighting (i.e., as the related ancillary variables) in this method and 

must not be modified a posteriori. Integrating such a refinement in the extended approach for 

EM would require a priori implementation so that the changed area and density measures 

can be used for simulation and optimization. The results in this study will provide some 

indication of the potential benefit of this adjustment.

3.4. Validation

The validation of estimated tract-level results for each census year is done using census 

block statistics. After transferring population estimates from source zones (tracts in 1990 

and 2000, respectively) to target zones (2010 tract boundaries), each 2010 census tract can 

be linked with its estimated population counts in 1990 and 2000. These estimates for target 

zones in 1990 and 2000 are compared to population counts of census blocks in 1990 and 

2000 aggregated to target zone boundaries. Blocks are the finest resolution enumeration 

units used by the Census Bureau and are based on a full population count and thus are very 

useful for validation efforts. Different error measures are calculated such as the Mean 

Absolute Error (MAE), median absolute error, Root Mean Square Error (RMSE) and 90% 

percentile of absolute error. These error measures and error distributions can be compared 

across methods to characterize and evaluate their performance. For example, MAE and 

RMSE measures illustrate the overall behavior of the estimation error and are sensitive to 

outliers while the median absolute error and 90% percentile of absolute error can be used to 

describe the upper end of the error distribution and placement of extreme absolute error 

values.

4. Results

Table 1 shows the absolute error measures for each of the methods described, the two time 

periods (1990–2010 and 2000–2010) and each of the five counties. The number next to each 

method (i.e., 1st, 2nd and 3rd) shows what type of dasymetric refinement is applied to each 

method. Relative absolute errors, normalized by block-aggregated population values in the 

source year, are also presented in Table 6 of the Appendix. However, accuracy comparisons 

are mainly based on absolute error measures to make interpretations consistent with the 

relevant previous research (Buttenfield et al. 2015, Ruther et al. 2015, Zoraghein et al. 

2016). Nevertheless, relative absolute error measures are referred to in some places to 

provide additional aspects of the error behavior.

Figures 4 and 5 show maps of absolute errors of the two best-performing methods found for 

each region and time period, but focusing on the first and second-level dasymetric 

refinement scenarios. In almost all cases except in Worcester for the time period 2000–2010, 
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refined TDW and the extended refinement approach for EM outperform the other methods. 

Because third-level refinement methods require more specific analysis and interpretation 

with a focus on rural settings, they will be evaluated separately.

Figures 6 and 7 depict derived population maps in 1990 and 2000 from the two best-

performing methods of the first and second-level dasymetric refinement scenarios compared 

to population maps resulting from aggregating block population counts to target tract 

boundaries in Hennepin County and Mecklenburg County, as two examples. These maps 

visualize the agreement between dasymetrically refined population estimates in 1990 and 

2000, respectively, and corresponding ground-truth choropleth population maps based on 

block-level aggregates.

To evaluate how third-level dasymetric refinement methods perform in comparison to their 

first or second-level refinement equivalents in potentially rural areas, Table 2 presents the 

overall absolute error measures (i.e., MAE and RMSE) produced by all refined methods 

when applied to only candidate target tracts in each study area that are more likely to be 

rural. It is expected that the third-level dasymetric refinement methods are effective in rural 

areas because they further refine large parcels more frequently located in rural parts. To 

identify candidate target tracts, the number of rural households indicated by the Census is 

divided by the total number of households, and all tracts with a proportion of rural 

population greater than 10% are selected. Broward is excluded because this highly urbanized 

county includes only 1 target tract as such. Other thresholds for identifying candidate tracts 

(i.e., 5% and 15%) were also tested and yielded similar orders of results.

Moreover, Section 3 of the Appendix includes another approach for defining candidate target 

tracts that considers both their population density and their intersection area with census-

defined urban areas in 1990 and 2000, respectively. The results show a similar order of 

accuracy improvement compared to the approach based on rural household proportions, 

described above.

Figures 8 and 9 demonstrate the effectiveness of third-level refinement methods in 

comparison to their first or second-level refinement counterparts, particularly in potentially 

rural areas, for both time periods. This is visualized at the target tract level, and candidate 

rural tracts are emphasized in the maps. Although the emphasis of third-level refinement 

methods is on potentially rural tracts, absolute error values of other tracts might change as 

well due to the existence of some large parcels in urban areas.

If the third-level refinement (labeled “modified” refined AW, refined TDW and EM, 

respectively) applied to a method results in a lower error for a target tract compared to the 

first or second-level refinements, that tract is shown in green. For example, in Figure 8(a) all 

green tracts represent those for which modified refined AW leads to lower absolute errors 

than refined AW in estimating the population in 1990 within target tract boundaries from 

2010 in Hennepin County. Tracts shown in orange and grey indicate those where refined AW 

outperforms modified refined AW and results in equal error measures, respectively.
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5. Discussion

As Table 1 implies, the first-level dasymetric refinement (i.e., refined AW and refined TDW) 

often reduces absolute error measures in comparison to regular implementations of AW and 

TDW. Table 6 of the Appendix suggests a very similar pattern based on relative absolute 

error measures. These re-confirm the great potential of using residential parcels for the 

dasymetric refinement in creating temporally consistent population estimates as described in 

earlier research (Zoraghein et al. 2016). Notably, the quality of the ancillary variable and the 

degree to which underlying assumptions hold greatly influence the effectiveness of the 

spatially refined interpolation. For instance, the overestimation of developed land through 

residential parcels can be one major reason why population can be allocated 

disproportionally in refined AW. In refined TDW, that overestimation may invalidate the 

underlying assumption of proportionally equal population densities within source unit 

boundaries at different points in time, leading to biased estimates and increased errors. The 

very few instances in which errors are higher in the first-level dasymetric refinement 

methods than their unrefined counterparts can be attributed to those issues. For example, the 

reason why the RMSE of refined TDW is higher than TDW in Mecklenburg County for 

2000–2010 relates to the existence of very few target tracts with high absolute errors in the 

upper 10% of the error distribution, possibly pointing to the above-mentioned problem.

Although EM uses the housing type attribute of residential parcels in addition to their 

geometric footprints for the second-level refinement, the computed error measures are rather 

high. A possible reason is the considerable variation within individual residential control 

zones across a county, which cannot be reflected by this method. However, the accuracy 

level of its extended refinement approach is much higher than EM as verified in all 10 cases 

and according to both absolute error measures in Table 1 and relative absolute error 

measures in Table 6 of the Appendix. Consequently, the additional refinement of residential 

control zones based on area and density measures appears to be a useful approach to reflect 

and partially account for within-class variations, ultimately resulting in further error 

reduction. Whereas definitions of housing types are not consistent among the counties, 

Tables 1 to 5 of the Appendix indicate that single family residential, as the most frequent 

control zone in each county, should be further categorized to make the extended refinement 

approach for EM effective.

The results demonstrate the efficacy of the extended refinement approach for EM as an 

accurate method for temporally consistent estimation of population, especially over longer 

time periods where the assumptions of refined TDW begin to fall apart. For 1990–2010, the 

extended approach is the best-performing method in all study areas except Broward. For 

2000–2010, however, neither the extended approach nor refined TDW dominates as the most 

accurate method over the five study areas. For shorter time periods, the assumptions of 

refined TDW appear to be realistic enough, explaining its robust performance in 

Hillsborough, Broward and Worcester Counties. However, in regions where the assumptions 

of refined TDW are not reliable even over short time periods, the extended refinement 

approach for EM can be more accurate than refined TDW such as in Mecklenburg and 

Hennepin Counties. The extended approach is computationally expensive, and running the 

simulation to find the best combination of eligible control zones and the optimum number of 
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subcategories per control zone is time-demanding. Nevertheless, the current results suggest 

that the methodology carries great potential to be implemented in cases where the accuracy 

levels of simpler refined methods such as refined AW and refined TDW are not satisfactory, 

which can especially be true over long time periods. This is an important point as the 

approach is expected to be more efficient once parcel-derived demographic or property 

databases become available for larger regions that contain more consistent, broadly defined 

residential classes, thus eliminating the need for expensive simulation, optimization and 

exploratory analysis. If these large-scale parcel and housing databases carry consistent 

temporal information for residential development, this will open new possibilities to model 

small area population estimates over very long time periods, nationally, once historical 

census data become also available. Another advantage of the extended refinement approach 

for EM over refined TDW is that it is pycnophylactic; that is, it preserves population values 

of source zones as opposed to refined TDW.

It should be mentioned that if the comparisons were based on relative absolute error 

measures, the findings would not have been necessarily the same. Instead, they would 

depend on how the methods perform for scarcely-populated target tracts. For example, while 

refined TDW is more accurate than refined AW according to the absolute error measures in 

Hillsborough and for the 1990–2010 time period (Table 1), there is a reverse order according 

to the relative absolute error measures (Table 6 of the Appendix), suggesting that refined 

TDW was more effective in error reduction for populous target tracts whereas refined AW 

was more effective for those with low population.

According to Figures 4 and 5, target tracts with higher absolute errors are more frequent and 

pervasive outside highly urbanized areas and city boundaries. This effect is consistent with 

the explanations provided before, suggesting that the overestimation of developed lands 

through large residential parcels in less urbanized areas contributes to a decrease in accuracy 

of dasymetric refinement in those areas.

Figures 6 and 7 demonstrate that the population maps in 1990 and 2000 resulting from the 

two best-performing methods closely match the ground-truth maps. Derived population 

estimates of almost all target tracts from the two methods, particularly the extended 

refinement approach for EM, and their corresponding ground-truth values belong to the 

same population categories in both 1990 and 2000.

The third-level dasymetric refinement approaches (i.e., modified refined AW, modified 

refined TDW and modified EM) further increase the accuracy of population estimates 

compared to the first (i.e., refined AW and refined TDW) and second-level refinement 

scenarios (i.e., EM) in most cases as can be observed in Table 1 and Table 6 of the 

Appendix. The overall absolute and relative absolute error measures are mostly lower for 

AW, TDW and EM when refined using the composite ancillary dataset compared to using 

only residential parcels. The main focus of this additional refinement step, however, is on 

rural settings where land cover databases typically underestimate developed lands, and 

parcel units overestimate residential areas. Table 2 demonstrates that the improvement effect 

of the third-level dasymetric refinement is more consistent in potentially rural target tracts. 

In almost all cases, the overall error measures of the methods using the third-level 
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refinement are lower, and in some cases, the improvement is substantial. A similar pattern is 

also observed in Table 7 of the Appendix, in which the criteria based on population density 

and census-defined urban areas in 1990 and 2000 were used to locate candidate rural target 

tracts. The reason why the error metrics in Hennepin County for 2000–2010 are very low is 

because the boundaries of selected tracts are almost unchanged during the period. Only in 

Worcester and for the time period 2000–2010, the overall absolute error metric of a third-

level refinement is greater than its first-level refinement counterpart (i.e., modified refined 

TDW vs. refined TDW). Figures 8 and 9 illustrate that absolute error values of the majority 

of potentially rural target tracts are reduced by the third-level dasymetric refinement 

approaches. The only cases where such an effect is not observed are TDW for 1990–2010 

and 2000–2010 in Worcester and EM for 2000–2010 in Hillsborough. However, according to 

Table 4, even for two of those three cases, the MAE values decrease, meaning that error 

reduction is greater for those tracts where the third-level dasymetric refinement is effective. 

These slight performance variations can be explained, to some degree, by the quality of the 

ancillary variables used for the third-level refinement. Both developed land classes in NLCD 

and road network data are imperfect data sources and have locational errors as well as 

classification issues that can impact population estimation, resulting in some higher errors in 

some parts of the study areas. Notably, the assumption that population is located close to 

roads may not always hold true, especially in rural areas where long driveways off of roads 

are common. Nonetheless, the results in this study show that this assumption was effective in 

reducing estimation errors in rural areas using the third-level dasymetric refinement strategy.

According to Table 1 and Table 6 of the Appendix, absolute and relative absolute error 

measures are generally lower for 2000–2010 than for 1990–2010. This complies with 

observations reported by Schroeder (2007) that lower degrees of boundary changes during 

the shorter time period typically relate to smaller estimation errors. The only exception is 

observed for Mecklenburg County, possibly because of a highly increasing population 

growth in the area between 2000 and 2010, making boundary changes significant even for 

the short time period. However, as mentioned before, quality issues related to the ancillary 

variables can affect population estimates, and this is generally more aggravated over longer 

time periods, thereby adding to generally higher absolute error measures for the 1990–2010 

time period. For example, no road networks could be found for 1990, and thus the dataset 

for 2000 was utilized instead. Also, the classification accuracy of NLCD is known to be 

lower in 1992 (Wickham et al. 2010), and the developed land categories were classified 

under a different scheme in 1992 than in the other two years (i.e., three classes instead of 

four).

6. Conclusions

This research applied different levels of dasymetric refinement to areal interpolation 

techniques to estimate total population values within temporally consistent small area census 

units. The second-level refinement, in which related ancillary variables were employed 

through extending the refinement approach for the EM algorithm, improved the accuracy of 

population estimates by effectively leveraging nuanced statistical associations between 

population distribution and housing types. Moreover, at the third level of refinement, a 

composite ancillary dataset was tested to more accurately model population distribution in 
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potentially rural areas, where estimation errors remained persistently high in the first and 

second level refinements. These findings demonstrate the importance of the choice of the 

ancillary data, their categorization and their integration for the performance of interpolation 

methods in different settings. The findings will be of direct benefit to researchers in 

demography and migration studies, crime analysis, economics, health studies and integrated 

assessment modeling, where accurate and temporally consistent demographic estimates 

represent a precondition for an objective analysis of changes in underlying populations.

Future research will assess the combination of different refinement scenarios. While this 

approach may be computationally expensive and more complex, each of the utilized 

refinement levels and interpolation techniques has its own strengths under different 

circumstances, justifying initial efforts for the development of a hybrid refinement approach. 

The incorporation of new global data products such as the recently introduced Global 

Human Settlement Layer (GHSL) that indicates built-up land for four points in time (1975–

2014) (Pesaresi et al. 2016), represents a promising research avenue to apply similar 

approaches to areas that are less data-rich. Despite remaining uncertainties in rural settings 

(Leyk et al. 2018), such global ancillary variables provide new opportunities to apply 

dasymetrically-refined areal interpolation methods to any region in the world where census 

data are available for different points in time.
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Appendix

1.: Categorization of the extended refinement approach for EM per county 

and time period

Table 1.

Categorization of the extended refinement approach for EM in Hennepin.

Initial candidate control
zone (6 types)

Selected for
categorization

Number of
subcategories

(5 to 7)

1990–2010

Single Family Included 7

Double Bungalow Included 6

Townhouse Included 5

Apartment Included 6

Condo Excluded -

Triplex Excluded -
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Initial candidate control
zone (6 types)

Selected for
categorization

Number of
subcategories

(5 to 7)

2000–2010

Single Family Included 7

Double Bungalow Included 7

Townhouse Included 5

Apartment Included 6

Condo Included 6

Triplex Excluded -

Table 2.

Categorization of the extended refinement approach for EM in Mecklenburg.

Initial candidate control
zone (6 types)

Selected for
categorization

Number of
subcategories

(5 to 7)

1990–2010

Single Family Included 7

Townhouse Included 6

Apartment Included 7

Condo Included 5

Patio Home Excluded -

Assisted Living Excluded -

2000–2010

Single Family Included 7

Townhouse Included 5

Apartment Included 7

Condo Included 5

Patio Home Excluded -

Assisted Living Excluded -

Table 3.

Categorization of the extended refinement approach for EM in Broward.

Initial candidate control
zone (6 types)

Selected for
categorization

Number of
subcategories

(5 to 7)

1990–2010

Single Family Included 7

Multi Family < 10 Units Included 5

Condo Included 5
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Initial candidate control
zone (6 types)

Selected for
categorization

Number of
subcategories

(5 to 7)

Mobile Homes Excluded -

Multi Family Included 7

Boarding Homes Excluded -

2000–2010

Single Family Included 7

Multi Family < 10 Units Included 5

Condo Included 7

Mobile Homes Included 5

Multi Family Included 5

Boarding Homes Excluded -

Table 4.

Categorization of the extended refinement approach for EM in Hillsborough.

Initial candidate control
zone (6 types)

Selected for
categorization

Number of
subcategories

(5 to 7)

1990–2010

Single Family Included 7

Mobile Homes Included 6

Multi Family < 10 Units Included 6

Multi Family Included 7

Condo Included 7

Orphanages Excluded -

2000–2010

Single Family Included 7

Mobile Homes Included 5

Multi Family < 10 Units Included 5

Multi Family Included 6

Condo Included 5

Orphanages Excluded -

Table 5.

Categorization of the extended refinement approach for EM in Worcester.

Initial candidate control
zone (6 types)

Selected for
categorization

Number of
subcategories

(5 to 7)

1990–2010
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Initial candidate control
zone (6 types)

Selected for
categorization

Number of
subcategories

(5 to 7)

Single Family Included 7

Two Family Included 6

Three Family Included 7

Apartment 4–8 Units Excluded -

Mixed Residential Included 5

Condo Excluded -

2000–2010

Single Family Included 5

Two Family Excluded -

Three Family Included 5

Apartment 4–8 Units Included 6

Mixed Residential Included 5

Condo Excluded -

2.: Relative absolute error measures

Table 6.

Relative Absolute error measures of unrefined and refined methods in all counties.

Method AW Refined
AW (1st)

Modified
Refined
AW (3rd)

TDW Refined
TDW (1st)

Modified
Refined
TDW 
(3rd)

EM
(2nd)

Modified
EM (3rd)

Extended
EM (2nd)

Hennepin: 1990–2010

MAE 0.09 0.07 0.06 0.08 0.05 0.05 0.07 0.05 0.04

Median  Abs
Error

0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.01

RMSE 0.29 0.19 0.13 0.22 0.15 0.12 0.17 0.11 0.10

90th Percent Error 0.21 0.17 0.17 0.21 0.11 0.13 0.24 0.15 0.11

Hennepin: 2000–2010

MAE 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01

Median  Abs
Error

0 0 0 0 0 0 0 0 0

RMSE 0.09 0.08 0.07 0.03 0.03 0.03 0.07 0.04 0.03

90th Percent Error 0.03 0.01 0.01 0.02 0.01 0 0.01 0 0.01

Mecklenburg: 1990–2010

MAE 2.85 0.4 0.26 0.92 0.43 0.3 0.38 0.24 0.17

Median  Abs
Error

0.27 0.18 0.11 0.16 0.11 0.1 0.2 0.11 0.07

RMSE 32.46 0.92 0.51 3.26 1.44 0.93 0.7 0.47 0.31
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Method AW Refined
AW (1st)

Modified
Refined
AW (3rd)

TDW Refined
TDW (1st)

Modified
Refined
TDW 
(3rd)

EM
(2nd)

Modified
EM (3rd)

Extended
EM (2nd)

90th Percent Error 1.71 0.93 0.7 1.5 0.93 0.71 0.93 0.59 0.46

Mecklenburg: 2000–2010

MAE 3.9 0.46 0.37 1.96 1.82 1.7 0.35 0.3 0.09

Median  Abs
Error

0.09 0.08 0.06 0.07 0.05 0.04 0.11 0.06 0.04

RMSE 46.67 3.1 3.4 26.69 25.05 24.16 1.77 2.64 0.17

90th Percent Error 0.68 0.61 0.37 0.47 0.36 0.26 0.53 0.31 0.23

Broward: 1990–2010

MAE 9.08 0.3 0.29 10.42 0.18 0.19 0.26 0.24 0.19

Median  Abs
Error

0.18 0.12 0.14 0.1 0.07 0.07 0.09 0.11 0.08

RMSE 95.45 0.8 0.66 113.2 0.4 0.38 0.63 0.51 0.4

90th Percent Error 1.14 0.67 0.71 0.69 0.35 0.43 0.63 0.55 0.5

Broward: 2000–2010

MAE 0.14 0.08 0.09 0.04 0.03 0.03 0.07 0.07 0.05

Median  Abs
Error

0.01 0.01 0 0 0 0 0.01 0.01 0

RMSE 0.3 0.17 0.18 0.1 0.06 0.06 0.14 0.15 0.09

90th Percent Error 0.42 0.26 0.28 0.13 0.09 0.1 0.21 0.23 0.14

Hillsborough: 1990–2010

MAE 1.84 0.27 0.23 1.96 0.84 0.85 0.31 0.24 0.22

Median  Abs
Error

0.16 0.09 0.09 0.1 0.07 0.07 0.12 0.09 0.07

RMSE 8.68 0.58 0.45 15.43 10.72 10.7 0.64 0.45 0.49

90thPercent Error 1.35 0.72 0.65 0.99 0.77 0.67 0.82 0.7 0.58

Hillsborough: 2000–2010

MAE 0.59 0.16 0.14 0.18 0.1 0.09 0.13 0.1 0.08

Median  Abs
Error

0 0 0 0 0 0 0 0 0

RMSE 4.71 0.47 0.36 0.73 0.27 0.25 0.37 0.26 0.21

90thPercent Error 0.68 0.46 0.45 0.41 0.27 0.25 0.37 0.31 0.25

Worcester: 1990–2010

MAE 0.09 0.07 0.05 0.04 0.04 0.04 0.08 0.05 0.04

Median  Abs
Error

0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01

RMSE 0.23 0.19 0.12 0.08 0.1 0.11 0.18 0.12 0.1

90th Percent Error 0.22 0.2 0.11 0.1 0.1 0.09 0.26 0.1 0.08
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Method AW Refined
AW (1st)

Modified
Refined
AW (3rd)

TDW Refined
TDW (1st)

Modified
Refined
TDW 
(3rd)

EM
(2nd)

Modified
EM (3rd)

Extended
EM (2nd)

Worcester: 2000–2010

MAE 0.06 0.05 0.03 0.01 0.01 0.01 0.06 0.02 0.02

Median  Abs
Error

0 0 0 0 0 0 0 0 0

RMSE 0.21 0.17 0.12 0.03 0.08 0.08 0.16 0.09 0.08

90th Percent Error 0.15 0.18 0.06 0.02 0.02 0.02 0.15 0.06 0.03

3.: Accuracy measures of potentially rural target tracts identified using an 

alternative approach

As another approach to define potentially rural target tracts that are supposed to benefit the 

most from the third dasymetric refinement, we first selected tracts with population density 

lower than 1000 people per square mile. Next, we identified tracts whose overlapping area 

with census-defined urban areas in 1990 and 2000 was less than 50%. Finally, we identified 

tracts that belonged to both sets as candidate rural target tracts. Table 7 summarizes the 

overall absolute error measures resulting from applying the methods to this set of potentially 

rural tracts. We also tested population density of 500 people per square mile and the results 

showed the same order.

Table 7.

Absolute error measures of all refined methods applied to potentially rural target tracts in 

four study areas.

Method Refined
AW(1st)

Modified Refined
AW (3rd)

Refined
TDW (1st)

Modified Refined
TDW (3rd)

EM
(2nd)

Modified
EM (3rd)

Hennepin: 1990–2010

MAE 276 161 541 395 233 173

RMSE 401 245 959 629 374 242

Hennepin: 2000–2010

MAE 4 1 2 1 1 1

RMSE 7 1 3 2 3 2

Mecklenburg: 1990–2010

MAE 680 307 388 330 515 238

RMSE 972 398 540 468 774 326

Mecklenburg: 2000–2010

MAE 732 218 401 254 689 254
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Method Refined
AW(1st)

Modified Refined
AW (3rd)

Refined
TDW (1st)

Modified Refined
TDW (3rd)

EM
(2nd)

Modified
EM (3rd)

RMSE 1194 319 540 335 1066 382

Hillsborough: 1990–2010

MAE 447 345 369 324 457 362

RMSE 759 620 645 615 749 637

Hillsborough: 2000–2010

MAE 255 222 181 164 162 160

RMSE 663 606 464 441 448 430

Worcester: 1990–2010

MAE 267 118 147 128 290 173

RMSE 517 205 282 272 588 482

Worcester: 2000–2010

MAE 191 72 36 34 184 61

RMSE 451 185 70 100 431 144
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Figure 1. 
The study areas and target census tracts.
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Figure 2. 
Workflow of the extended refinement approach for EM.
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Figure 3. 
Workflow of the third-level dasymetric refinement.
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Figure 4. 
Error maps of the five counties (1990–2010), Hennepin: Refined TDW (a), Extended 

Refinement for EM (b), Mecklenburg: Refined TDW (c), Extended Refinement for EM (d), 

Broward: Extended Refinement for EM (e), Refined TDW (f), Hillsborough: Refined TDW 

(g), Extended Refinement for EM (h), Worcester: Refined TDW (i), Extended Refinement 

for EM (j).
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Figure 5. 
Error maps of the five counties (2000–2010), Hennepin: Refined TDW (a), Extended 

Refinement for EM (b), Mecklenburg: Refined TDW (c), Extended Refinement for EM (d), 

Broward: Extended Refinement for EM (e), Refined TDW (f), Hillsborough: Extended 

Refinement for EM (g), Refined TDW (h), Worcester: TDW (i), Refined TDW (j).
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Figure 6. 
Population maps in 1990 at the target tract level, Hennepin: block-aggregated (a), Refined 

TDW (b), Extended Refinement for EM (c), Mecklenburg: block-aggregated (d), Refined 

TDW (e), Extended Refinement for EM (f).
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Figure 7. 
Population maps in 2000 at the target tract level, Hennepin: block-aggregated (a), Refined 

TDW (b), Extended Refinement for EM (c), Mecklenburg: block-aggregated (d), Refined 

TDW (e), Extended Refinement for EM (f).
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Figure 8. 
Third dasymetric refinement methods in comparison to their first or second refinement 

equivalents in 1990–2010, Hennepin: modified refined AW vs. refined AW (a), modified 

refined TDW vs. refined TDW (b), modified EM vs. EM (c), Mecklenburg: modified refined 

AW vs. refined AW (d), modified refined TDW vs. refined TDW (e), modified EM vs. EM 

(f), Hillsborough: modified refined AW vs. refined AW (g), modified refined TDW vs. 

refined TDW (h), modified EM vs. EM (i), Worcester: modified refined AW vs. refined AW 

(j), modified refined TDW vs. refined TDW (k), modified EM vs. EM (l).
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Figure 9. 
Third dasymetric refinement methods in comparison to their first or second refinement 

equivalents in 2000–2010, Hennepin: modified refined AW vs. refined AW (a), modified 

refined TDW vs. refined TDW (b), modified EM vs. EM (c), Mecklenburg: modified refined 

AW vs. refined AW (d), modified refined TDW vs. refined TDW (e), modified EM vs. EM 

(f), Hillsborough: modified refined AW vs. refined AW (g), modified refined TDW vs. 

refined TDW (h), modified EM vs. EM (i), Worcester: modified refined AW vs. refined AW 

(j), modified refined TDW vs. refined TDW (k), modified EM vs. EM (l).
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Table 1.

Absolute error measures of unrefined and refined methods in all counties.

Method AW Refined
AW (1st)

Modified
Refined
AW (3rd)

TDW Refined
TDW (1st)

Modified
Refined
TDW (3rd)

EM
(2nd)

Modified
EM (3rd)

Extended
EM (2nd)

Hennepin: 1990–2010

MAE 219 158 148 201 132  117 203 139 110

Median  Abs 
Error

57 47 50 56 47  48   60 58 44

RMSE 487 342 310 420 294  234 402 262 222

90th Percent Error 646 429 464 650 368  306 616 291 270

Hennepin: 2000–2010

MAE 58 53 44 36 24 21  49  31 18

Median   Abs
Error

0 0 0 0 0 0 0  0 0

RMSE 214 248 201 127 95 86 217  159 89

90th Percent Error 97 16 17 88 19 17 24  14 23

Mecklenburg: 1990–2010

MAE 546 384 261 387 263 220 443  251 178

Median   Abs
Error

346 212 130 255 168 129 240  125 91

RMSE 832 624 427 575 407 360 743  412 297

90th Percent Error 1477 974 684 829 588 493 1094  628 455

Mecklenburg: 2000–2010

MAE 613 465 290 330 309 228 464  246 183

Median   Abs
Error

213 210 135 138 116 115 240  141 79

RMSE 1012 793 502 531 720 490 741  394 309

90th Percent Error 1728 1294 796 931 808 548 1294  630 478

Broward: 1990–2010

MAE 1016 610 623 630 312 365 499  481 374

Median   Abs
Error

584 310 322 309 197 194 256  284 207

RMSE 1699 1012 978 1075 489 609 854  764 576

90th Percent Error 2460 1499 1667 1566 738 907 1235  1140 914

Broward: 2000–2010

MAE 560 282 290 151 100 101 227  232 151

Median   Abs
Error

47 29 17 14 13 13 33  28 14

RMSE 1654 538 555 375 204 197 457  468 297
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Method AW Refined
AW (1st)

Modified
Refined
AW (3rd)

TDW Refined
TDW (1st)

Modified
Refined
TDW (3rd)

EM
(2nd)

Modified
EM (3rd)

Extended
EM (2nd)

90th Percent Error 1619 845 863 439 324 333 709  700 449

Hillsborough: 1990–2010

MAE 633 357 321 431 293 327 425  334 276

Median Abs Error 300 178 168 234 148 143 220  157 114

RMSE 1000 615 569 667 560 909 674  550 500

90th Percent Error 1807 901 765 1230 726 688 1118  894 697

Hillsborough: 2000–2010

MAE 574 231 228 178 130 121 213  162 133

Median   Abs
Error

5 0 0 3 0 0 0  0 0

RMSE 2513 501 491 363 298 287 493  380 313

90th Percent Error 1741 862 776 689 426 401 679  606 477

Worcester: 1990–2010

MAE 275 221 146 147 138  129 290  155 129

Median   Abs
Error

52 51 46 77 56  45 72  46 46

RMSE 598 446 298 287 272  266 596  382 288

90th Percent Error 892 803 379 299 290  326 845  319 269

Worcester: 2000–2010

MAE 184 150 101 37 37  36 184  75 40

Median   Abs
Error

9 8 7 13 6  7 8  6 5

RMSE 530 402 301 74 100  110 473  196 112

90th Percent Error 568 748 240 104 103  89 745  297 87
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Table 2.

Absolute error measures of all refined methods applied to potentially rural target tracts in four study areas.

Method Refined
AW(1st)

Modified
Refined
AW(3rd)

Refined
TDW
(1st)

Modified
Refined TDW
(3rd)

EM
(2nd)

Modified
EM (3rd)

Hennepin: 1990–2010

MAE 282 153 575 360 209 137

RMSE 405 243 966 613 331 198

Hennepin: 2000–2010

MAE 3 0 1 1 1 1

RMSE 6 1 2 2 2 1

Mecklenburg: 1990–2010

MAE 841 355 573 443 616 264

RMSE 1106 447 694 510 857 346

Mecklenburg: 2000–2010

MAE 1003 246 577 284 819 208

RMSE 1276 328 678 340 1003 349

Hillsborough: 1990–2010

MAE 494 353 312 273 507 398

RMSE 754 512 470 437 733 561

Hillsborough: 2000–2010

MAE 303 237 137 111 186 154

RMSE 730 620 342 286 425 334

Worcester: 1990–2010

MAE 238 102 147 122 268 178

RMSE 495 195 300 284 579 520

Worcester: 2000–2010

MAE 173 54 36 35 137 49

RMSE 442 131 73 105 316 125
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