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REVIEW ARTICLE

Ecological metrics and methods for GPS movement data
Dana Paige Seidel a, Eric Dougherty a, Colin Carlson b,c and Wayne M. Getz a,d

aDepartment of Environmental Science, Policy, & Management, University of California, Berkeley, CA, USA;
bNational Socio-Environmental Synthesis Center, University of Maryland, Annapolis, MD, USA; cDepartment
of Biology, Georgetown University, Washington, D.C., USA; dSchools of Mathematical Sciences, University
of KwaZulu-Natal, Durban, South Africa

ABSTRACT
The growing field of movement ecology uses high resolution
movement data to analyze animal behavior across multiple scales:
from individual foraging decisions to population-level space-use
patterns. These analyses contribute to various subfields of ecology
– inter alia behavioral, disease, landscape, resource, and wildlife –
and facilitate novel exploration in fields ranging from conservation
planning to public health. Despite the growing availability and
general accessibility of animal movement data, much potential
remains for the analytical methods of movement ecology to be
incorporated in all types of geographic analyses. This review pro-
vides for the Geographical Information Sciences (GIS) community
an overview of the most common movement metrics and meth-
ods of analysis employed by animal ecologists. Through illustrative
applications, we emphasize the potential for movement analyses
to promote transdisciplinary GIS/wildlife-ecology research.
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1. Introduction

The study of movement as a sub-discipline within the geographic information sciences
(GIS) is developing rapidly, driven by advances in localization technologies used to
collect movement data (Dodge et al. 2016, Yuan 2017). Parallel to this expansion is
the emergence of the field of movement ecology, which seeks to answer questions
regarding where, how, and why individual animals move, placed within the context of
diverse and varying natural environments (Nathan et al. 2008). In movement ecology,
the movement pathway of an individual (or a group of individuals) is often the central
feature studied. These pathways, considered within the heterogeneous landscapes they
cross, expose individuals to various environmental elements that may positively or
negatively impact long-term processes like reproduction and survival (Edelhoff et al.
2016). For example, an individual’s movement decisions, moving them toward or away
from a resource-rich area, will directly impact their foraging success and, hence, fitness
(Getz et al. 2015, 2016). At a broader scale, emergent spatial processes and patterns (eg
the distribution of resources, disease transmission, and human–wildlife conflict) are all
influenced by the movement decisions of animals. In this sub-field of ecology, the rapid

CONTACT Dana Paige Seidel dpseidel@berkeley.edu; @dpseidel
The underlying research materials for this article are available at http://doi.org/10.5281/zenodo.1185383

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
https://doi.org/10.1080/13658816.2018.1498097

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0002-9088-5767
http://orcid.org/0000-0001-5140-1646
http://orcid.org/0000-0001-6960-8434
http://orcid.org/0000-0001-8784-9354
http://twitter.com/share?text=@show [contrib-id contrib-id-type=
http://doi.org/10.5281/zenodo.1185383
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2018.1498097&domain=pdf


technological advances driving data collection are facilitated by a conceptual framework
for considering animal movements (the movement ecology paradigm of Nathan et al.
2008) and catalyzed by the development of new metrics and analytical tools.

Where movement ecology has a limited focus and specific ecological applications,
research within the GIScience community into the quantitative analysis of movement
takes a broader view, and in many cases has developed or adapted similarly powerful
methods for the exploration of movement, both with and without specific ecological
applications. In movement ecology, multiple recent reviews have been written that
explore the development of individual analyses or metrics of space use (eg home ranges,
proximity/social networks, selection functions; see Cumming and Cornélis 2012, Pinter-
Wollman et al. 2013, and Lele et al. 2013, respectively). In the same period, several special
issues in the GIS community have been published on the topic of quantitative movement
analysis and spatial ecology (Skidmore et al. 2011, Laffan et al. 2012, 2014, 2016, Dodge
et al. 2016). Despite these domain-specific reviews and broader special issues, an exposi-
tion that provides a broad overview of metrics and tools used to analyze animal move-
ment data is still needed. Our intention here is to provide such an exposition by reviewing
metrics and methods of analysis that are widely used in the movement ecology field,
emphasizing their applications beyond animal ecology into more general geospatial
analysis. Throughout, we attempt to highlight similar metrics already adopted or devel-
oped by researchers in GIScience and the advances made in the field of movement
research more broadly. For the most part, our review will emphasize methods most useful
for analyzing high-resolution (also referred to as fine-scale) spatio-temporal location data
from GPS tags (on collars, harnesses, or secured by other means), often paired with data
from accelerometer, proximity, and physiological (eg temperature) sensors. While we
acknowledge the significant contribution of additional localization technologies (eg acous-
tic arrays, light-based geolocators, VHF/radio data, ARGOS, and the upcoming ICARUS
initiative, as in Pennisi 2011) to the recent expansion of movement research, the metrics
developed for these pipelines are, for the most part, outside the scope of this review.

We begin our exposition by organizing movement ecology metrics according to whether
they summarize one- (ie having only the dimension of length) or two-dimensional (ie having
the dimensions of area) objects. This approach reflects Smouse’s et al.’s (2010) dichotomy of
statistical analyses of relocation data in terms of Lagrangian methods focusing on discrete-
step, time-interval, and turning-angle constructs (ie a one-dimensional view of movement
pathways) and Eulerian methods focusing on emergent space-use constructs (ie a two-
dimensional view of movement pathways). Within this dichotomy, we distinguish metrics
by whether or not they have an environmental covariate context and whether they pertain to
individuals or groups of individuals. Themethods we discuss represent the range of questions
movement ecologists generally address, from inferring animal behavior to understanding the
structure and characteristics of the landscape. The first set of metrics is associated with one-
dimensional objects: those metrics intended to derive descriptive statistics from individual
movement trajectories and to investigate individual behavioral states across a trajectory. The
second set are applied to two-dimensional objects: those meant to describe the frequency
with which an individual or multiple individuals occur in a given area or to predict spatial
usage patterns for an entire population of a particular species, rather than a single individual.
These latter analyses inform researchers about the relationship between landscape structure
and animal behavior. Throughout the review, we use data from a single zebra to demonstrate
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reproducible examples of selected metrics across scales. See Zidon et al. (2017) for details on
the zebra population fromwhich these data were collected, as well as Appendix A for specific
details on individual AG256, the zebra data used here.

2. Trajectory analyses

The improvement of modern tracking devices has led to a considerable increase in the
amount of movement data available for analysis, specifically in the form of lengthy time-
series of discrete relocations in two or three dimensional space (Tomkiewicz et al. 2010).
The level of correspondence between these relocations and the actual movement of the
animal will vary, depending on the spatial and temporal resolution of the trajectory, but
several metrics can be derived from the path to describe the general, usually statistical,
tendencies of individual animals (Table 1).

2.1. Path-level analyses

Path-level analyses rely on several straightforward metrics that can be easily extracted from
consecutive relocations in a time series of geographical points. These metrics are broadly
referred to as stepwise characteristics and can be split into primary and secondary metrics.
Primary metrics, such as step length and turning angle (Table 1) are directly derived from
relocations at each time step. However, they are highly sensitive to the spatial and temporal
resolution at which the data were collected (Codling and Hill 2005, Gautestad 2012).
Secondary metrics may be summary statistics derived from primary metrics (Edelhoff et al.
2016) or they may be computed from the trajectory at coarser spatio-temporal scales than
represented by the raw data. These coarser scale metrics include net squared displacement
(NSD; Bunnefeld et al. 2011), which under a pure diffusive movement process scales linearly
with time (Börger and Fryxell 2012), and residence time (Table 1). They may used, as in the
case of NSD, to characterize the functional mode of a movement path (ie migratory vs.
territorial; Bastille-Rousseau et al. 2016). The coarser- scale at which they are calculated
makes them less sensitive to the spatio-temporal resolution of the data, provided the scale
of the raw data is sufficiently fine (ie an order of magnitude finer than these secondary
measures).

Metrics have been developed to describe structural aspects of movement trajectories
that include many twists and turns. Two of these are the straightness index and tortuosity:
both measure the degree to which movement trajectories deviate from straight lines
(Table 1). A third is a trajectory’s fractal dimension: informally, it has a value between one
and two, and is a measure of the extent to which a one-dimensional trajectory fills two-
dimensional space, as an individual meanders around the landscape (values close to 2
represent trajectories that are more ‘space filling’ than those with dimensions close to 1).
These three structure-characterizing metrics are calculated across a series of steps (ie
consecutive locations in space), typically using computer algorithms, although the fractal
dimensions of earthworms moving in vegetated versus unvegetated landscapes have been
computed by hand (Rice et al. 1998)!
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2.2. Path segmentation analyses

One of the most active areas of research within movement ecology (see Edelhoff et al.
2016) is the development of methods to infer the behavioral state of individuals from
relocation data. Some of these methods seek to segment movement paths into different
behavioral phases (also known as canonical activity modes – Getz and Saltz 2008), such
as distinguishing between active and resting phases (van Beest and Milner 2013) or
between foraging and traveling phases (Dzialak et al. 2015). Segmentation methods may
be based on threshold concepts (Gutenkunst et al. 2007, Sur et al. 2014) or clustering

Table 1. Path Metrics and Ensuing Methods.
Metrics Description Suggested References

Step size (length) The displacement between two consecutive coordinate fixes Calenge et al. 2009,
Turchin 1998

Heading (or absolute
angle)

The direction of heading relative to some standard (eg initial
direction, compass north)

Calenge et al. 2009,
Turchin 1998

Turning angle The change in heading from one step to the next Calenge et al. 2009,
Turchin 1998

Displacement The straight-line distance from the beginning to the end point
of a path

Calenge et al. 2009,
Turchin 1998

Net squared
displacement (NSD)

The square of the straight-line distance between the start of
the trajectory and the current location

Calenge et al. 2009,
Turchin 1998

Persistence velocity The speed of movement in the direction of heading Gurarie et al. 2009
First passage time The time taken to exit a circle of prescribed radius r from a

relocation point at the center of this circle
Fauchald and Tveraa
2003, McKenzie et al.
2009

Straightness index The ratio of
ffiffiffiffiffiffiffiffiffi

NSD
p

to the path length (sum of the step sizes) of
the trajectory segment of interest

Benhamou 2004

Tortuosity The level of convolution in a movement path relative to a
straight line

Benhamou 2004

Residence time The amount of time spent within a selected area Barraquand and
Benhamou 2008

Return time (inter-visit
gap)

The amount of time it takes an individual to return to a
particular area after its last departure

Lyons et al. 2013

Revisitation (or return)
rate

The rate at which an individual returns to a particular area,
where distinct visits are based on a minimum return time tr

Lyons et al. 2013, van
Moorter et al. 2016

Mean duration The average amount of time spent per visit over a number of
visits to a selected area

Lyons et al. 2013

Time to return The duration of time between consecutive visits to a selected
area

Bar-David et al. 2009

Overall dynamic body
acceleration (ODBA)

The sum of the absolute values of three orthogonal locally
time-averaged accelerations

Gleiss et al. 2011, Qasem
et al. 2012

Behavioral state Association of one of several discrete modes of behavior with
each point on the trajectory

Getz and Saltz 2008

Methods (in the context of movement ecology)

Cluster analyses Methods for grouping trajectory points (or segments) that
represent the same behavioral state (or syndrome)

van Moorter et al. 2010
(or Abrahms et al.
2017)

Change-point analyses Methods for detecting points on a trajectory where switches in
behavioral states occur

Gurarie et al. 2009

State-space analyses
(hidden Markov
models)

Methods for detecting underlying behavioral states and
estimating state transition probabilities

Patterson et al. 2009

Accelerometry
visualization

Using tri-axial accelerometer data (eg OBDA) to evaluate
behavioral states

Shepard et al. 2008

Wavelet analysis Method for detecting periodically varying movement and
behavior patterns across all temporal scales

Polansky et al. 2010

Recursion analyses Methods for detecting movement trajectory recursions (returns
to prior locations)

Berger-Tal and Bar-David
2015
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methods (van Moorter et al. 2010), or they may be based on geometric or periodic prop-
erties of the trajectory, as in recursion (Bar-David et al. 2009) and wavelet (Wittemyer
et al. 2008) analyses, respectively (Table 1).

One set of methods – change point analyses (Table 1) – are designed to detect changes in
the movement behavior of individuals, and then relate these to environmental covariates
(Garstang et al. 2014) as possible causes for the behavioral shifts. These methods frequently
use time-series analyses to identify notable shifts in the autocorrelations of the sequential
values of primary or secondary metrics (Gurarie et al. 2009, 2016). Another set of methods –
state space modeling approaches (Table 1) – are designed to identify a set of states (hopefully
with a behavioral interpretation) underlying variations in movement behavior and, within the
same analysis, determine the probabilities of switching among states. Thesemethods attempt
to assign ‘hidden behavioral states’ to each location point, as well as a probability transition
matrix that specifies the probability of an individual switching from one state to any other as
the individual moves to the next location point. Essentially, the method produces a stochastic
walk model, called a Hidden Markov Model (HMM; Patterson et al. 2009). HMM movement
trajectory models are complicated generalizations of random walks (Morales et al. 2004),
where movement elements (step size and turning angle) depend on the current behavioral
state, as does the probability of changing behavioral statewhen reaching the next location. To
demonstrate the HMM method, we have analyzed the trajectory of a zebra using the
moveHMM package (Michelot et al. 2016) in the statistical analysis program R (version 3.4.3;
R Core Team 2017). The results obtained constitute themost probable decomposition of all of
the 10,600 steps into a ‘two-state no-covariate model’. The distributions of step lengths and
turning angles associated with this model are depicted in Figure 1.

Path or trajectory segmentation methods are one area of research common to both
GIScience and movement ecology, with the GIS community supporting significant research
on pattern-oriented, cross-scale, and cross-type segmentation methods (Dodge et al. 2009,
Ahearn and Dodge 2018). In a study designed to explore the role of uncertainty in trajectory
and segmentation analyses, Laube and Purves (2011) fitted 10 cows with GPS collars taking
sub-second fixes to investigate questions of scale, granularity, and uncertainty when work-
ing with GPS data to assess movement parameters. The results of this work should be of
great interest to ecologists, who typically collect much coarser fix data and then either
invoke a straight-line assumption about the nature of paths between any two consecutive
points in their data or assume Gaussian diffusion, often relying on a Brownian Bridge
method for constructing likely trajectories between such points (Horne et al. 2007).

Often limitations regarding the temporal resolution of movement data may require
analysis at somewhat broader scales. Even at this higher level of abstraction, however,
behavioral classification may still be powerful. Indeed, Abrahms et al. (2017) identified
‘movement syndromes’ across 13 diverse taxa (marine and terrestrial) using five standard
metrics (mean turning angle correlation,mean residence time, mean time-to-return, volume
of intersection, and mean net squared displacement) and a principle components analysis.
Although the trajectories studied varied in movement mode (eg flying, walking, swimming)
and taxon, the analysis successfully differentiated among migratory, nomadic, central place
foraging, and territorial behaviors from GPS data alone.

Alongside the development of analyses to derive behavioral states from GPS data, new
tags and collars fitted with tri-axial accelerometers (and, often, additional sensors for light,
barometric pressure, temperature, etc. – see Wilson et al. 2008) increasingly allow for direct
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observation of the dynamic behavioral states of free-ranging animals (Shepard et al. 2008,
Wang et al. 2015). Using various machine learning algorithms, accelerometer data (in the
form of three-dimensional movement generally at a 20–40 Hz resolution) can be processed
to classify basic behaviors (eg sitting, walking, diving, running, resting, foraging) across
multiple taxa with high accuracy (Nathan et al. 2012, Bidder et al. 2014, Fehlmann et al.
2017). Although these algorithms require high resolution training data, often relying upon
intensive observation of captive animals, this technology used in combination with GPS
relocations can aid in the exploration of links among the biomechanical, behavioral, and
ecological processes that influence whole-animal movement and contribute to a unified
field of movement ecology (Nathan et al. 2012).

D
en

si
ty

(a) (b)

(c)

Step Length

State 1
State 2
Total

Turning angle (radians)

D
en

si
ty

Figure 1. Results of a ‘2-state, no-covariate’ behavioral model of zebra ‘AG256’ using the moveHMM
package in R (see supplementary files for data and code). This analysis assumed 2 distinct behavioral states
and included only an intercept term, no environmental or other physiological covariates were included.
Panels (a) and (b) show the empirical distributions of step lengths and turning angles respectively, using
yellow and blue lines to depict the estimated distributions in each behavioral state. Panel (c) displays the
particular trajectory used to produce distributions (a) and (b), with each color-coded with respect to their
predicted behavioral state: yellow for state 1 and blue for state 2. Data exploration andbiological knowledge
of the observed individual is necessary to determine whether a model with more than two states clarifies or
muddies interpretation of what each state is likely to represent. In our example, it seems probable, given the
relatively uniform distribution of turning angles and the high density of short steps, that State 1 represents
bouts of foraging while State 2 represents more directed movement behavior (eg travel; notice the
apparently unbiased distribution of turning angles and larger step sizes).
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2.3. Interactions

Although the majority of path trajectory analyses do not rely upon environmental covari-
ates, often the results and interpretation of these metrics can be enhanced by assessing
their environmental context. For example, taking account of the environmental context at a
behavioral change-point can help researchers infer why an animal is changing behavior or
what behaviors are being exhibited. Similarly, examining the environmental context along-
side measures of first-passage time or residence time can be useful for understanding how
animals relate to and behave in different environments. Inherently, the one-dimensional
metrics we have highlighted here are applied only to individuals’ trajectories. However,
when aggregated across a group of animals, their results can be useful in distinguishing
individual heterogeneity in a population or variation across species, just as done by
Abrahms et al. (2017) in their study of movement syndromes.

Emerging technologies, such as proximity collars, are advancing the study of con-
specific interactions (and those among heterospecifics as well) along movement
trajectories. The consideration of contacts among individuals moving across a given
landscape can be vital for understanding the implications for resource use, competi-
tion, and disease transmission. Often interaction between two animals is assessed
using point-based measures rather than integrating proximity across path segments,
as in assessments of association coefficients or proximity analyses (Long et al. 2014).
Recent advances in the GIS community, however, have led to improved methods for
analyzing dynamic interaction (ie interactions that occur both in space and time) using
path-based metrics (Long and Nelson 2013a). Often these interactions are translated
into and analyzed as contact networks, an application of graph theory; however, since
the majority of network analyses do not ask questions explicit to movement, we direct
readers to alternative reviews of this growing area of research (e.g Croft et al. 2008,
2011, Pinter-Wollman et al. 2013, Silk et al. 2017).

3. Space-use analyses

When scaling up from path-level to space-use analyses, movement ecologists employ a
variety of metrics designed to evaluate how an individuals’ movements, when viewed in
the aggregate, partition the landscape in meaningful ways. Such two-dimensional con-
structions can explore how and when individuals use or share a given area or habitat in
space or time with or without the consideration of the underlying environment. Below
we explore these methods in two sections. First, we highlight methods based purely on
movement metrics, irrespective of environmental context. These are generally used for
characterizing the size and shape of animal home ranges. Second, we describe a suite of
methods that combine movement locations with environmental covariates to make
inference about habitat selection and the influence of landscape factors on space use.

3.1 Feature-independent analyses

Metrics analyzing the frequency of relocations across space regardless of environmental
covariates broadly include the various methods for home-range estimation. These simple
measures of animal space use (see Table 2) are applied widely, even with low-resolution
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data: though daily fix rates may prohibit fine-scale analyses, such as behavioral state
extraction, the aggregation of points at this resolution (over appropriate temporal spans)
can easily inform the general size and shape of an animal’s home range (Worton 1989,
Fieberg and Kochanny 2005, Fieberg and Börger 2012).

Several alternative methods for describing the home range of an animal exist, ranging in
complexity from the construction of the minimum convex polygon containing the move-
ment trajectory to a construction of a utilization distribution (UD) (van Winkle 1975) that can
be used to estimate the probability of finding an individual in selected areas inside the
home range; see Figure 2 for a comparison across three common methods for home-range
construction. Most commonly, UDs are derived using kernel density estimators, now widely
incorporated in many spatial analysis packages (Worton 1989). Subsequent development of
other methods, based on Brownianmovement models (Horne et al. 2007) and Local Convex
Hull unions (Getz and Wilmers 2004, Getz et al. 2007, Lyons et al. 2013, Dougherty et al.
2017), as well as autocorrelated kernel methods (Fleming and Calabrese 2017) have enabled
more realistic or robust estimates of the UD. In order to delineate areas of most consistent
use or offer conservative estimates of an animal’s typical home range, researchers often
include isopleths onmaps of UDs to identify the areas associated with a given percentage of

Table 2. Space-Use Metrics and Methods (in the context of movement ecology).
Featureless
Landscapes Description Suggested References

Home range
estimation

The estimation of habitually-used areas with function-dependent
boundaries (eg summer range, defended territory, core
territory). Most commonly accomplished using densities of use
calculated from estimates of the animals’ locations across a
landscape

Powell and Mitchell 2012,
Fieberg and Börger 2012

Utilization
distribution

Relative frequency distributions of an animal’s location over space
for a specified period of time

Worton 1989

Home range
fidelity

Measures of home-range overlap among individuals (eg volumes
of intersection) and home-range stability over time

Fieberg and Kochanny
2005, Millspaugh et al.
2004

Core area methods Analyses for identifying areas of most consistent use/selection
from individuals’ relocation histories

Vander Wal and Rodgers
2012

Conspecific
proximity
methods

Methods for estimating and characterizing the interactions
among and impact of conspecifics on movement trajectories

Delgado et al. 2014

Featured Landscapes

Resource selection
functions (RSFs)

Statistical models producing values proportional to the
probability of use of a resource unit. RSFs are often constructed
using a logistic regression framework comparing points used
by an animal to those ‘available’ to it within its home range

Manly et al. 2002, Boyce
and McDonald 1999

Step selection
functions (SSF)

A model of resource selection that includes movement behavior
to constrain selection and availability. In an SSF, each step at
time t is paired with one or more random steps with the same
starting point drawn at random from a distribution of step
lengths and turning angles.

Thurfjell et al. 2014

Landscape
resistance

Measure of the relative difficulty (eg energy used per unit
distance moved) for individuals to move as a function of
topography and environmental features

Zeller et al. 2012

Least cost
methods

Analyses for finding the least difficult (least energy expended)
path between two points. May be extended to avoid risks of
encountering competitors, predators, etc.

Walker and Craighead 1997,
Adriaensen et al. 2003

Circuit theory An application of electrical circuit theory to model landscape
connectivity and resistance through graph and random walk
theories

McRae et al. 2008
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(a) (b)

(c)

Figure 2. Comparative home range estimates for zebra ‘AG256’ (using only the data that pertains to the
western part of its total range – cf. Panel (c) in Figure 1) across 3 static (ie time-integrated) techniques. The
simplest technique, a minimum convex polygon (MCP), displayed in Panel (a), defines the extent of a home
range as the smallest convex polygon fitting a given percentage of points. Though still used widely, MCPs
are criticized as poor estimators of an animal’s true home range because they often contain large areas
unused, and potentially unavailable, to the observed individual, as evident in the upper-center of our
trajectory. Panel (b) displays a common alternative: the 95%kernel UD. Thismethodwas developed tomore
rigorously quantify an animals actual space use and ultimately defines an animal’s home range as a bivariate
probability density function, calculating the probability of relocating an animal in any given location
(Worton 1989). Panel (c) offers a non-parametric approach, calculating the home range of the zebra
using a-LoCoH, the adaptive local convex hull method developed by Getz et al. (2007) that constructs
kernels at each relocation using all points within a total distance a such that the distances of all neighboring
points to the reference point sum to a value less than or equal to a. In our example, we used a ¼ 75000 m,
which provided a contiguous range that trades-off fewer false positives at the expense of more false
negatives than the other two methods. There is much debate and continued development in the area of
home-range estimation and researchersmust be conscious of the differences acrossmetrics, because results
often vary widely and may offer different biological interpretations (eg defining the extent of the habitat
available to the animal for selection versus the area traversed in daily activity; see Fieberg and Börger 2012).
For more detail on the construction of these three home range measures, see Appendix B.
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relocations (eg 50%, 80%, or 95%). UDs can be calculated over any time interval of interest to
delineate the space use of an animal over that time (eg a single month, a particular season,
an entire year, etc.). By assessing the volume of intersection or overlap of successive short-
term UDs for a particular individual, researchers can evaluate broad-scale site fidelity and
ultimately the stability of an animal’s home range (Fieberg and Kochanny 2005, Millspaugh
et al. 2004, Clapp and Beck 2015; Table 2). Additionally, these same metrics can be used
across individuals to estimate concurrent or shared space use, which can be important for
understanding social structure, disease transmission, or competition for resources.

Within the UD, ecologists often define a ‘core area’ of use. Core area methods refer to any
one of a group of analyses that seek to identify the most intensely used areas from
individuals’ relocations histories. In their simplest form, these areas are defined as the
smallest area incorporating some subjective percentage of relocations, generally 30–50%.
Although widely used, the selection of the 30% or 50% isopleth is ad-hoc. In an attempt to
make this selection more rigorous, Vander Wal and Rodgers (2012) propose researchers fit
an exponential model to the rate at which home-range area increases for each percent
increase in isopleth value; they define the core area as the point at which the slope of this
exponential curve is 1. Other approaches involve integrating time-use patterns into the
spatial analysis ofmovement data. In the simplest time-usemetrics, researchers evaluate the
time to return and the return rate (frequency of returns) to pre-defined areas in the home
range, given some prescribed minimum time between ‘returns’ (Seidel and Boyce 2015, van
Moorter et al. 2016). More elaborate methods incorporate time-use into the construction of
the UDs themselves (Benhamou and Riotte-Lambert 2012). The t-LoCoH method (imple-
mented in R through the tlocoh package; Lyons et al. 2013), for example, allows users to
evaluate revisitation (a measure of separate visits) and average duration of visits (Table 1) to
all local hulls within an animal’s home range. These analyses can help elucidate spatial
patterns in time strategies: teasing out not only what habitats animals are using, but also
separating those they used in repeated short visits from those used for infrequent but
extended visits.

In the GIS community, the competition in and for space and time that ecologists study as
habitat selection or home range analysis, has often been considered as an extension of
classic time geography (Demšar et al. 2015, Long 2016). Various methods for illuminating
space-time prisms, which map the potential movements of an object in both geographic
space and time given information about its movement capabilities (eg travel velocity), can
account for the time and sequentiality ofmeasurements alongmovement paths. Extensions
of these space-time prisms has resulted in methods for constructing 3-dimensional ele-
ments used to estimate the probability that an object was located at some location at some
particular time. This approach offers a sophisticated technique for understanding the
movements and activities (and potentially interactions) of animals at fine temporal and
spatial scales (Downs et al. 2014).

All simple home-range estimators that ignore the temporal autocorrelation inherent
in movement trajectories may be applied either to a single animal’s trajectory or to a
combined dataset across multiple individuals. Estimation methods that use the temporal
nature of movement trajectories (eg autocorrelated kernel density methods, Brownian
bridges, t-LoCoH), however, must be applied first to individual trajectories indepen-
dently and subsequently combined if population space use is of interest.
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3.2 Feature-dependent analyses

Methods used to construct resource selection functions (RSFs; Boyce andMcDonald 1999) are
arguably the most utilized among spatially-explicit methods that incorporate environmen-
tal covariates (see Table 2). RSFs are typically employed to infer the probability of use of any
given resource unit within the range of an individual or population, and thereby, represents
the primary procedure for evaluating the selection of resources by both individuals and
populations (Boyce and McDonald 1999, Manly et al. 2002). Within the genre of habitat
selection analysis, step selection functions (SSFs) function in a similar manner to RSFs, but are
constructed at a much finer scale. These models compare habitat attributes at points along
a given trajectory and estimate resource selection by comparing the environmental struc-
ture of the next point along the trajectory to other possible points available to the animal
(taking into account step length and turning angle distributional structure). Thus, in short,
SSFs offer a finer-scale approximation of habitat selection along movement paths rather
than the aggregate assessment yielded by a traditional RSF (Thurfjell et al. 2014, see
Figure 3); however, we note that SSFs are sensitive to the frequency at which data are
collected (Gautestad 2012). In fact, consideration of behavioral state, data collection, and fix
interval (ie sampling frequency) is crucial to accurate representation of both habitat selec-
tion and connectivity (Abrahms et al. 2016aa, 2017). For example, when considering
behavioral state in the evaluation of resource selection by African wild dogs, Abrahms
et al. (2016a) demonstrated that the response of wild dogs to roads varied significantly

Figure 3. Predicted habitat selection using a step-selection function for zebra ‘AG256’.
Fundamentally, selection functions calculate the selection ratio of any given resource unit by
comparing characteristics of ‘used’ units to those ‘available’ to the animal, typically using a logistic
regression framework. Step-selection functions differ from traditional RSFs by defining what is
‘available’ according to randomly drawn steps from each point rather than a simple random sample
of the home range as a whole. Here we display AG256’s predicted selection ratio for a portion of
Etosha National Park according to 4 environmental layers: distance to primary roads, distance to
functional water sources, mean greenness, and mean wetness. On top of the predicted selection
layer, the original trajectory is plotted in black. Note that only the western part of the trajectory,
which occurs during the wet season (Zidon et al. 2017), is used to construct the home ranges
depicted in Figure 2). For a complete discussion of the regression and details regarding the selection
of available steps and the environmental layers used, please see Appendix B.
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depending on both the behavioral and landscape context in which roads were
encountered.

Beyond estimating the probability of use of any given resource in space, ecologists and
conservation biologists often want to evaluate the connectivity of a landscape for move-
ment, both within and between populations. Metrics for assessing landscape connectivity
are expansive, but the most common approaches involve various landscape pattern
indices which serve to evaluate structural connectivity, a characteristic inherent to the
landscape (see Tischendorf and Fahrig 2000, Calabrese and Fagan 2004, Fagan et al. 2006).
Functional connectivity can be calculated directly using movement trajectories (Abrahms
et al. 2016a, Abrahms et al. 2016b) or estimated indirectly using capture-recapture data
(Royle et al. 2013). For example, least-cost modeling, a popular analytical approach familiar
to movement ecology and GIS alike, generates simulated paths based on estimates of the
efficiency with which an individual could move between two points. Efficiency can be a
function of distance, time, or any other weighted resistance layer. Traditionally, maps of
landscape resistance have been generated from a mix of expert opinion, previous studies,
species presence locations, habitat suitability indices (often also derived by expert opi-
nion), and radio-telemetry points (Sawyer et al. 2011). More recently, these maps have
been generated using circuit theory (McRae et al. 2008) or by using the inverse of
selection functions, thereby integrating actual movement paths into the assessment of
landscape permeability (Chetkiewicz and Boyce 2009, Zeller et al. 2016).

Often in the study of movement, dynamics within a population of animals, rather
than those of a single individual, are of primary interest. As such, although both land-
scape connectivity and habitat selection analyses can be run on single trajectories, it is
most common to run these analyses on groups of individuals to infer population-wide
behaviors. Of course, without comprehensive tracking of all individuals in a population,
general conclusions can be difficult to draw or, when formed from empirical observation
on a subset of the population, biased due to individual and environmental heteroge-
neity (especially with small sample sizes). However, as GPS technology has become more
cost-effective and widely available, researchers with appropriate sampling schemes and
investigating data from multiple individuals within a population can begin to draw
conclusions about general space use and effectiveness of management strategies for a
population or species.

4. Bridging perspectives

4.1. In ecology at large

As a sub-discipline within ecology, movement ecology often has a somewhat narrow
focus, considering foundational questions, such as when, where, how, and why animals
move (Nathan et al. 2008). Indeed, despite its interdisciplinary origins, movement ecology
tools are often used for ‘basic’ science (ie addressing research questions without specific
applications beyond the creation of new knowledge about a system) in contrast to
GIScience’s often more applied focus. But the methods of movement ecology draw on
several disciplines, including physics, biomechanics, behavioral ecology, landscape ecol-
ogy, and GIScience. Moreover, at its core, movement ecology is a means of cutting across
scales, linking the mechanical and physiological basis of behavior to continental-level
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patterns in animal distributions. That cross-scale nature allows movement ecology to be
adaptable and flexible for solving real-world problems in human-dominated landscapes.

In conservation biology, movement tools have clear and well-tested applications for
both policy making and wildlife management. In particular, movement ecology provides
an invaluable framework for understanding, measuring, and predicting human-wildlife
conflict. For instance, Mountrakis and Gunson (2009) used kernel density estimation to
evaluate spatiotemporal hotspots where the risk of moose-vehicle collisions may be
high. Further, in a study investigating the space-use behavior of leopards in human-
dominated landscapes, Odden et al. (2014) found that home-range size was markedly
smaller and movement patterns (as defined by step-length distributions) more nocturnal
for leopards ranging closer to human settlements, results that reflect a behavioral shift
that may reduce conflict. Movement tools can also be used to plan and optimize
mitigation efforts, like highway overpasses and conservation corridors, and provide a
means to evaluate the success of management decisions. Indeed, policy for dealing with
conflict can be expensive and retaliatory (McManus et al. 2015), resulting in the death of
endangered animals in an often misguided attempt to prevent future conflict. In the
case of leopards in India, for example, the common management practice of haphazard
capture and relocation of problem animals has been shown to be counterproductive;
although translocations may provide temporary local relief, they were found to increase
the subsequent overall level of conflict (Athreya et al. 2011, Odden et al. 2014).

Movement research also has tremendous potential for addressing complex challenges
where movement is only an implicit part of the problem. In recent years, movement data
has become an increasingly valuable asset in disease ecology, with the vast majority of
emerging human health threats connected in some way to the human–wildlife–livestock
interface (Jones et al. 2008). Movement already plays a key role in disease ecology, with
many researchers interested in answering clear-cut questions like whether host movement
behavior changes their risk of disease, or whether infection alters host movements.
Movement tools are particularly useful for illuminating aspects of individual heterogeneity
that may directly influence exposure and transmission processes; effective incorporation
of such knowledge into existing (or adapted) epidemiological models may result in a
framework that offers more accurate predictions of spatiotemporal disease dynamics
(Dougherty et al. 2018). In an example of this, research into the spatial organization of
badgers (Meles meles) has demonstrated that culling, a widespread government control
method for tuberculosis, can have an adverse effect – and actually increases contact
between badgers and cattle (Woodroffe et al. 2006). In the future, more real-time applica-
tions may become increasingly prevalent not only in forecasting but also in surveillance,
for example, in efforts to prevent spillover of bat-borne viruses like Ebola and Nipah.

Further, although our focus here has been on analyses for GPS relocation data, in most
cases the metrics and methods presented may be used to assess other kinds of geospatial
data. In fact, many of the tools explored here have applications outside movement ecology
and beyond the conservation and disease ecology considered here. These tools have
considerable potential for facilitating cross-disciplinary research. For example, cluster ana-
lyses used in movement ecology to identify, inter alia, kill sites and foraging patches (Webb
et al. 2008, Tambling et al. 2010, Seidel and Boyce 2015) were originally developed by
researchers to identify disease hotspots from disease-incidence records (Kulldorff et al.
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1998). In the same vein, resistance mapping and network analyses have clear implications
for assessing transportation and traffic flow.

4.2. Outside ecology

Many of the questions and methods used in movement ecology are not unique to animal
behavior. As the digital traces on human lives have multiplied (eg via mobile phones, geo-
tagged socialmedia), the field of humanmobility analysis (HMA) has become an increasingly
important part of sociology and human geography (Chen et al. 2016). Movement ecology
may be able to learn from the experience of GIS and HMA communities, as the streams of
passive data available from mobile phone records and social media have already eclipsed
those available to ecologists by several orders ofmagnitude. Models and techniques used in
HMA andmovement ecology often ask similar questions (eg canwe infer activity or behavior
from movement patterns?) and are motivated by a shared foundation in physics and
mathematics (eg diffusion models and stochastic processes; Gonzalez et al. 2008).

Although the two fields often approach these questions at different scales, with
different applications and impact, and using different nomenclature, movement ecolo-
gists can learn as much from this realm as geographers may take from movement
ecology, especially as the resolution of available animal movement data increases to
match that of HMA. In the future, both of these fields will face challenges to develop
new methods and metrics to handle the proliferation of ‘big data’ as movement tracking
becomes lighter, easier, and cheaper to implement, and involuntary data collection
becomes more ubiquitous for human mobility (Kitchin 2013). Further, the historical
frameworks in transportation research for active data collection, using surveys and
GPS loggers, can offer powerful means for validating new models and methods that
would be unavailable in wildlife research (Chen et al. 2010).

It is worth noting in this context that quantitative models and approaches can only go so
far, and behavior – human or animal – has limited predictability (Song et al. 2010a, 2010b).
Qualitative data and systems to collect and analyze them – a realm that has been advanced
by human geographers and political ecologists who seek to document and understand the
spatial nature of institutions and policy – can help to fill in some of the gaps and bring
greater understanding to the motivations and patterns behind movement and human
behavior more generally. In this vein, the application of qualitative data is yet another
area where movement ecology can benefit from an integration with GIS. As there are no
landscapes that remain untouched by humans, qualitative data and perspectives should be
considered crucial not only to human research but also to the understanding of ecological
systems. Research at the interface of ecology and human geography has the potential to
enhance our understanding of both the social and ecological impacts of global change (eg
Hardy and Hauer 2018).

The shared questions and challenges facing GIS and movement ecology may help
facilitate fruitful collaboration in the future, especially if undertaken with a shared commit-
ment to open science and its infrastructure, open data, and the development of open source
tools on both sides. Though proprietary software, such as ESRI ArcGIS, is regularly used by
ecologists, the community is moving toward open source solutions. Many of these tools are
developed and maintained by the GIS community’s own open geography advocates and
organizations (OsGeo); open source GIS software packages like GRASS and QGIS and spatial
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libraries in R and Python are becoming more developed and widely used. However, open
data sharing is often a bottleneck in both fields. Political, legal, and privacy issues with
sharing data, especially when human subjects are involved, generally limits open data
availability (DeLyser and Sui 2014, Sui 2014). However, even in movement ecology, data
archival or sharing has been slow to take hold, even with the existence of community-
specific infrastructures, such as Movebank, developed for the purpose (Wikelski and Kays
2018). Continued investment on both sides of GIScience and movement ecology can help
guide wider dissemination of these tools and the successful integration of the two fields.

5. Discussion

Today, movement data are collected at increasingly high resolutions of time and space.
This explosion of data demands new methods and techniques to analyze them effi-
ciently (Long and Nelson 2013b). Likewise, improvements in technology for tracking
animal movements has increased demand for toolkits able to extract the behavioral and
ecological factors behind animal movement and space use. Here we have outlined a
selection of methods for exploring movement data of free-ranging animals that can
answer animal behavior questions across scales, particularly as they may relate to
conservation and wildlife disease issues.

As has been noted, GIS is fundamentally based on the study of geographic information in
the context of processes that enhance spatial knowledge and support decision making,
often on a global scale (Yuan 2017). It thus follows that GIS and movement ecology overlap
where environmental and landscape factors are considered in the context of space use by
individuals and populations. Although we have limited our review to applications of single
population or community analyses, studies of whole species distributions or long term
range shifts (Elith et al. 2010, Araújo and Peterson 2012) are representative of active areas of
research in ecology. These distributions are rarely linked tomovement ecology even though
they naturally emerge from animals’ individual movement decisions (Jønsson et al. 2016).
No matter how climate suitability shifts over time, the ability of species to track changing
climates ultimately depends on their dispersal ability – but in global change biology, this is
most commonly reduced to a single maximum upper rate (Trisos et al. 2018). Movement
ecology is on track to play an increasingly important role, not just in refining those
predictions, but also in tracking species’ actual responses in real time.

In short, many of the questions addressed in movement ecology overlap with those
being asked throughout the broader GIS community: questions relating to geospatial
data analyses that address the behavior of individuals, the demography of populations,
and the structure of landscapes in the face of global change. Given this overlap, we are
confident this review will help stimulate further transdisciplinary and interdisciplinary
research among ecologists and geographers.
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