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ABSTRACT
In this article, we respond to ‘A comment on geographically
weighted regression with parameter-specific distance metrics’ by
Oshan et al. (2019), published in this journal, where several concerns
on the parameter-specific distance metric geographically weighted
regression (PSDM GWR) technique are raised. In doing so, we review
the developmental timeline of the multiscale geographically
weighed regression modelling framework with related and equiva-
lent models, including flexible bandwidth GWR, conditional GWR and
PSDMGWR. In our response, we have tried to answer all the concerns
raised in terms of applicability, veracity, interpretability and compu-
tational efficiency of the PSDM GWR model.
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1. Introduction

We thank the authors of ‘A comment on geographically weighted regression with
parameter-specific distance metrics’ (Oshan et al. 2019), for an interesting discussion
of our work (Lu et al. 2017, 2018). The ideas raised are thought provoking and interest-
ing. Having seen the paper, and read through the arguments presented, we feel that we
would like to continue the discussion, and therefore thank the editors of IJGIS for
allowing us to do so through this response. We choose to set this out as follows:

(A) The developmental timeline of multiscale geographically weighed regression
(MGWR) together with related and equivalent models.

(B) Specific responses to each section of the comment.
(C) Concluding remarks.

2. Description and timeline of MGWR and related models

In its basic form, geographically weighed regression (GWR) calibrates a spatially-varying
coefficient (SVC) model with local regressions at target locations, using nearby weighted
data falling under a kernel at the center of each location (Brunsdon et al. 1996). Here,
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a single kernel bandwidth is used for its calibration, which is limiting in that it implicitly
assumes the same degree of spatial smoothness for each of the SVCs. Thus, if some
response to predictor variable relationships tend to operate at a larger-scale whilst other
relationships operate at a smaller-scale, basic GWR will ignore these differences and only
find a ‘best-on-average’ scale of relationship non-stationarity (as it uses only a single
bandwidth). As a first step, to address this limitation, mixed GWR (also known as
semiparametric GWR) can be implemented in which some relationships are assumed
stationary (globally-fixed) whilst others are assumed non-stationary (spatially-varying)
(Brunsdon et al., 1999, Mei et al. 2004, 2016, Nakaya et al. 2005). However, a mixed
GWR only in part addresses the limitation, as the subset of spatially-varying relationships
is still assumed to operate at the same spatial scale. Instead, MGWR can be used in which
each relationship is specified using its own bandwidth, and in doing so, allows each
relationship to vary at its own spatial scale.

The developmental timeline of MGWR where only Euclidean distances (EDs) were
used follows that of Yang et al. (2011, 2012); Yang (2014), where it was called flexible
bandwidth GWR (FBGWR); Leong and Yue (2017)1, where it was called conditional GWR
(CGWR); and Fotheringham et al. (2017)2, where it was called multiscale GWR (MGWR). All
articles implemented the idea of ‘a vector of bandwidths’ for GWR, as first set out in
Brunsdon et al. (1999).

Yang et al. (2011) presented MGWR as exploratory tool to aid model building when
choosing between simpler (basic and mixed) GWR models, while Yang et al. (2012)
assessed the accuracy of the estimated MGWR coefficients through a simulation experi-
ment. Leong and Yue (2017) provided a detailed study of MGWR through simulated and
empirical case studies, where it was again promoted as an exploratory tool. Leong and
Yue (2017) compared their implementation of MGWR with basic GWR and with locally-
linear GWR (Wang et al. 2008) and found MGWR to perform the best, but with caveats
with respect to negatively correlated predictors, computational costs and the number of
predictors specified. Fotheringham et al. (2017) also provided a detailed study of MGWR
through simulated and empirical studies.

Lu et al. (2015, 2017)3 provided another form of MGWR, but where MGWR could be
implemented with both Euclidean distances (EDs) and non-Euclidean distances (Non-
EDs), which were themselves allowed to be specific to each response to predictor
relationship. This model was named GWR with parameter-specific distance metrics
(PSDM GWR) and is the subject of the comment that we are responding to. This variant
of MGWR, when fitted using EDs for all relationships, provides an MGWR model that is
very similar in design to those approaches listed above – all adapt concepts found in
generalized additive models (GAMs) (Hastie and Tibshirani 1986, 1990).

Subsequent studies include that of Wolf et al. (2018)4 where the MGWR model of
Fotheringham et al. (2017) was compared with an implementation of the Bayesian SVC
model of Finlay (2011); and Murakami et al. (2019)5 where the MGWR model of Lu et al.
(2017) (i.e. PSDM GWR with only EDs, termed FBGWR) was compared with the random
effects eigenvector spatial filtering model of Murakami et al. (2017). In both instances,
MGWR comported well with alternative SVC models that could similarly cater for scale-
dependent relationships. Lu et al. (2018)6 proposed methods to save on computational
costs with PSDM GWR (some of which are pertinent to MGWR), together with
a Minkowski approach to help guide distance metric choice.
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All MGWR models up to this juncture could provide a measure of (in-sample) model
prediction accuracy, for example through the residual sum of squares (RSS). However,
they could not provide a measure of model complexity, as separate weight matrices
were found for each relationship due to the implementation of the back-fitting algo-
rithm employed. This implied that it was difficult to compare MGWR to alternative
regressions (e.g. ordinary least squares (OLS), basic or mixed GWR) in terms of Akaike
Information Criterion (AIC). It also implied that inference in MGWR, in particular estimat-
ing meaningful SVC standard errors was not then developed. The only differences in
MGWR outputs at this juncture (i.e. RSS, bandwidth-specific AICs, bandwidths and the
SVCs themselves), would arise due to variations in the specification of the back-fitting
algorithm, such as choice of coefficient starting values, levels of convergence. These
choices could also dictate computational efficiency.

However, welcome advances by Yu et al. (2019)7 propose an inferential framework to
MGWR through the calculation of a hat matrix, which in turn allows the calculation of
a single AIC value for the whole model, together with the derivation of MGWR SVC standard
errors, so that local pseudo t-tests can be implemented. Local pseudo t-tests are applied
considering multiple hypothesis tests. Computational costs do increase with this advance.

In summary, MGWR, FBGWR, CGWR and PSDM GWR, effectively all refer to the same
modelling framework, and any variant (say, with non-EDs), issue (say, the use of stan-
dardized data, see below) or advance (say, through an improved inferential framework)
may be applicable to all of them.

3. Specific responses

We now respond to each section in turn of the comment to PSDM GWR (Oshan et al.
2019). We also revert to the naming conventions given in the PSDM GWR papers, which
doesn’t always make for easy reading, so clarity is given where needed.

3.1 Response to the ‘Introduction’

We agree with the positive arguments made for MGWR, for which PSDM GWR provides
a version. PSDM GWR is indeed a complex variant of MGWR and in this response, we
present an argument for its value. One part of this we found puzzling, as it implies that
Lu et al. (2016) is an implementation of PSDM GWR, which it is not. In fact, it is a study of
basic GWR with Minkowski distances. Lu et al. (2017) introduce PSDM GWR, where it is
developed further in Lu et al. (2018) to reduce computational overheads (and was not
published in this journal). In addition, Lu et al. (2016) is cited as using the London house
price (LHP) data while it actually uses simulated data.

3.2 Response to the ‘Background’ section

We feel there is a need for clarification on the timelines of the research topics reviewed
here. For clarity, Lu et al. (2014a) investigate basic GWR with ED and non-ED metrics –
specifically road network distance (ND) and travel time (TT) and apply these GWR
variants to the LHP data. Lu et al. (2016) again investigate basic GWR, but now with
Minkowski distances through a simulation study. The PSDM GWR study of Lu et al. (2017)
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considers only ED and TT metrics for each relationship and is again evaluated with the
LHP data. The second PSDM GWR study of Lu et al. (2018) was specifically focused on
reducing computational overheads, not increasing them. Lu et al. (2018) re-investigated
the use of ED and TT metrics for each relationship of the PSDM GWR model with the LHP
data (i.e. from Lu et al. 2017), and demonstrated significant computational savings
through a revised search strategy. We would also like to clarify that although
Minkowski distances could be used in PSDM GWR, this is not essential. Any kind of
distance metric is permissible.

In a separate analysis, Lu et al. (2018) investigated the use of Minkowski distances
through the LHP data and a simulation experiment, where the objective was to assess the
potential of Minkowski distances to guide distance metric choice in PSDM GWR. Given that
computational costs could be saved through this revised search strategy, it was clearly
stated that computational costs would increase with Minkowski distances over that found
with known distance metrics such as TT, but that ultimately, computational costs could be
reduced through parallel computing. Lu et al. (2018) provide the following statement to this
effect. ‘The PSDM GWR calibrations are expected to be time consuming, particularly when
using the Minkowski approach. However, as each individual calibration is independent of
each other, it would be straightforward to speed up the procedure by means of parallel
computing (Harris et al. 2010b), but this is not assessed here.’

3.3 Response to the ‘Issues’ section: ‘Veracity and importance of the results’

3.3.1. Response to first point of contention
In response to the first paragraph and Fig. 1 of the comment (Fig. 12 in Lu et al. 2018).

This is a valid point of contention, and we note the importance of reflecting on this. It
may also promote further discussion on a number of other studies – the same simulation
experiment is used in Yang et al. (2012), Yang (2014), Fotheringham et al. (2017) where
in the latter study, similar small changes in RMSE are given in support of MGWR.
However, this objection should be taken in perspective, as several other outputs are
used to evaluate the proposed approach, in addition to this one.

In response to the second paragraph8 and Table 1 of the comment.
In all instances, the chronological sequence of investigated models from Lu et al. (2014a,

2017, 2018) with the LHP data resulted in small improvements in R-squared (see details given
in Table 1 of this response). However, the values are either included for information but not
discussed (Lu et al. 2018) or reportedwith a caveat to their interpretation (Lu et al. 2014a, 2017).
For example, Lu et al. (2017), state: ‘Note however, that it is unwise to compare the three GWR
models by their R-squared only, since values are directly affectedby thebandwidths, which are
not comparable when different distance metrics are used (see Lu et al. 2014a for further
discussions)’.

The RSS values were reported in (Lu et al. 2017, 2018), but not in Lu et al. (2014a). The
full sequence of RSS values is now reported in Table 1. In Lu et al. (2014a, 2017), the AICc
values were correctly reported for OLS, basic GWR (GWR(ED)), and its variants GWR(ND)
and GWR(TT). We assess the worth, if any, of bandwidth-specific or component-wise AICc
values reported for the PSDM-GWR, FB-ED-GWR, FB-TT-GWR and BP-PSDM-GWR models
from Lu et al. (2017, (2018) in response to the next point of contention.
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3.3.2. Response to second point of contention
Although, the work of Yu et al. (2019) is welcomed, it is stressed that an AICc for the
whole model has been unavailable to all previous MGWR-type studies, not just those
using PSDM GWR. We have added the option to calculate a whole model AICc value in
the gwr.multiscale function of GWmodel (Lu et al. 2014b, Gollini et al. 2015) and the
results are reported in Table 1.

From Table 1, it is clear that the use of (minimum) component-wise AICc values are
not suitable to choose between different PSDM GWR constructions, or to choose a PSDM
GWR model over an alternative, such as an OLS or basic GWR. Using this crude approach,
the order of the poorest to best performing model was taken as follows: OLS, GWR(ED),
GWR(ND), GWR(TT), FB-TT-GWR, PSDM-GWR, FB-ED-GWR and BP-PSDM-GWR. Thus the
best performing model was initially taken as a PSDM GWR model with ED, ED, ED and TT
metrics for coefficients β0, β1 β2, β3, respectively. Using RSS to identify the best perform-
ing model, as recommended in Fotheringham et al. (2017) gives this sequence: OLS,
GWR(ED), GWR(ND), GWR(TT), PSDM-GWR, FB-TT-GWR, FB-ED-GWR and BP-PSDM-GWR.

The now-available approach, with whole model AICc, gives this revised order of: OLS,
GWR(ED), GWR(ND), GWR(TT), BP-PSDM-GWR, FB-ED-GWR, FB-TT-GWR and PSDM-GWR.
The best performing model is now a PSDM GWR model with ED, TT, TT and ED metrics
for coefficients β0, β1 β2, β3, respectively. Furthermore, FB-TT-GWR (i.e. MGWR with TT
metrics) out-performs FB-ED-GWR (i.e. a standard MGWR). Thus, the use of different
distance metrics in this multiple bandwidth GWR framework appears to have greater
value than that originally reported9,10.

3.3.3. Response to third point of contention
In response to Fig. 2 of the comment (Fig. 4 in Lu et al. 2017).

Fig. 2 of the comment compares coefficients from GWR(ED) (i.e. basic GWR),
GWR(TT) (i.e. basic GWR with a TT metric) and PSDM-GWR with ED, TT, TT and ED
metrics for coefficients β0, β1 β2, β3, respectively. It does not contain a comparson of
coefficients from FB-ED-GWR and FB-TT-GWR (i.e. corresponding MGWR models),
which seems to be suggested by this point of contention. In this respect, we feel
that the figure and its commentary in the article cited still hold. Note, Lu et al. (2018)
do provide a comparison of FB-ED-GWR with FB-TT-GWR but with a different PSDM-
GWR specification, and thus provides a means to judge the influence of different
MGWR-type model specifications.

3.3.4. Response to fourth point of contention
In response to this comment, no theoretical argument could be found for using
standardized variables (mean = 0 and standard deviation = 1) in MGWR (or GAMs), or
a practical demonstration of their value to MGWR, as opposed to unstandardized
variables. The sentence ‘Indeed, in other local spatial models, variance and bandwidth
are known to be inseparable (Warnes and Ripley 1987, Zhang 2004)’, references geos-
tatistical studies not involving a bandwidth as a tuning parameter in moving window
regression. We find the linkage made here puzzling since in geostatistical models
variance is specified as a function of distance, and in any case, we are unsure as to
why this implies data should be standardized.
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However, given this, we conducted an experiment on the effects of variable standar-
dization in GWR and MGWR, where only EDs needed to be considered. We considered
scaling (i.e. dividing variables by their standard deviation), centering (i.e. subtracting the
mean of each variable) and standardizing (i.e. subtracting the mean and then dividing by
the standard deviation). Generally, we found that the approaches involving centering (i.e.
centering itself, and also standardizing) did lead to more reliable results (for example,
when calibrating models via back-fitting where all bandwidths are equal in comparison
to ‘basic’ GWR), but that scaling had little effect – for example, the scaled variables gave
identical results to untransformed variables, and the centered variables gave identical
results to the standardized variables. This will be reported in more detail, but a useful
summary here might be that centering is useful, but scaling has little effect.

3.3.5. Response to fifth point of contention
In response to this comment, we first recall that Minkowski distances should not be
viewed as a core component of PSDM GWR and second this comment discusses
a simulation experiment that does not apply PSDM GWR, as Lu et al. (2016) only apply
basic GWR. That said, the simulation experiment has merit providing insights into
Minkowski distances with GWR. The experiment demonstrates that the choice of dis-
tance metric, not only influences the fit of GWR but also GWR’s ability to accurately
estimate known SVCs, and where outputs are dependent on the characteristics of the
spatial process generated. Testing GWR with a random spatial process is appropriate, as
GWR has been observed in some cases to imply structure in spatial data when none
exists (Páez et al. 2011, Harris 2018); and a revised evaluation through simulations with
known values of p and θ would be extremely challenging. In the ‘Discussion and
concluding remarks’ section of Lu et al. (2016), the value of GWR with Minkowski
distances is discussed cautiously. Lu et al. (2016) state ‘The Minkowski approach is not
viewed as a negation of the standard GWR technique with EDs, but more a useful
option, especially in urban applications of GWR.’

3.4 Response to the ‘Issues’ section: ‘Prediction versus inference’

Following the timeline of MGWR-type models given in Section 1 of this response, all
studies prior to Yu et al. (2019) had a reporting focus on ‘in-sample’ prediction accuracy
often coupled with an assessment of parameter accuracy through a simulation experi-
ment. This is common to the development of many GWR-based models (e.g. Wheeler
2007, Huang et al. 2010). Thus, Yang et al. (2011, 2012); Yang (2014), Leong and Yue
(2017); Fotheringham et al. (2017); Wolf et al. (2018); Murakami et al. (2019) could be
similarly criticized in this respect.

If a full assessment of prediction accuracy was an objective for any of these MGWR-
type studies, and those of Lu et al. (2015, 2017, 2018), then each could have followed an
‘out-of-sample’ approach as outlined in the GWR versus kriging studies of Harris et al.
2010a; Harris and Juggins 2011), but this was not a stated aim for these studies.
However, given our experiments above with respect to use of data standardization
and bandwidth estimation, MGWR may not estimate the one thing that it needs to do
accurately to be considered a model capable of reliably identifying relationships operat-
ing at different spatial scales. Given our experiments found similar levels of ‘in-sample’
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prediction accuracy for widely dissimilar bandwidths, then ultimately MGWR and var-
iants thereof, may only be of real use as a spatial predictor (and future studies should
properly evaluate this). This should not be surprising given GWR’s roots lie in the local
smoothing paradigm (Cleveland 1979, Loader 2004).

For inference in MGWR, the framework given in Yu et al. (2019) is one approach and is
implicitly transferable to PSDM GWR. Another approach would be to transfer the bootstrap
methodology outlined in Harris et al. (2017) but where the added computational burden
would need addressing. However, inference in any GWR model is ultimately compromised in
that no single model exists, and here the Bayesian SVC models have an advantage (Gelfand
et al. 2003, Finlay, 2011). Bayesian SVCmodels identify the structure of non-stationary relation-
ships operating at different spatial scales through amultivariate autocorrelation function, that
unlike the analogous kernel functions used in any GWR-based model, are not parameterized
by the model’s in-sample prediction accuracy (at least with AIC).

3.5 Response to the ‘Issues’ section: ‘Tradeoff between interpretability and
computational complexity’

In response, note that computation savings for PSDM GWR are transferrable to MGWR. For
example, PSDM GWR as described in Lu et al. (2017) uses an ad-hoc search strategy, which
was revised with an improved search strategy in Lu et al. (2018). Recent experiments have
revised the search strategy further – we intended to publish these reproducibly.

Again, although the rest of this section focusses on discussing Minkowski distance
metrics with basic GWR, or with PSDM GWR, we expect much use to be in situations
where the appropriate metric for the spatial process is contextually implied, such as road
network distance in urban settings or river network distance in environmental settings
relating to water resources.

3.6 Response to the ‘Conclusions’ section

Given the many names, from different publications, for essentially the same model, one
name should be decided upon. We agree that MGWR provides the most appropriate
over-arching name for this class of GWR models, reflecting a core remit of modelling
non-stationary relationships, each potentially operating at their own spatial scales.

4. Concluding remarks

In the comment’s ‘Background’ section, Phibbs and Luft (1995), Jones et al. (2010) and
Carling et al. (2012) are all cited in support of the authors’ assertion that ‘… the practical
impacts of using non-ED metrics are often small’. The experiments of Boscoe et al. (2012)
would also appear to be in line with this view. However, we should also note that
studies in the UK and Japan (Martin et al., 1998, Martin et al. 2002, Okabe and Kitamura
2010) might suggest that this is not always the case. This leads us to wonder whether
the issue may be context and experiment specific, and whether this might then influ-
ence the analyst’s choices. The choice of distance metric ought to be theirs.

Early in ‘Statistics for Spatial Data’ Noel Cressie (1993, p. 6) notes that he represents
locations with coordinates in a Euclidean space and uses Euclidean distances. He
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observes that other distances ‘… such as road miles or a composite measure that
combines, say, travel expense, convenience and times…’ may be appropriate. In
a later section of the book he uses great circle distances. Non-Euclidean distances in
an urban setting have been but one focus in GWR (Lu et al. 2014a); such metrics also
turn up in other contexts. Curriero (2006) reports on the use of norm-dependent
distances, as well as stream distances in a river network in spatial interpolation exercises.
Similarly, Geodetic distances (Cressie et al. 1990) and water distances (Cressie and Majure
1997, Ver Hoef et al. 2006) have been specified. In a recent paper, Ver Hoef (2018)
discusses metrics for linear networks, also in the context of spatial interpolation.

A related issue is in the computation of distances between polygonal spatial objects.
Currently, in GWmodel, the location chosen to represent each polygon is its geometric
centroid. This can give rise to some anomalies; for example, in the Republic of Ireland the
centroid of Naas Rural Electoral Division (Ireland) lies inside the boundary for Naas Urban
Electoral Division, as the latter area is entirely containedwithin the former. It may be that the
population weighted centroids are appropriate – this remains an area for further research.

In our earliest (FORTRAN IV) GWR codes, we assumed that users would be working
from data located in a planar coordinate system. We also assumed that suitable coordi-
nates would be found to represent the centroids of polygonal regions if these were the
units of analysis. In the early 2000s, this code was modified to allow analysts to use
geographical coordinates in decimal degrees, computing great circle distances assuming
a spherical earth with a radius of 6371km. Our view is that the provision of alternatives
for the analyst gives flexibility over a wide range of possibilities. In GWmodel the default
distances are Euclidean. Geodetic distances, if required, are computed for the WGS84
ellipsoid. The availability of other metrics may deter less advanced users. The question as
to which distance is appropriate is clearly experiment dependent and for many users,
Euclidean or geodetic may well suffice. This, however, remains an area for research. The
choices should be there.

For MGWR, the size of each bandwidth directly acts on the scale of the corresponding
coefficient estimates. Allowing each relationship’s distance metric to also vary through
PSDM GWR, refines the representation of the structural features of these spatially
varying coefficient estimates. What is currently missing are demonstrations of PSDM
GWR outside of the usual urban, hedonic price model setting, where each predictor of
the model has a different, but natural distance metric. For example, a spatial study of
species decline could be informed through a mixture of environmental, social and
economic factors, requiring a wide variety of distance metrics – including say, water
distances, transportation network distances and Euclidean distances.

Notes

1. Published on 31 March 2017.
2. Available on-line August 2017.
3. Available on-line 28 November 2016.
4. Available on-line 10 November 2017.
5. Available on-line as an arXiv version 26 September 2017 and available on-line as a journal

version 20 December 2018.
6. Available on-line 7 April 2018.
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7. Available on-line as a pre-print version 8 May 2018 and available on-line as a journal version
22 January 2019.

8. The comment again incorrectly references Lu et al. (2016) as using the LHP data. It only
used simulated data.

9. Table 1 only reports on whole model AICc values for four of a possible 16 combinations
investigated in Lu et al. (2018), meaning that any one of 12 alternative PSDM GWR models
could provide a lower AICc, still.

10. The revised search strategy for PSDM GWR reported in Lu et al. (2018) still holds, as it was
firmly based on the component-wise AICc values.
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