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Deep Spatio-Temporal Residual Neural Network for Road-Network-

Based Data Modeling

Recently, researchers have introduced deep learning methods such as 

convolutional neural networks (CNN) to model spatio-temporal data and 

achieved better results than those with conventional methods. However, these 

CNN-based models employ a grid map to represent spatial data, which is 

unsuitable for road-network-based data. To address this problem, we propose a 

deep spatio-temporal residual neural network for road-network-based data 

modeling (DSTR-RNet). The proposed model constructs locally-connected 

neural network layers (LCNR) to model road network topology and integrates 

residual learning to model the spatio-temporal dependency. We test the DSTR-

RNet by predicting the traffic flow of Didi cab service, in an 8-km2 region with 

2,616 road segments in Chengdu, China. The results demonstrate that the 

DSTR-RNet maintains the spatial precision and topology of the road network 

as well as improves the prediction accuracy. We discuss the prediction errors 

and compare the prediction results to those of grid-based CNN models. We 

also explore the sensitivity of the model to its parameters; this will aid the 

application of this model to network-based data modeling.

Keywords: spatio-temporal modeling; road network; deep learning; residual 

neural network

1 Introduction

Spatial-temporal modeling has always been of interest to researchers in geographical 

information science (GIS) with wide applications in modeling and predicting spatio-

temporal processes such as biological phenomena (Stockwell 1999), environment 
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information (Cheng and Wang 2008, Cheng and Wang 2009, Xingjian et al. 2015), 

and distribution of urban elements (Jiang 2009, Chen et al. 2018). The rapid 

proliferation of mobile sensors and Internet technologies continuously generates an 

exceptionally large amount of spatio-temporal data, which offers unprecedented 

opportunities for modeling and predicting human activities (Zhu and Guo 

2014)(Huang et al. 2015, Li et al. 2016, Shaw et al. 2016, Hoang et al. 2016). 

Because most human movements occur along a road network, the road-network-based 

data (e.g., traffic flow, crime data, and passenger volume) account for a large portion 

of spatio-temporal data (Jiang and Liu 2009, Cheng et al. 2011, Rosser et al. 2016). 

Modeling and predicting road-network-based data can provide essential references for 

urban managers to address a variety of problems (Ma et al. 2017, Ke et al. 2017). 

Therefore, the development of an effective framework for modeling road-network 

data is important, particularly to support accurate prediction at the level of road 

segments.

For the spatio-temporal data, the capability to model the spatial and temporal 

dependency seamlessly and simultaneously is important to achieve predictions of high 

accuracy (Cheng and Wang 2009, Zhang et al. 2017a). The foundation for most 

available spatio-temporal data prediction models are statistical and machine learning 

(ML) methods. An integration of spatial and temporal variables into available 

statistical models can account for spatio-temporal dependency, such as the space-time 

autoregressive integrated moving average (ARIMA) (Wang et al. 2010, Cheng et al. 

2014), the space-time support vector regression (Wang et al. 2007), kernel-based 
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methods (Haworth et al. 2014, Rosser et al. 2016), and the space-time artificial neural 

network models (Cheng and Wang 2009, Wang et al. 2016). However, these 

conventional models are incapable of processing raw spatio-temporal data. When 

constructing a machine-learning (ML)-based model, feature extractors require precise 

engineering and substantial domain knowledge to transform raw data into proper 

internal representations for spatio-temporal dependency detection. This procedure is 

called feature engineering (LeCun et al. 2015). With regard to big data, the feature 

engineering procedure of spatio-temporal data is particularly challenging.

Deep learning (DL) addresses this challenge (Hinton and Salakhutdinov 

2006). A typical DL model can accept input data in a raw format and automatically 

discover the required features level-by-level. Called “end-to-end” learning, it 

significantly simplifies feature engineering (LeCun et al. 2015). The deep CNN was 

specifically designed to capture spatial dependency; it has achieved significant 

successes in image recognition (Krizhevsky et al. 2012). Previous studies have 

attempted to introduce CNN to model spatio-temporal dependency. Zhang et al. 

(2016) used a grid map to represent the spatio-temporal flow volume of a city and 

inputted several typical historical maps into a multi-layer CNN structure to model the 

spatial and temporal dependencies simultaneously; their objective was to achieve 

“end-to-end” prediction of citywide spatio-temporal flow volume. Furthermore, 

Zhang et al. applied a deep residual network (ResNet) (He et al. 2016a) to increase 

the depth of DeepST to model the dependency from more distant regions; they called 

it ST-ResNet (Zhang et al. 2017b). In predicting the citywide taxi flow volume in 
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Beijing, China, ST-ResNet exhibited an accuracy higher that of DeepST by 7.09%. 

Studies then widely adopted the CNN-based methods with the grid representation of 

spatial data (point, road network, and polygon) (Yu et al. 2017, Ke et al. 2017). Ma et 

al. (2017) proposed another method to transform the road-network-based data into a 

two-dimensional image with the horizontal axis representing time tags and the vertical 

axis representing road segments. This image was then inputted into a CNN framework 

to model the spatio-temporal dependency using a convolution operator.

The CNN-based methods limit the organization of the data to a grid or image 

format; this is suitable for modeling spatio-temporal data such as those of crowd flow 

and urban population. However, the CNN-based methods exhibit two problems with 

the road-network data. Grids or images cannot accurately represent the spatial 

structure of road networks. For example, Zhang et al. (2017b) adopted a grid cell of 1-

km square; it may cover dozens of road segments in an urban district, diminishing 

road segments on the system. Ke et al. (2017) used a 10-m grid cell, which could not 

accurately represent the junctions and overpasses. Ma et al.'s (2017) image 

represented each road segment separately; however, it omitted the network topology. 

Secondly, the convolution operator of the CNN was not optimal for modeling the 

spatial patterns of the road because the authors did not consider the road network 

topology.

To address these problems, we propose a deep spatio-temporal residual neural 

network for road-network-based data modeling (DSTR-RNet). We design a locally-

connected neural network layer to model road network topology (LCNR) in order to 
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capture the local spatial dependency of each road segment. Moreover, we employ 

residual learning (He et al. 2016a) to form a deep residual LCNR (ResLCNR) unit to 

model the spatial dependency from near to distant neighbors. Finally, three sub-

models based on the ResLCNR unit capture the spatial and temporal dependency in 

an integrated manner from different temporal patterns, forming the final DSTR-RNet. 

Compared with previous models, the proposed model exhibits the following two 

advantages. First, ResLCNR presents a deep-learning-based spatio-temporal modeling 

method at the road-network level rather than the grid level; this maintains the spatial 

precision of road-network-based data. Second, the model accounts for the inherent 

topology of the road network to improve feature extraction for a more accurate 

prediction.

The rest of this paper presents the following. Section 2 defines the problem of 

road-network-based data modeling. Section 3 explains the proposed LCNR, residual 

LCNR unit, and framework of the DSTR-RNet model. Section 4 introduces the case 

study that models and predicts the traffic flow of the Chengdu, China road network. 

Section 5 discusses the spatial distributions of the prediction errors. The section also 

describes a comparison of grid-based CNN models and the proposed DSTR-RNet. 

Finally, Section 6 summarizes the conclusions and directions for future work.

2 Problem Definition

The research objective is to model the spatial and temporal dependency seamlessly for 

data on road networks. For each segment of the road network, the spatial dependency 

originates from both near and distant neighbors. For example, the traffic flow on each 
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road at a crossing affects one another; simultaneously, numerous individuals drive to 

offices over various distances, generating distant/spatial dependency. The temporal 

dependency has three parts: recent pattern, daily pattern, and weekly pattern (Ma et al. 

2014, Zhang et al. 2017b, Ke et al. 2017). The recent pattern refers to the dependency 

from several nearest historical time intervals prior to the target time, e.g., the relation 

between the traffic flow at 08:00 am and that at 07:30 am. The daily pattern refers to 

the human activities that repeat every 24 h. Similarly, the weekly pattern refers to the 

activities repeated every week; e.g., whereas weekdays and weekends within a week 

exhibit different traffic flows, weekdays from different weeks exhibit similar 

scenarios.

Let xt represent the road network data corresponding to the tth time interval. Let 

XR, XD, and XW represent the historical data series of recent, daily, and weekly 

patterns, respectively. Assuming that the numbers of time intervals in XR, XD and XW 

are r, d, and w, respectively, we need to predict the target time interval t; moreover, 

the number of time intervals in one day is m. Then, we can define XR, XD, and XW as in 

Equation (1). Let f denote the transformation of the modeling method and W denote 

all the parameters to be learned. We can define the problem of predicting scenarios 

for all the segments as in Equation (2). The purpose of this study is to construct a 

transformation f that can accurately model the spatio-temporal dependency (W) from 

historical observations and make accurate predictions with new inputs.

𝑋𝑅 = ( 𝑥𝑡 ― 𝑟,…,𝑥𝑡 ― 2 , 𝑥𝑡 ― 1)

𝑋𝐷 = (𝑥𝑡 ― 𝑑 ∙ 𝑚,…,𝑥𝑡 ― 2 ∙ 𝑚, 𝑥𝑡 ― 1 ∙ 𝑚)
(1)
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𝑋𝑊 = (𝑥𝑡 ― 𝑤 ∙ 7 ∙ 𝑚,…,𝑥𝑡 ― 2 ∙ 7 ∙ 𝑚, 𝑥𝑡 ― 1 ∙ 7 ∙ 𝑚)

𝑥𝑡 = 𝑓(𝑋𝑅,𝑋𝐷,𝑋𝑊,𝑊) (2)

3 Method

3.1 Locally-connected neural network for modelling road network topology

The rapid development of DL has popularized neural networks substantially in 

numerous domains (Schmidhuber and Jurgen 2015, LeCun et al. 2015). To represent 

the road network structure, we transform each road segment of the road network into 

a node of an artificial neural network (ANN) weight layer; this is a conventional 

approach that most ANN-based spatio-temporal models adopt (Haworth et al. 2014, 

Wang et al. 2016). The number of nodes in a weight layer is equal to the number of 

road segments in the road network. 

Traditionally, the ANN layer is fully-connected; each node of the current layer 

connects to all nodes of the previous layer. Figure 1 shows an example of a road 

network with fifteen segments. Li and Li+1 are two neural network layers. For 

example, node 10 connects to all the nodes of the previous layer (Figure 1b). This 

conventional structure exhibits two limitations. Firstly, it is challenging to capture the 

local spatial dependency because each road segment receives information from all the 

other segments irrespective of being spatially adjacent or not. Secondly, the 

computational complexity is exponential (=O(N2), where N is the number of all road 

segments). For a region with thousands of roads, the number of trainable parameters 
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on a weight layer can be millions or even billions, making the training procedure 

exceptionally challenging. 

Figure 1. Comparison of fully-connected layer and LCNR layer. (a) A road network 

example with 15 segments. (b) Node 10 connects to all the nodes. (c) Node 10 locally 

connects to its first-order neighbors.

To overcome these limitations, we integrate the topological adjacency of the road 

network into selected connections; to achieve this, we propose a locally-connected 

neural network for modeling road network topology (LCNR). The main concept is 

similar to the convolution operation; each road interacts only with its local neighbors, 

rather than all the road segments. Therefore, in an LCNR layer, each neural node 

sparsely connects to the nodes that are locally adjacent to it in the road network of the 

previous layer. First-order neighbors (including the element) are used to represent the 

locality of an LCNR layer. Given a road network, when a node directly links two 

segments, these segments are termed first-order neighbors (Cheng et al. 2011). Figure 

1(c) shows that with first-order locality, node 10 connects to only four nodes: 6, 7, 10, 

and 11. Because the N-order neighbors of a segment are the first-order neighbors of 

its (N - 1)-order adjacencies, we can model any high-order spatial dependency by 

stacking multiple LCNR layers. In summary, Equation (3) defines the transformation 

that each LCNR neural node performs:

                        (3)𝑦𝑗 = 𝑓( ∑𝑘
𝑖 = 1𝑤𝑖𝑗𝑥𝑖 +  𝑏𝑗 )

where yj is the output of the jth neural node of the LCNR layer, xi are the nodes that 

represent the first-order neighbors of the jth segment, wi,j is the weight of each 
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connection, k is the number of first-order neighbors of the jth segment, bj is the bias, 

and f is the non-linear activation rectified linear unit (ReLU). 

We can obtain the transformation of an LCNR layer by extending the variables 

to matrices (Equation (5)). X, Y, B, and W are the matrix representations 

corresponding to the variables in Equation (3). W1 is the first-order adjacency matrix 

of the road network with an N × N binary (zero or one) matrix; here, non-zero 

elements signify spatial adjacency (N is the number of road segments of the road 

network; Figure (2b) shows an example). g initializes W; this generates non-zero 

initial weights on the non-zero elements of W1 (Equation (4)) and thus maintains the 

network topology in W. ls in Equation (5) refers to a sparse operator, which directly 

performs multiplication on the non-zero elements of W1∘W and its associated 

elements of X (“∘” denotes the Hadamard product). Let K denote the number of non-

zero elements in W1, such that the computational complexity of the forward-

propagation of an LCNR layer is O(NK). Generally, the number of first-order 

neighbors of a road network is substantially less than the number of connected road 

segments. Therefore, O(NK) << O(N2). 

                            (4)𝑊 = 𝑔(𝑊1)

                      (5)𝑌 = 𝑓( 𝑙𝑠( (𝑊1 ∘ 𝑊) 𝑋 ) + 𝐵 )

During the back-propagation training procedure, we first calculate the partial 

derivative of the loss with respect to weight by Equation (6):

                         (6)
∂𝐸
∂𝑊 = 𝑊1 ∘  

∂𝑓
∂𝑙𝑠

 
∂𝑙𝑠

∂𝑊 𝑋
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where E refers to the loss. As W1 is a constant binary matrix, the selectivity can be 

accumulated to . The selectivity is then maintained in the updated weight matrix 
∂𝐸
∂𝑊

(Equation (7)):

                           (7)𝑊′ = 𝑊 ― 𝜂 
∂𝐸
∂𝑊

where W' is the updated weight matrix and η is the learning rate. Figure 2(c) shows 

the selective connections of an entire LCNR layer, which is feasible to detect the 

spatial dependency between each segment and its first-order adjacent segments. 

Compared with the fully-connected layer, the effective connections of the LCNR 

layer reduce from 225 to 53, simplifying the training complexity significantly.

Figure 2. LCNR layer constructed by first-order spatial adjacency matrix. (a) Road 

network. (b) First-order spatial adjacency matrix W1. (c) There are 53 local 

connections in an LCNR layer.

3.2 Deep residual LCNR for modelling distant spatial dependency

As stated in Section 2, for a road network, the spatial dependency may be present in 

any two segments, from near to distant. To model all these dependencies, we stack 

multiple LCNR layers to form a deep LCNR model. As we can derive any high-order 

neighbors from the first-order neighbors, a deep LCNR model with N weight layers 

can detect the dependency between each road segment and its N-order adjacent road 

segments. Figure 3 shows a deep LCNR model with three weight layers. For segment 

number 10, layer-by-layer transformation can capture the spatial dependency between 

the road segment and its three-order neighbors (segments 1, 2, 3, ……, 15.). 
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Figure 3. Deep LCNR model with three weight layers.

However, training a depth structure with numerous weight layers is a 

significant challenge for a neural network model. As the network depth increases, the 

vanishing or explosion of the gradient evokes higher training error, degrading the 

model’s learning capability (LeCun et al. 2015). However, for the spatio-temporal 

model on road network data, there are two reasons to construct a deeper LCNR 

model. First, a deeper LCNR structure can cover a larger spatially receptive field of 

the road network to model the dependency from distant neighbors. Second, a deeper 

model can learn more inherent non-linear and non-stationary features than a shallow 

one. Furthermore, the LCNR layers can integrate residual learning to form a deep 

residual LCNR model.

Residual learning is a novel structure (He et al. 2016a) incorporating 

successful extensions to the traditional CNN model to form a super deep structure of 

hundreds of layers; it has established capabilities to handle numerous challenging 

recognition tasks. Equation (8) defines a typical residual unit with identity mapping:

                         (8)𝑋𝑙 + 1 = 𝐹𝑟𝑒𝑠(𝑋𝑙) + 𝑋𝑙

where Xl is the input and Xl+1 is the output of the lth
 residual unit. Fres is a residual 

function such as a stack of two 3 × 3 convolution layers. The core principle of 

residual learning is to learn the additive residual function Fres concerning Xl (He et al. 

2016b, Zhang et al. 2017a). We employ residual learning to construct a residual 

LCNR unit (ResLCNR unit). A ResLCNR unit incorporates two stacking LCNR 
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layers with a shortcut connecting the input XL and output XL+1 (Figure 4). The ReLU 

is the pre-activation function (He et al. 2016b). For each road segment, stacking N 

ResLCNR units form a spatially receptive field covering 2N-order neighbors; it can 

detect the dependency from its first-order neighbors to 2N-order neighbors.

Figure 4. A ResLCNR unit.

3.3 DSTR-RNet for network-based spatio-temporal dependency

To integrally model the spatial and temporal dependency, we propose a deep spatio-

temporal residual neural network for road-network-based data modeling (DSTR-

RNet) based on the ResLCNR unit (Figure 5). We develope three sub-models to 

model the spatio-temporal features from the recent pattern, daily pattern, and weekly 

pattern, separately. We then merge these features into a final feature map; a tanh 

function activates the map to predict values. The three sub-models shared an identical 

structure: 1) an LCNR layer that receives the historical road network data series and 

outputs a feature map, with the number of elements equal to the number of road 

network segments and 2) a deep residual LCNR structure with N concealed ResLCNR 

units that models the spatio-temporal dependency on the feature map. The integration 

of spatial and temporal features on the feature map support the modeling of 

correlations in space and time simultaneously. We merge three feature maps (we 

denote them as STFMw, STFMd, and STFMr) by a parameter-based method (Zhang et 

al. 2017a); Equation (9) defines the method:

           (9)𝑆𝑇𝐹𝑀 = 𝑆𝑇𝐹𝑀𝑤 ∘ 𝑊𝑤 + 𝑆𝑇𝐹𝑀𝑑 ∘ 𝑊𝑑 + 𝑆𝑇𝐹𝑀𝑟 ∘ 𝑊𝑟
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                        (10)𝑥𝑡 = 𝑡𝑎𝑛ℎ (𝑆𝑇𝐹𝑀)

where Ww, Wd, and Wr are three parameter vectors with shapes identical to those of the 

three feature maps. STFM is the final spatio-temporal feature map. Then, a tanh 

function activates the STFM to form the prediction values, xt (Equation (10)).

Figure 5. Framework of DSTR-RNet.

DSTR-RNet calculates the loss from the ground truths and prediction values. 

Here, the mean-square error (MSE) represents the loss function. Equation (11) defines 

it; here, yi is the ground truth, yi’ is the prediction value, and N is the number of all the 

prediction values. We divide the input data into three sub-datasets: a training set, 

validation set, and test set. We feed the training set into the model in batches. For 

each batch, the model calculates the loss after forward-propagation, and then 

optimizes all the training parameters by back-propagation with the optimizer Adam 

(Kingma and Ba 2014). By minimizing the loss function, all training parameters are 

trained.

 (11) 𝑙𝑜𝑠𝑠 = 𝑀𝑆𝐸 =
1
𝑁∑𝑁

𝑖 = 1(𝑦𝑖 ― 𝑦′𝑖)
2

4 Case Study

4.1 Experiment data

We validate the proposed DSTR-RNet model by predicting the traffic flow on the 

road network in the central district of Chengdu, China (Figure 6 (a)), a region of 8-

km2 with 2,616 road segments (Figure 6 (b)). 
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Figure 6. Location of study area and the road network. (a) Location of study area. (b) 

Road network of study area. (c) Concrete example of generated traffic flow.

We use the GPS trajectories of Didi taxi cars (Didi Chuxing Corporation) 

during November 1 to 30, 2016 as the source data to generate the traffic flow. The 

time interval between two adjacent GPS points of a trajectory is 2-4 s. We 

downloaded the corresponding road network from OpenStreetMap on January 8, 2018 

using the OSMnx tool (Boeing 2017). First, we match the trajectory points to the road 

network using the typical Hidden Markov Model (Newson and Krumm 2009). We 

then determine the number of taxis on each road segment during a specified time 

interval. We generate three datasets with time intervals of 10 min, 20 min, and 60 min 

(Table 1). Figure 6 (c) shows an example of the traffic flow generated with the 20-min 

time interval (09:00 am–09:20 am on November 30, 2016). We scale the flow values 

into the range of [-1, 1] for training and transform all the predicted values to normal 

values for evaluation.

The training set includes observations from November 01–24, 2016; the 

validation set is from November 25–26, 2016. We select the last four days, November 

27–30, 2016, as the testing period. 

Table 1. Descriptions of experimental data sets.

Data Range
Datasets Time Interval

Min Max
Mean Intervals per Day

Data1 10 min 0 218 8.31 144

Data2 20 min 0 374 16.16 72

Page 14 of 43

http://mc.manuscriptcentral.com/tandf/ijgis

International Journal of Geographical Information Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

15

Data3 60 min 0 974 47.56 24

4.2 Evaluation metrics

The root-mean-square error (RMSE) and mean-absolute-percentage-error (MAPE) 

serve as the evaluation metrics (Equation 12); here,  is the ground truth value,  is  𝑦𝑖 𝑦′𝑖

the prediction value, and N is the number of all the prediction values. 

RMSE =  
1
𝑁∑𝑁

𝑖 = 1
(𝑦𝑖 ― 𝑦′𝑖)

2

MAPE = 100% × 
1
𝑁∑𝑁

𝑖 = 1|𝑦𝑖 ― 𝑦′𝑖|/𝑦𝑖  

(12)

4.3 Comparative experiment

4.3.1 Comparative models

We select five representative prediction models as the benchmarks for comparison 

with the proposed DSTR-RNet model (Table 2). The input for the ARIMA model is 

the entire historical traffic flow time series. For the other models, the inputs are 

identical to those of the proposed model.

Table 2. Brief introduction of benchmark models.

No. Name Description

1 ARIMA
Widely used statistical model for time series forecasting (Box 

and Pierce 1970).

2 SVR
SVM-based model for prediction. A typical representation of 

machine-learning methods.
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3 LSTM

A widely-used deep RNN; it is suitable for time series 

prediction. Here, the LSTM model has one weight layer. The 

model is trained for each road segment.

4 ST-ANN

Identical structure as the proposed DSTR-RNet model; however, 

its weight layers are conventional fully-connected neural 

network layers rather than LCNR layers. Residual learning is 

also not involved.

5 ST-LCNR
Identical structure as the proposed DSTR-RNet model with 

LCNR as weight layers, albeit without residual learning.

6 CNN

A CNN-based model proposed by Ma et al. (2017); it transforms 

the road-network-based data into a two-dimensional image with 

the horizontal axis representing time and vertical axis 

representing road segment. The model predicts by performing 

convolutions on the image.

4.3.2 Environment and training settings

We code all the models in Python 3.5. The deep learning libraries for ST-ANN, ST-

LCNR, and DSTR-RNet are in TensorFlow (Abadi et al. 2016). We implement the 

LSTM model using Keras (Chollet 2015) with TensorFlow as the backend. The 

experiment ran on a GPU platform, using NVIDIA GeForce GTX 1080 with 8GB of 
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GPU memory. 

For each of LSTM, ST-ANN, ST-LCNR, CNN, and DSTR-RNet models, the 

training settings are 100 iterations and early stopping strategy to prevent overfitting 

(Caruana et al. 2001). We set the sequence lengths of recent, daily and weekly 

patterns (r, d, and w, defined in Section 2) as r = 3, d = 1, and w = 1, respectively. The 

initial learning rate is 0.004, and it decays as the iterations increase (Equation (13)):

                          (13)𝑙 = 𝐿 ∙ 𝑒( ― 𝑖/𝑆)

where L is the initial learning rate, i is the current iteration epoch, S is the constant 

decay speed (set to 50), and l is the learning rate of the current iteration. For the 

experimental datasets, we set the batch sizes as 16 (Data1), 10 (Data2), and four 

(Data3), so that the numbers of batches are similar. For ST-ANN, ST-LCNR, and 

DSTR-RNet, the number of weight layers increases gradually; and we record the most 

effective results.

4.3.3 Experimental results and analysis

Table 3 presents the predictive performances of the proposed DSTR-RNet and the 

other benchmark models. We calculate the RMSE from all the values in the testing 

set. For MAPE, we calculate it from the top 10% of the largest testing samples of 

(MAPE@10%); this is because large values (such as traffic flow at peak hours) attract 

more attention. 

Table 3. Experimental results of all prediction models.

Data Metrics ST-
ANN ARIMA SVR ST-

LCNR LSTM CNN DSTR-
RNet
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RMSE 37.49 3.89 3.64 3.57 3.62 3.58 3.45
Data1

MAPE@10(%) 48.05 15.93 15.33 14.93 16.32 16.09 14.83

RMSE 61.57 6.22 6.19 5.69 5.54 5.58 5.31
Data2

MAPE@10(%) 34.69 17.44 16.00 11.94 16.2 12.99 11.72

RMSE 162.73 15.94 14.66 12.55 12.12 12.32 11.6
Data3

MAPE@10(%) 27.50 11.23 14.57 9.49 12.71 9.17 8.89

The proposed DSTR-RNet model outperforms the other six benchmarks in 

both RMSE and MAPE. In the fully-connected ST-ANN, the number of training 

parameters in one weight layer is exceptionally large (approximately 7 million 

parameters in each weight layer); this hinders the model training procedure from 

converging. Therefore, the prediction accuracy is significantly lower than those of the 

results from the two conventional models. With local connections (ST-LCNR), the 

number of training parameters in a weight layer reduces to 15,000, substantially less 

than that in ST-ANN. Hence, the ST-LCNR is successfully trained and achieves better 

results. 

However, the ST-LCNR is incapable of capturing dependency from high-order 

neighbors as it is limited by the shallow structure of the plain neural network. As 

shown in Figure 7, the RMSE obtained by ST-LCNR increases notably when the 

number of weight layers is larger than five. Conversely, the RMSE of DSTR-RNet 

continues to decrease. By integrating residual learning, the ResLCNR units achieve a 

structure deeper than the plain LCNR layer, so that the dependency from distant 
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neighbors is captured. More weight layers achieve more complex non-linear 

transformations, also contributing to higher prediction accuracy. 

Figure 7. Comparision between ST-LCNR and DSTR-RNet with different numbers of 

weight layers. (a) Performance difference for Data1. (b) Performance difference for 

Data2. (c) Performance difference for Data3.

DSTR-RNet exhibits apparent improvements over LSTM. The relative 

reductions in RMSE of Data1, Data2, and Data3 are 4.7%, 4.2% and 4.3%, 

respectively. For MAPE, the reductions are 9.13%, 27.65%, and 30.05% for Data1, 

Data2, and Data3, respectively. Therefore, for road network data prediction, it is 

unreasonable to consider only temporal dependency while omitting the spatial and 

temporal correlations. DSTR-RNet overcomes this limitation by capturing spatio-

temporal dependency. 

DSTR-RNet also outperforms the CNN model that Ma et al. (2017) proposed. 

Although this CNN-based model represents each road segment separately, it does not 

consider the topology of the road network. In contrast, the proposed DSTR-RNet 

considers the road network topology and obtains higher prediction accuracy.

In summary, the comparative experiments establishes that the proposed 

DSTR-RNet model is capable of capturing spatio-temporal dependency from both 

near/current and distant/past elements of the road network to achieve higher 

prediction accuracy.
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4.4 Sensitivity analysis

We conduct a sensitivity analysis on DSTR-RNet. The investigation examines the 

number of ResLCNR units representing the spatially receptive field (model depth) 

and the input length of different patterns representing the temporal perspective.

4.4.1 Number of ResLCNR units

The sensitivity analysis gradually increases the number of ResLCNR units and 

records the RMSE values. The other parameters are identical to those in Section 4.3.2. 

The RMSEs first drop and then rise with the increase in ResLCNR units (Figure 8). 

Data1 obtains the highest performance with four ResLCNR units. As each ResLCNR 

unit has two weight layers, by adding the top LCNR layer (Section 3.3, Figure 5), 

there are nine weight layers. This implies that for Data1, the spatio-temporal 

dependency originates mainly from the ninth-order neighbors in the road network. For 

the other two test datasets, the best spatially receptive fields are eleventh-order 

neighbors, which is marginally larger than that of Data1. This is because a large time 

interval may generate distant interactions. Then, the increase in ResLCNR units does 

not produce more effective dependency, although it increases the training complexity 

and overfitting and eventually decrease the performance. Therefore, when the number 

of ResLCNR units is between four and six, the DSTR-RNet achieves better prediction 

results.

Figure 8. Performances for different numbers of ResLCNR units. (a) RMSE trend for 

Data1. (b) RMSE trend for Data2. (c) RMSE trend for Data3.
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4.4.2 Input lengths of different temporal patterns

We investigate the impact of different input lengths for the three patterns. We denote 

the lengths of recent, daily, and weekly patterns as r, d, and w, respectively. To 

investigate the impact of the recent pattern, we hold the parameters d and w constant 

(d = 1 and w = 1), whereas r can vary. For the daily pattern, we hold the parameters r 

and w constant (r = 3 and w = 1), whereas d can vary. Similarly, for the weekly 

pattern, we hold the parameters r and d constant (r = 3 and d = 1), whereas w can 

vary. As the period of the experiment is four weeks, we set the maximum value of w 

as two. 

Figure 9 summarizes the performances of Data1, Data2, and Data3. For all the 

three datasets, the RMSEs with r = 0 and w = 0 are larger than those with d = 0. This 

implies that the recent and weekly patterns contribute more to the final predictions 

than the daily pattern. The optimum length for the recent pattern is three for Data1 and 

Data3. For Data2, it is either three or four because the same RMSEs are found r = 3 

and r = 4. The performances deteriorate as r increases; this is because more inputs of 

the recent pattern could introduce noise. The optimum length of the daily and weekly 

patterns is one, implying that short-range periods are beneficial and that long-range 

periods are likely to introduce noise. As a result, the model achieves higher 

performance when the input lengths are r =3 (or 4), d = 1 and w = 1.

Figure 9. Performances with different input lengths. (a) RMSE trend for Data1. (b) 

RMSE trend for Data2. (c) RMSE trend for Data3.
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5 Discussion

5.1 Spatial distribution of errors

In this section, we consider Data2 as an example to explore the distribution of errors. 

Because the larger values in the daytime are more applicable to urban management, 

the analysis focuses on the period between 08:00 and 21:00. The reference is the 

mean ground truth (MGT) (Equation 14):

                         (14)𝑀𝐺𝑇 =  
1
𝑇∑𝑇

𝑖 = 1𝑦𝑖

where yi is the ground truth at the ith time interval and T is the number of time 

intervals. If the ground truth of a road segment is zero, the corresponding MAPE 

value is set as -20. 

Figure 10. (a)-(c) Spatial distributions corresponding to MGT, RMSE and MAPE of 

Data2 from 08:00 to 21:00. (d) Directions of all road segments.

The RMSEs are proportional to the ground truths (Figure 10); however, the 

MAPEs are inversely proportional to the ground truths, a common phenomenon (Lv 

et al. 2014, Yu et al. 2017). Nevertheless, roads 1 and 2, marked by circles in Figure 

10 (d), exhibit differences. The truth value of road 1 is larger than that of road 2; 

meanwhile, for the RMSE, the situations are inverted. A likely reason is the 

connectivity of the road. Road 2 is surrounded by one-way neighbors (Figure 10(d)), 

whereas for road 1, most of the neighbors are two-way. The one-order adjacency 

matrix used to construct the LCNR layer (Section 3.1) is undirected, omitting the one-

way situation; this is likely to bring noise to road 2. As a result, road 2 obtains a larger 
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error. In the future, the direction of the road network will be considered to construct 

the LCNR layer and explore the impact on prediction results. 

5.2 Temporal distribution of errors

This section describes the use of Data2 to explore the error distribution in the temporal 

dimension. The period examined is 08:00-21:00. For each time interval, we calculate 

the MGT by the truth values of all the road segments. Figure 11 shows the result. 

Generally, the distribution is similar to the spatial perspective; herein, RMSE is 

proportional to the ground truth, whereas MAPE is inversely proportional. However, 

both the RMSE and MAPE of Monday morning are relatively larger (marked by a 

rectangle in Figure 11 (b) and (c)). This is because the daily pattern input used to 

predict Monday scenarios is from Sunday, which has no morning peak (Figure 11 

(a)). As a result, larger errors are generated. In the future, the workdays and weekends 

will be split and trained separately to optimize the problem. 

Figure 11. (a)-(c) Temporal distributions corresponding to MGT, RMSE, and MAPE 

of Data2 from 08:00 to 21:00.

5.3 Difference between DSTR-RNet and grid-based CNN model

This section describes our investigation of the difference between the proposed 

DSTR-RNet model and grid-based CNN model. We again select Data2 as the 

example. We convert the road-network-based traffic flow to a grid format for 

processing by the CNN. The cell sizes adopted by the available models include 10 m 
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(Yu et al. 2017), 500 m (Chen et al. 2018), 1,000 m (Zhang et al. 2018), and 5,000 m 

(Ke et al. 2017). We consider 10 m to be excessively fine, covering approximately the 

lengths of two cars. Therefore, the cell size is set to 100 m, a relatively fine-grained 

resolution. There are 78 rows and 86 columns on the grid map. The value of each grid 

cell is the mean of all the road segments that crosses the cell. We selected ST-ResNet 

as the grid-based CNN model for comparison (Zhang et al. 2017a). The input lengths 

of the three patterns are identical to those of DSTR-RNet; we set the convolution 

kernel size to three. 

Figure 12. Comparison between DSTR-RNet and CNN-based model ST-ResNet. (a)-

(c) Ground truths, predictions of DSTR-RNet and predictions of ST-ResNet. (d)-(f) 

Ground truths, predictions of DSTR-RNet and predictions of ST-ResNet for region A.

Because the data ranges are entirely different, it is unreasonable to compare 

the evaluation metrics directly. We select a time interval with larger flow values 

(14:00–14:20 on November 30, 2016) to investigate the difference in spatial 

precision. A typical overpass connecting the east-west Second Ring Road and the 

main north-south Beixing Dadao Road ( we have marked it with an A in Figure 12) 

exhibits the details. With the grid-based representation, we could obtain only the 

mean flow value of all roads (Figure 12 (c)); we could not predict the actual flow of 

each road segment. The spatial precision of the original road network is not 

maintained. However, the proposed road-network-based DSTR-RNet model uses the 

road segments as the unit upon which to make predictions; this maintains the spatial 

precision(Figure 12 (c)). The CNN-based model does not consider the topology of the 
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road network. ST-ResNet employs numerous grid cells not crossed by any road to 

conduct the convolution. DSTR-RNet overcomes this limitation by integrating the 

topological adjacencies of the road network. Therefore, from the perspective of both 

spatial principles and practical application, the proposed DSTR-RNet is more suitable 

than the grid-based CNN method, for modeling road-network-based data.

6 Conclusions

This research proposes a deep spatio-temporal residual neural network for road-

network-based data modeling (DSTR-RNet), bringing forth a new deep learning 

solution at the road-network level rather than at the grid level. The proposed LCNR 

employs the topology of the road network to model the local spatial dependency. 

Then, we integrate residual learning into the LCNR to form a deeper structure, 

ResLCNR unit; this enables us to model the spatial dependency from near to distant. 

Based on the ResLCNR unit, three sub-models integrally model the spatial and 

temporal dependency from different temporal patterns, forming the final predictions. 

We test the model on a case study in Chengdu, China by predicting the traffic flow of 

Didi cab service in an 8-km2 region with 2,616 road segments. We explore the 

sensitivity of the DSTR-RNet model to its parameters. We also discuss the spatial and 

temporal distribution of the prediction errors and compare DSTR-RNet and a grid-

based CNN model. 

We draw the following conclusions from this research: 
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(1) The local connections constructed by topology in the proposed LCNR 

layer considerably reduce the trainable complexity; this enables us to 

model a neural network representing a larger road network.

(2) The proposed ResLCNR unit increases the model depth, enabling us to 

model the spatial dependency from near to distant.

(3) The proposed DSTR-RNet achieves a deep-learning-based spatio-temporal 

modeling method at the road-network level rather than the grid level. This 

maintaines the spatial precision and topology of the road network and 

improves the prediction accuracy.

In the future, we intend to optimize the DSTR-RNet by using a directed 

adjacency matrix of the road network to construct a directed LCNR layer. We also 

intend to consider external factors such as weather, day (weekday/weekend), and 

holidays. In addition, we intend to seek more data to test the future optimized model.
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Figure 1. Comparison of fully-connected layer and LCNR layer. (a) A road network example with 15 
segments. (b) Node 10 connects to all the nodes. (c) Node 10 locally connects to its first-order neighbors. 
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Figure 2. LCNR layer constructed by first-order spatial adjacency matrix. (a) Road network. (b) First-order 
spatial adjacency matrix W1. (c) There are 53 local connections in an LCNR layer. 
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Figure 3. Deep LCNR model with three weight layers. 
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Figure 4. A ResLCNR unit. 

95x11mm (300 x 300 DPI) 

Page 35 of 43

http://mc.manuscriptcentral.com/tandf/ijgis

International Journal of Geographical Information Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

Figure 5. Framework of DSTR-RNet. 
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Figure 6. Location of study area and the road network. (a) Location of study area. (b) Road network of study 
area. (c) Concrete example of generated traffic flow. 
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Figure 7. Comparision between ST-LCNR and DSTR-RNet with different numbers of weight layers. (a) 
Performance difference for Data1. (b) Performance difference for Data2. (c) Performance difference for 

Data3. 
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Figure 8. Performances for different numbers of ResLCNR units. (a) RMSE trend for Data1. (b) RMSE trend 
for Data2. (c) RMSE trend for Data3. 
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Figure 9. Performances with different input lengths. (a) RMSE trend for Data1. (b) RMSE trend for Data2. (c) 
RMSE trend for Data3. 
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Figure 10. (a)-(c) Spatial distributions corresponding to MGT, RMSE and MAPE of Data2 from 08:00 to 
21:00. (d) Directions of all road segments. 
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Figure 11. (a)-(c) Temporal distributions corresponding to MGT, RMSE, and MAPE of Data2 from 08:00 to 
21:00. 
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Figure 12. Comparison between DSTR-RNet and CNN-based model ST-ResNet. (a)-(c) Ground truths, 
predictions of DSTR-RNet and predictions of ST-ResNet. (d)-(f) Ground truths, predictions of DSTR-RNet and 

predictions of ST-ResNet for region A. 
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