
Title Aggregating the conceptualisation of movement data better
captures real world and simulated animal-environment
relationships

Authors Holloway, Paul

Publication date 2019-05-29

Original Citation Holloway, P. (2019) 'Aggregating the conceptualization of
movement data better captures real world and simulated animal–
environment relationships', International Journal of Geographical
Information Science. doi: 10.1080/13658816.2019.1618464

Type of publication Article (peer-reviewed)

Link to publisher's
version

10.1080/13658816.2019.1618464

Rights © 2019 Informa UK Limited, trading as Taylor & Francis Group.
This is an Accepted Manuscript of an article published by
Taylor & Francis in International Journal of Geographical
Information Science on 29 May 2019, available online: http://
www.tandfonline.com/10.1080/13658816.2019.1618464

Download date 2024-04-26 08:33:49

Item downloaded
from

https://hdl.handle.net/10468/9174

https://hdl.handle.net/10468/9174


Aggregating the conceptualisation of movement data better captures 

real world and simulated animal-environment relationships. 

Habitat selection analysis is a widely applied statistical framework used in spatial 

ecology. Many of the methods used to generate movement and couple it with the 

environment are strongly integrated within GIScience. The choice of movement 

conceptualisation and environmental space can potentially have long-lasting 

implications on the spatial statistics used to infer movement-environment 

relationships. The aim of this study was to explore how systematically altering 

the conceptualisation of movement, environmental space, and temporal resolution 

affects the results of habitat selection analyses using both real-world case studies 

and a virtual ecologist approach. Model performance and coefficient estimates 

did not differ between the finest conceptualisations of movement (e.g., vector and 

move), while substantial differences were found for the more aggregated 

representations (e.g., segment and area). Only segments modelled the expected 

movement-environment relationship with increasing linear feature resistance in 

the virtual ecologist approach, and altering the temporal resolution identified 

inversions in the movement-environment relationship for vectors and moves. The 

results suggest that spatial statistics employed to investigate movement-

environment relationships should advance beyond conceptualising movement as 

the (relatively) static conceptualisation of vectors and moves and replace these 

with (more) dynamic aggregations of longer-lasting movement processes such as 

segments and areal representations. 

Keywords: habitat selection; movement; segments; trajectories; virtual ecology;  

Introduction 

Movement data are becoming ubiquitous in GIScience, and this spatiotemporal 

geographic information has improved our understanding of many of the geographic 

processes we study. While time geography (Hägerstrand 1970; Miller 1991; Neutens et 

al. 2011) and temporal GIS (Yuan 1996; Christakos et al. 2012) have become regular 

focal points of research within the discipline, the concept of time has never been wholly 

resolved (Goodchild 2013). In particular, the static representation of space and time has 



limited the development of approaches and methods to study movement across sub-

disciplines (Gudmundsson et al. 2012; Laube 2014). Despite this, GIScience is well 

placed to address such challenges associated with studying movement across an array of 

thematic topics, including spatial ecology (Holloway and Miller 2018), with 

frameworks emerging that unify these methodological and conceptual matters within a 

GIScience context (Dodge 2016).  

Movement is a pervasive ecological process that is inherently linked with the 

spatial configuration of organisms and the underlying environment (Nathan et al. 2008); 

for example, barriers, corridors and land cover can all have a driving influence on where 

organisms can move, while goal-orientated movement towards resources determine the 

end location of movement steps (Holloway and Miller 2018). Subsequently, studies 

investigating the environmental drivers of movement have increased in abundance in 

recent years (Long and Nelson 2013; Dodge et al. 2014; Miller et al. 2019), with 

numerous statistical approaches employed to model movement-environment processes 

pertaining to home range utilisation patterns (Spiegel et al. 2016), social network 

patterns (Fisher et al. 2017), dispersal in response to climate change (Holloway et al. 

2016) and habitat selection (Hooten et al. 2014). Despite these investigations, the 

moving object and movement space (e.g., environmental space) are subject to a number 

of conceptual and methodological challenges, including the sampling regime (e.g., 

continuous v noncontinuous), the idiosyncrasies of the sample, the semantic level of the 

moving object (e.g., fix or move), the structure of the movement spaces (e.g., discrete or 

continuous), as well as how the moving object and movement space are coupled in 

statistical models. 

Laube (2017) recently described six semantic levels of quantifying movement in 

a GIScience context (Figure 1) that range from an instantaneous level (e.g., local time-



stamped location; ‘fix’, ‘vector’), to an interval aggregated level (e.g.,  connections 

between static fixes; ‘move’, ‘segment’), to a global aggregation (e.g., the probability of 

space use; ‘area’, ‘density’). These varied conceptualisations of the moving object all 

represent slightly different movement processes and different conceptualisations have 

all been used within movement ecology studies. Moreover, the conceptualisation of the 

moving object cannot exist independently of the environmental space. The environment 

is inextricably linked with animal movement (Nathan et al. 2008) and is regularly 

incorporated as covariates in statistical models. For example, in habitat selection 

studies, movement and the environment have been coupled together as ‘vectors’ (e.g., 

environmental value at the end of the movement step – Viejou et al. 2018), ‘moves’ 

(e.g., the proportion of an environmental value along the step – Mason and Fortin, 

2017), and ‘segments’ (e.g., the proportion of an environmental value along parts of the 

movement segment – Zeller et al. 2016). Furthermore, these conceptualisations can be 

used interchangeably to investigate animal-environment interactions within the same 

statistical model (e.g., Fortin et al. 2005).  

These decisions are pertinent because the choice of movement conceptualisation 

can alter the inferences made from such statistical models. For example, Zeller et al. 

(2016) identified substantial differences in regression coefficients for several land 

covers when puma habitat selection was conceptualised using hourly ‘segments’ and 

five-minute ‘moves’, with segments generating larger regression coefficients. Similarly, 

Holloway and Miller (2018) found that the area of landscape that was accessible to 

simulations of 25 brown hyenas over a year period was 60,000km2 larger when 

movement was conceptualised as ‘moves’ compared to ‘vectors’.   



Figure 1. Diagram to illustrate the different conceptualisations of movement along a single 

movement trajectory.  

The coupling of the environment and moving objects has been suggested as 

being greatest when individuals react to linear features (LFs) (Thrufjell et al. 2014). In 

particular, the methods proposed for quantifying movement in response to LFs may not 

reliably capture the underlying behaviour. The assumption that animals move in a 

straight line between two successive ‘fixes’ is necessary for analysing movement at 

coarser aggregations; however, it can introduce uncertainties where LFs are considered. 

For example, when organisms use LFs as corridors, the amount of time the ‘move’ or 

‘segment’ is recorded on the LF may be small due to the need to record the movement 

as a straight line. Using such a covariate could result in an assumption of avoidance as 

the fix is never located on the LF, despite there being a strong movement-environment 

relationship (Thurfjell et al. 2014). Several methods have been suggested to measure the 

relationship between movement and LFs (see Methodology), and with such wide 



variation in their implementation, it is likely that resulting inferences from models will 

vary markedly.  

The choice of movement conceptualisation and environmental space can 

potentially have long-lasting implications on any management strategy resulting from 

these spatial statistics; however, no formal analysis has investigated how the 

conceptualisation of movement in relation to the movement space influences 

movement-environment inferences. Subsequently, the aim of this study is to explore 

how systematically altering the conceptualisation of movement and environmental 

space affects the results of habitat selection analyses using both real-world case studies 

and a virtual ecologist approach.  This study will explore three main questions: 1) does 

the conceptualisation of the moving object and environmental space influence a) the 

model performance and b) the environmental preference of habitat selection? 2) does 

the habitat selection methodology correctly identify environmental preferences of 

animal movement using a virtual ecologist approach? and 3) does systematically 

varying the temporal resolution of the virtual data used in the statistical model change 

the environmental preference identified?  

Methodology 

Habitat Selection Analysis 

Habitat selection is defined simply as the probability that a specific habitat will 

be used by an animal when it encounters it (Lele et al. 2013). Habitat selection analysis 

develops a function that is proportional to the probability of the use of a resource unit 

by an organism (Manly et al. 2002). The ‘used’ observations are compared to a set of 

‘alternative’ observations that the animal theoretically could have selected, with a set of 

environmental variables that characterise ‘selection’ identified from the statistical model 



(Figure 2). Habitat selection has been implemented across multiple conceptualisations 

of movement, including ‘fixes’ (Figure 2a; resource selection analysis – RSA), ‘vectors’ 

and ‘moves’ (Figure 2b; step selection analysis – SSA), and ‘segments’ and ‘areas’ 

(Figure 2c; path selection analysis – PathSA).  

 

Figure 2. Habitat selection analyses that compare an observed (black) movement observation to 

a set of alternative (grey) movement observations that an individual could have theoretically 

taken. Black dots represent successive telemetry locations of an individual (in step-selection 

analysis and path-selection analysis), with five different movement conceptualisations (fix, 

vector, move, segment, area) represented as the moving object.  

 
In RSA (Figure 2a), habitat selection measures a used ‘fix’ with a set of 

alternative ‘fixes’. However, the methodologies to generate alternative fixes do not limit 

resource availability to an accessible distance of current animal location (Fortin et al. 

2005; Forrester et al. 2009). In SSA, an observed step between two successive telemetry 

locations is compared to alternatively generated steps (created from an empirical 

distribution of movement parameters) that the animal theoretically could have taken 

(Thurfjell et al. 2014). In SSA (Figure 2b), the alternative steps have been represented 

as ‘vectors’ (e.g., environmental value at the end of the move – Viejou et al. 2018), and 



‘moves’ (e.g., the proportion of an environmental value along the move – Mason and 

Fortin, 2017). PathSA (Figure 2c) compares segments of the movement trajectories with 

alternatively simulated trajectories of the same time period. PathSA has been 

represented as ‘segments’ (e.g., mean value along the movement segment – Elliot et al. 

2014), and ‘areas’ (e.g., mean proportion of the environmental values within a Pareto-

weighted kernel around each vector in the segment – Zeller et al. 2014; 2016).  

While different statistical methods have been used to investigate habitat 

selection (e.g., Dickson et al. 2005); the prevailing methodology that has been used 

across RSA, SSA, and PathSA is conditional logistic regression (Thurfjell et al. 2014). 

Using this approach, habitat selection 𝑤𝑤�(𝑥𝑥) is defined as: 

𝑤𝑤�(𝑥𝑥) = exp(𝛽𝛽1𝑥𝑥1 +  𝛽𝛽2 𝑥𝑥2 +  … + 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛)        (1.0) 

where βn is the coefficient estimated by the conditional logistic regression for 

the variable 𝑥𝑥𝑛𝑛. Observations with higher 𝑤𝑤�(𝑥𝑥) values have a higher likelihood of being 

chosen by the animal, meaning such an approach can identify the influence the 

environment can have on habitat selection and animal movement. Habitat selection can 

be extended to all conceptualisations of movement (Figure 1; Figure 2) and the 

following sections will outline the methodological steps involved in generating the 

alternative movement conceptualisations for use in the statistical analysis. Figure 3 

illustrates a conceptual workflow of the methodology to support the description. While 

animal positional data has been used to parameterise RSAs, due to the relatively static 

nature of the ecological process under study, this research will focus on habitat selection 

analyses with a more explicit consideration of movement (i.e., SSA and PathSA). 



 

Figure 3. Conceptual diagram of the habitat selection analysis undertaken within this study. 

Step-Selection Analysis (SSA) - Vector and Move 

SSA compares the observed step with a set of alternative steps the individual 

theoretically could have taken (Figure 2b). Alterative steps were generated by drawing 

turn angles and step lengths from the probability distribution of all observed steps in the 

dataset. Drawing movement parameters from the probability distribution to generate the 

alternative steps creates more representative steps, simultaneously reducing the bias 

associated with using less constraining distributions (e.g., random and quantile - 

Holloway and Miller 2014). All movement observations that do not move (e.g., distance 

of zero) were removed from the analysis as these do not represent movement but 

possibly ‘stops’ or ‘stationary processes’. The number of alternative steps does not bias 

results (Thurfjell et al. 2014); therefore, three alternative steps were generated based on 



the derived movement parameters. From these alternative steps, both vectors and moves 

were then incorporated in the analysis.  

Path-Selection Analysis (PathSA) - Segment, Area, Density 

PathSA compares the observed movement segment with a set of alternative 

movement segments the individual theoretically could have taken (Figure 2c). Observed 

trajectories were split to create segments of daily movement. Alternative segments were 

simulated following the random trajectory generator (RTG) algorithm proposed by 

Technitis et al. (2015). This method simulates random movement between a fixed origin 

(A) and destination (B), using a two-dimensional representation of the space-time 

prism, maximum speed, and movement time. To overcome unrealistic trajectories, a 

random order of time-step generation was implemented (Technitis et al. 2015). The 

start- and end-points of the alternative segments match those of the corresponding 

observed segment. This algorithm generates alternative segments that individual 

animals could use. Again, three alternative segments were generated for use in the 

statistical model.  

Three areal aggregations of movement were generated from these segments. A 

minimum bounding rectangle (MBR) and a minimum convex polygon (MCP) represent 

the spatial extent of the movement, and a 50% kernel density estimation (KDE) was 

converted to an areal polygon to allow direct comparison with the two aforementioned 

aggregations. Due to the simplistic geometry and the subsequent overlapping of MBRs, 

it was found that the statistical models would not converge due to the high similarity of 

data contained within them; therefore, the areal aggregations of movement discussed 

herein refer only to MCP and KDE.  



Environmental Space 

In habitat selection studies, land cover has predominantly been measured as a 

binary variable recorded at the exact coordinate of the vector (e.g., Bjorneraas et al. 

2011; Ewald et al. 2014; Street et al. 2015; Scharf et al. 2016; de la Torre et al. 2017; 

Cozzi et al. 2017; Hradsky et al. 2017; Brennan et al. 2018; Martin et al. 2018; DeMars 

and Boutin 2018; Viejou et al. 2018), while studies have also measured the proportion 

of land cover along the move or segment  (Elliot et al. 2014; Panzachhi et al. 2016; 

Mason and Fortin, 2017), or the proportion of land cover within a buffer surrounding 

the vector, move or segment (Reding et al. 2013; Street et al. 2016; Zeller et al. 2016).  

LFs have been incorporated in the statistical model by using the mean distance 

along the move or segment to the LF (LF_mean - Coulon et al. 2008), the shortest 

distance of the move or segment to the LF (LF_min - Fortin et al. 2005), a binary 

representation of whether the LF has been crossed (LF_cross - Panzachhi et al. 2016; 

Marchand et al. 2017), and as the distance from the end vector (equivalent of LF_mean 

- Clark et al. 2015; Brennan et al. 2018; Holloway 2018). 

Table 1 outlines six methods of incorporating LFs used in this study, the 

ecological justification for use as an environmental covariate, and the movement 

conceptualisation that the method can be coupled with. Land cover was incorporated in 

a consistent manner across all six models in Table 1 following the predominant method 

used in habitat selection studies; value or proportion of land cover along or within the 

movement conceptualisation.  

 

 

 



Table 1. Outline of the six models that investigate the relationship between movement and 

linear features (LFs). Description of the methodology to measure LF environmental covariates, 

the ecological reasoning for their inclusion, and the five conceptualisations of movement that 

can be coupled with the method.  

 

Model Description Reasoning Conceptualisation 
LF_mean Measures the mean value to the LF from, 

along, or within the movement 
conceptualisation 

Used to identify movement towards 
(negative coefficient), away (positive 
coefficient), or in parallel to roads 
(equal to reference). 

Vector; Move; 
Segment; Area; 
Density 

LF_prop Measures the proportion of the 
movement conceptualisation that is 
within a buffer of the LF (distance to 
correspond with suggested movement 
step lengths and impact distances) 

Proportion of time within a LF buffer 
indicates usage of LF, proposed to 
overcome limitation of unlikely nature 
of movement step falling exactly on the 
one-dimensional line. 

Vector; Move; 
Segment; Area; 
Density 

LF_min Measures the minimum distance to the 
LF from the movement conceptualisation  

Used to identify movement towards 
(negative coefficient), away (positive 
coefficient), or in parallel to LFs (equal 
to reference). 

Move; Segment 

LF_cross Binary value representing whether the 
LF has been crossed by the movement 
conceptualisation 

Used to indicate whether animals will 
use or cross LF (1), or whether they 
avoid them (0). 

Move; Segment 

Non-
LF_agg 

Landscape reclassified into a binary 
space (linear or non-linear). The degree 
of aggregation of non-linear patches in 
the area., calculated from the adjacency 
matrix, which shows the frequency with 
which different pairs of patch types 
appear side-by-side in the landscape. 
prop.like.adjacencies in spatialEco 
(Evans 2017) 

Used as a measure of connectivity for 
non-linear landscapes in the study area. 
A higher aggregation indicates less 
LFs, with linear landscapes used more 
(negative coefficient) or less (positive 
coefficient) by animals.  

Area; Density 

Non-LF-
conn 

Landscape reclassified into a binary 
space (linear or non-linear). Metric 
describing the physical connectedness of 
the non-linear patches. 
patch.cohesion.index in SpatilEco (Evans 
2017) 

Used as a measure of connectivity for 
non-linear landscapes in the study area. 
A higher cohesion indicates less LFs, 
with linear landscapes used more 
(negative coefficient) or less (positive 
coefficient) by animals. 

Area; Density 

 

Real-World Case Study 

Telemetry data of oilbirds (Steatornis caripensis) in Venezuela and Burchill’s 

zebra (Equus quagga burchelli) in Botswana were obtained from Holland et al. (2009) 

and Bartlem-Brooks et al. (2013a) respectively via Movebank (Holland et al. 2012; 

Bartlem-Brooks et al. 2013b). Table 2 summarises the information pertaining to these 

datasets, and Supplementary Information 1 contains maps of the movement trajectories. 

Land cover type data product (MCD12Q1) from the Moderate Resolution Imaging 



Spectroradiometer (MODIS) was obtained from the Global Land Cover Facility (Friedl 

et al. 2010; Channan et al. 2014) to match the start date of the telemetry datasets. Global 

Roads Open Access Data Set, Version 1, was obtained from the Center for International 

Earth Science Information Network (CIESIN, 2013). Veterinary fence lines in 

Botswana were also identified and digitised.  

Table 2. Information on species datasets used within this study.  

Species Number of 

Individuals 

Time-step 

(mins) 

Total Fixes Start Date End Date 

Oilbirds 4 10 790 13-10-2007 18-10-2007 

Zebra 6 60 29,687 25-10-2007 27-05-2009 

 

For both oilbirds and zebras, land cover was categorised into three classes to 

match hypotheses surrounding habitat selection (Holland et al. 2009; Bartlem-Brooks et 

al. 2013a; Holloway and Miller 2014). For oilbirds the environment consisted of 

evergreen broadleaf forest, cropland, and other habitat, and for zebras the environment 

consisted of savanna, shrubland, and other habitat. Primary preference for evergreen 

broadleaf forests and savannas and secondary preference for cropland and shrublands 

compared to the reference land cover of other habitat was hypothesised for oilbirds and 

zebras respectively. LFs for both animals consisted of roads; however, following the 

impact of veterinary fences on zebra movement identified by Bartlem-Brooks et al. 

(2013a), these were also included in the LF layer for Botswana. It was hypothesised that 

both animals would exhibit behaviours associated with preference for these linear 

features. A buffer of 4000 m was applied around the LFs to incorporate the 99th 

percentile of step lengths, to ensure use of LFs was detected (as opposed to fitting a too 

restrictive buffer distance). 



Analysis 

Habitat selection was estimated using conditional logistic regression using the 

survival package (Therneau 2015) in R 3.5.1 (R Development Core Team 2008). 

Coefficients were standardised with the exception of the variables represented by binary 

values. Akaike’s Information Criterion (AIC) was calculated to investigate model 

performance and select the best-fit theoretical distribution across all models. This 

identifies the environmental covariates that best fit the movement data. However, due to 

variation in sample sizes between SSA and PathSA, AIC should only be compared 

directly between SSA vector and move, and directly among PathSA segment, MCP and 

KDE. Standardised coefficients of the environmental covariates were then compared to 

investigate whether certain movement conceptualisations resulted in larger selection 

preferences. For the land cover variables, the coefficients indicate the log odds for that 

movement conceptualisation being chosen relative to a reference habitat (e.g., other 

habitat), and for LFs the coefficients indicate the log odds for selecting a movement 

option as the independent variable changes.  

Virtual Ecologist Case Study 

The virtual ecologist approach generates data by simulating the ecological 

processes that give rise to the patterns subsequently analysed (Zurell et al. 2010; Miller 

2014; Avgar et al. 2016). This approach allows researchers to evaluate the ability of 

readily employed spatial statistics to model the expected movement-environment 

relationship. By simulating movement trajectories in response to the underlying 

environment, the ability of habitat selection analyses to identify the known patterns can 

be explicitly tested. Furthermore, by systematically altering the conceptualisation of the 

moving object, we can test how aggregating movement to coarser conceptualisations 

affects results.  



Fine-scale movement was simulated using a discrete-step process of one-minute 

time-steps over 24-hours on a 665 x 591 rectangular grid of 100m cells in the SiMRiv 

package (Quaglietta and Porto 2018). Land cover was generated by creating a random 

raster of three categories, with each land cover attributed a value representing resistance 

to movement of 0.75, 0.25, and 1.00. The decision to simulate one low resistance (0.25), 

one high resistance (0.75) and one completely avoidable (1.00) land cover mimics the 

inferences from the two case studies that animals have a primary, secondary, and an 

avoidable land cover preference. The LF network from Botswana was scaled to fit 

within the overall landscape extent. The decision to use a real-world linear-network as 

opposed to a random one was to reduce the risk of generating overly simplified virtual 

movements that might result from unrealistic linear-networks (Miller 2014). A buffer of 

100m was placed around the LF in the generation of the resistance raster to represent 

the 20th percentile of the simulated step lengths. Due to the simulations reflecting a 

known-truth, a more restrictive movement-LF relationship was incorporated in the 

model, due to the fact there would be less noise than in the real-world case studies. 

Simulations were calculated using five resistance to movement values for the LF (0.00, 

0.25, 0.50, 0.75, and 1.00). These values allowed a systematic investigation from use of 

LF (0.00) to avoidance of LF (1.00), meaning the statistical framework and 

environmental covariates could be assessed for how well they captured the underlying 

processes relating to LFs. Further details regarding the methodological steps and R code 

for SiMRiv simulations are in Supplementary Information 2.  

In total, 500 simulations were run for the five landscape configurations of land 

cover and LF resistance, which resulted in 2500 simulations. These simulations were 

treated as the ‘observed’ movement features, with ‘alternative’ movement features 

generated including vectors, moves, and segments using the same methodology as 



outlined for the real-world case studies. These movement conceptualisations were 

coupled with the underlying environment using the LF_mean and LF_prop methods 

outlined in Table 1, and again, habitat selection was calculated using conditional 

logistic regression (equation 1).  

Finally, each simulation was sampled at 1- 2-, 5-, 10-, 15-, 30-, 60-, 90-, and 

120-minute time-steps to represent different temporal resolutions that animal trajectory 

data are commonly collected at and used in the statistical framework. This allowed the 

habitat selection analyses to be investigated for how well the known movement 

processes were captured once the temporal resolution of the input data was coarsened 

from that at which it was simulated.  

The coefficient values were then compared for each variable using the Wilcoxon 

matched pairs signed rank test according to the number of comparisons made. This test 

converts scores to ranks and compares them across the two conditions. The effect size 

of the test was calculated by dividing the z score by the square root of n and using the 

Cohen (1988) criteria of 0.1 = small effect, 0.3 = medium effect and 0.5 = large effect. 

Results 

Model Performance and Environmental Preferences 

Performance between SSA models with movement coupled with LFs did not 

differ for either oilbirds or zebras (Figures 4a-b). Similarly, when coefficient values and 

standard errors for both land cover variables and LFs were compared between vectors 

and moves, minimal differences were observed (Figures 4c-d), suggesting that the 

ability of the statistical models and parameterised environmental covariates to best fit 

the movement data does not differ between the interval aggregation conceptualisations 

of movement. The model parameterised with minimum distance to LFs (LF_min) 



appears to outperform those parameterised with mean distance (LF_mean), proportion 

within LF buffer (LF_prop), and a binary value indicating whether the LF has been 

crossed (LF_cross) when movement was conceptualised as segments (Figures 4a-b); 

however, when the coefficient values were explored (Figures 4c-d), the coefficients for 

minimum distance to LFs were substantially larger than the land cover values, with very 

wide standard errors reported. This pattern appears to occur due to the structure of the 

LF network within both environments (Supplementary Information 1), meaning that for 

the majority of segments, the minimum value is found at the start or end point, which 

subsequently means the models overfit the data. 

The MCP and KDE conceptualisations of movement reported lower AIC values 

when the landscape was parameterised as the aggregation (N-LF_agg) and 

connectedness (N-LF_conn) of the non-LF landscape (Figures 4a-b) compared with the 

LF_mean and LF_prop parameterisations within the same area. When coupled with the 

standardised coefficient results (Figures 4c-d), both species were more likely to select 

movement paths with a lower aggregation or connectivity than the alternative 

movement option. This suggests that both species are using landscapes that are 

fragmented by LFs more so than those that are not, inferring a preference for landscapes 

dominated by LFs. While similar preferences for movement towards LFs was identified 

across movement and environmental conceptualisations for oilbirds (with the exception 

of LF_min), both avoidance of LFs using LF_mean, LF_prop, and LF_min 

parameterisations, and attraction to LFs using LF_cross, N-LF_agg, and N-LF_conn 

was identified for zebras.  

Furthermore, when preference for shrubland habitat was explored for zebras 

(Figure 4d) the MCP and KDE conceptualisations (proportion of land cover in area) for 

models N-LF_agg and N-LF_conn, a preference for the reference habitat (other land 



cover) was identified, which contradicts every other inference made from vectors, 

moves, and segments. Similar results were observed for oilbird selection of cropland 

(Figure 4c) when the conceptualisation of movement becomes more aggregated, 

although not as exaggerated. Such an inversion in the relationship between movement 

and the hypothesised ‘secondary’ habitat as movement conceptualisation was 

aggregated suggests that either the species’ preference for this habitat is scale dependent 

(preference for selection on an individual-level, but avoidance across an aggregated 

global space use) or that a change in the movement conceptualisation is causing a 

methodological artefact to arise in the statistical model.  

An inversion in the movement-environment relationship was also identified 

when LFs were measured as mean distances (LF_mean) and proportion within the 

buffer (LF_prop) for zebras (Figure 4d). Selection of movement away from LFs for all 

movement conceptualisations of zebras was recorded when the environmental space 

was represented as mean distance; however, when LFs were represented as proportions, 

positive coefficients suggest a preference for such landscapes. This inversion in the 

movement-environment relationship was not recorded for the different movement-

environment conceptualisations for oilbirds (Figure 4c), suggesting this trend may be 

species-specific. When the movement data of the zebra are explored, the movement 

consists of two states (seasonal migration and foraging), with the seasonal migration 

strongly associated with the north-south veterinary fence line (Supplementary 

Information 1). Such a relationship is not identified when the mean distance is reported 

but is when a 4 km buffer is applied around the LF. 



 

Figure 4. Akaike Information Criterion (AIC) scores for the different movement conceptualisations and linear feature (LF) representations for a) oilbirds and 

b) zebras. Standardised coefficient values with standard errors for the different models parameterised on movement conceptualisations and LF representation 

for c) oilbirds and d) zebras.  



Virtual Ecologist – Environmental Preference and Temporal Resolution 

Figures 5 and 6 illustrate the coefficient values of the environmental covariates 

for the different movement conceptualisations and LF resistance values at each time-

step derived from the virtual ecologist approach. The expected relationship for the 

model LF_mean (Figure 5) is for LF selection preference to increase positively as 

resistance increases (e.g., selection preference increases as the distance increases away 

from LFs), while the expected relationship for the model LF_prop (Figure 6) is for LF 

selection preference to increase negatively as resistance increases (e.g., selection 

preference for movement that has a lower proportion within the LF buffer). It was also 

expected that the land cover (LC1, LC2) coefficients would not change as the LF 

resistance was increased, as the resistance values for both LC1 and LC2 were held 

constant. Given the resistance values of 0.75 and 0.25 for LC1 and LC2, it was expected 

that selection into both of these habitats would be positive to reflect selection over LC3 

(the reference habitat). 

Segments were the only conceptualisation that accurately captured this expected 

pattern across all time-steps for both models (Figures 5 and 6), while vectors and moves 

resulted in habitat selection that identified both attraction and avoidance for all LF 

resistance values between 0.00 (attraction) and 1.00 (avoidance). For the vector and 

move conceptualisations, it was the shorter time-steps (1-minute, 2-minutes) that 

incorrectly modelled the movement-environment relationship as attraction when LF 

resistance was specified as 1.00, and it was the longer time-steps (5-minutes to 120-

minutes) that correctly modelled the expected relationship. As the virtual data was 

simulated at 1-minute time-steps, the assumption was that the shorter temporal 

resolution would reliably capture the underlying relationship. Coarser time-steps of 

vectors and moves are characteristic of simplified (albeit linear) segments, suggesting  



 

Figure 5. Standardised coefficient values for land cover (LC) and linear features (LFs) with 95% confidence intervals for the LF_mean (mean distance to LFs) 
for the virtual species. Results include the movement conceptualisations of vectors, moves, and segments. Resistance values (0, 0.25, 0.5, 0.75, 1) correspond 
to the resistance of linear features to movement in the simulations, with the expected movement-LF relationship to increase in selection preference as 
resistance increases (e.g., selection preference increases as the distance increases away from LFs), while movement-LC relationships should remain consistent 
as LF resistance is increased.  For each variable, coefficient scores for 1-, 2-, 5-, 10-, 15-, 30-, 60-, 90-, and 120-minute time steps are reported left to right. 



 

Figure 6. Standardised coefficient values for land cover (LC) and linear features (LFs) with 95% confidence intervals for the LF_prop (proportion of 
movement observation within LF buffer) for the virtual species. Results include the movement conceptualisations of vectors, moves, and segments. Resistance 
values (0, 0.25, 0.5, 0.75, 1) correspond to the resistance of linear features to movement in the simulations, with the expected movement-LF relationship to 
decrease in selection preference as resistance increases (e.g., selection preference for movement that has a lower proportion within the LF buffer), while 
movement-LC relationships should remain consistent as LF resistance is increased. For each variable, coefficient scores for 1-, 2-, 5-, 10-, 15-, 30-, 60-, 90-, 
and 120-minute time steps are reported left to right.



that movement-LF relationships are only observable at the more aggregated movement 

conceptualisations. Due to longer time-steps of vectors and moves covering more of the 

spatial variation in the overall movement trajectory, the conceptualisations are capturing 

the extreme relationship, but as a construct of the temporal resolution. 

The expectation that the LC1 and LC2 coefficients would not change was 

generally found to be true when altering the LF resistance (Figures 5 and 6), suggesting 

that preference for land covers remains when resistance to other features in the 

landscape is altered. However, figures 5 and 6 do identify increases in the LC1 and LC2 

coefficient values for vectors and moves and a decrease in the LF coefficient values for 

segments as the time-steps were increased from 1-minute to 120-minutes. For moves, 

the LC1 and LC2 values appeared to invert from negative to positive as the temporal 

resolution increased. Preference of LC1 (resistance 0.75) and LC2 (resistance 0.25) over 

LC3 (resistance 1.00) was expected (i.e., positive coefficients) for all movement 

coefficients; however, the finer time-steps of the move identified preference for the 

reference habitat (i.e., negative coefficients). While segments identified a decrease in 

coefficient size as the time-steps increased, in only a few instances did the relationship 

invert.  

Tables 3, SI3.1, and SI.3.2 (Supplementary Information 3) identify the results of 

the Wilcoxon matched pairs signed rank for the two models. The differences between 

coefficient values for LC1 and LC2 as the time-step was altered was generally not 

significant, nor did the values change sign (Tables SI3.1 and SI3.2). However, Table 3 

identifies significant differences between the coefficient values when vectors, moves, 

and segments were directly compared. Segments were found to generate higher 

coefficient values for land cover preference compared to vectors and moves, with 

Cohen’s criteria identifying a large effect between vectors and segments for both 



models (Table 3). Furthermore, it can be seen from Table 3 that this difference resulted 

in an inversion of the movement-environment relationship, with segments identifying a 

positive relationship, while vectors identified a negative relationship.  

Table 3. Confusion matrix of Wilcoxon matched pairs signed rank for both the LF_mean (mean 
distance to linear feature) and LF_prop (proportion of movement within linear feature buffer) 
models comparing coefficient values among movement conceptualisations. Value refers to 
second group in the comparison. *medium effect, **large effect.  

 Inversion of Coefficients from Positive to Negative 

 Inversion of Coefficients from Negative to Positive 

 

LF_mean 

Linear Features (LFs) Coefficients  Land Cover 1 (LC1) Coefficients 
 Vector Move Segment  Vector Move Segment 
Vector    Vector    
Move n.s.   Move Higher**   
Segment Lower** Lower**  Segment Higher** Higher  
Land Cover 2 (LC2) Coefficients 
 Vector Move Segment 
Vector    
Move n.s.   
Segment Higher** Higher**  

 

LF_prop 

Linear Features (LFs) Coefficients  Land Cover 1 (LC1) Coefficients 
 Vector Move Segment  Vector Move Segment 
Vector    Vector    
Move n.s.   Move Higher**   
Segment n.s. n.s.  Segment Higher** n.s.  
Land Cover 2 (LC2) Coefficients 
 Vector Move Segment 
Vector    
Move Higher**   
Segment Higher** Higher**  

 

 

 

 



Discussion 

Habitat selection is a widely applied statistical framework that investigates 

spatial ecology, yet many of the methods used to generate movement and couple it with 

the environment are deep-rooted in GIScience concepts and frameworks (e.g., 

computational movement analysis; analysis of movement data). The challenges 

associated with applying geographic context to movement data, as well as identifying 

how different object and space conceptualisations influence movement-environment 

inferences are GIScience challenges that must be addressed in future research (Dodge 

2016; Holloway and Miller 2018; Miller et al. 2019). Subsequently, the aim of this 

study was to explore how systematically altering the conceptualisation of movement 

and environmental space affects the results of habitat selection analyses (e.g., SSA and 

PathSA). 

PathSA has been less readily implemented than SSA, and subsequently less is 

understood about the inclusion of segments as the movement conceptualisation in 

habitat selection. In general, PathSA models resulted in larger (independent of sign) 

coefficient values than SSA for oilbirds (Figure 4c), zebras (Figure 4d), and the virtual 

species (Figures 5-6, Table 3), corroborating the findings of Zeller et al. (2016). 

Exceptions to this trend were identified, with no significant differences being observed 

among conceptualisations for the LF variable in the LF_prop model (Table 3); however, 

Figure 5 identified that vectors and moves incorrectly specified the expected LF-

movement relationship at finer temporal scales. Moreover, the coefficient values for 

PathSA more accurately captured the expected relationships for all variables, as vectors 

and moves incorrectly identified preference for the reference habitat (Figures 5-6). 

These results suggest that PathSA better captures the underlying processes associated 

with animal-movement decisions than vectors or moves that are commonly 

implemented in SSA. 



The relatively static treatment of movement in vectors and moves could explain 

the ability of segments to outperform these conceptualisations. When movement is 

represented as discrete entities, the underlying processes are masked as movement is not 

considered a process but an isolated event that is not directly informed by the movement 

decisions preceding or succeeding it. The ability of segments to correctly inform 

movement-environment (both land cover and LF) preferences (Figures 5 and 6) at all 

time-steps coupled with the inability of vectors and moves to inform on these 

preferences suggests that PathSA is required to effectively model the expected 

movement-environment relationships when investigating habitat selection.  

Model performance varied across the three PathSA conceptualisations of 

movement for both oilbirds and zebras (Figures 4a-b), with models N_LF_agg and 

N_LF_conn performing the best based on AIC. Coefficient values were large for 

movement-LF relationships for the two areal representations of movement (Figures 4c-

d) suggesting a preference for less aggregated or connected landscapes. Edge habitat 

provides more opportunities (including increased food and ease of movement) for many 

species (Laurance 2000) and it was hypothesised that both oilbirds and zebras would 

utilise LF habitats in part for these reasons. While results from the areal models support 

this, landscape measures of non-linear features potentially incorporate a number of 

confounding variables not related to movement-LF interactions. Subsequently, the two 

areal aggregations were not incorporated in the virtual ecologist approach so a more 

focused investigation could be directed explicitly towards the more established 

methods. However, these results suggest that areal aggregations could be utilised within 

PathSA analyses. Areal aggregations have not readily been incorporated within SSA or 

PathSA, despite their potential. Therefore, new methods conceptualising movement as 

areas and densities need to be explored within the habitat selection framework (e.g., 



time geography density estimator, Downs 2010; Downs et al. 2018) as well as the 

coupling of this movement with LFs.  

Systematically altering the resistance of movement to LFs in the virtual 

ecologist approach allowed for the movement-environment relationship calculated from 

the conditional logistic regression to be examined. Expected movement-environment 

relationships were observed for segments when behaviour was complete avoidance 

(1.00) or attraction (0.00), yet inverted relationships were recorded across all resistance 

values for both vectors and moves as the time-steps were altered (Figures 5 and 6). 

These results suggest that vectors and moves are not suitable for modelling movement-

LF relationships when individuals also made decisions on other land cover variables. 

This is particularly pertinent in landscapes where preference for LFs exists, but 

movement is not fixed to a LF network with discrete step choices based on other 

environmental factors masking movement-environment relationships at the individual 

aggregations in the statistical model. Subsequently, movement should be viewed at 

aggregated conceptualisations for the movement-LF relationships to be reliably 

modelled.  

Increasing the temporal resolution of the simulations within the virtual ecologist 

approach resulted in the coefficient values for vectors and moves approaching the 

expected movement-environment relationship, while for segments it generally resulted 

in a decrease in the coefficient value (Figures 5 and 6). Both vectors and moves 

incorrectly specified the expected virtual movement-environment relationships at the 

finer temporal scales for land cover and LFs, suggesting that if these conceptualisations 

are to be used, coarser resolutions are a necessity. Coarser temporal resolutions of 

moves potentially reflect the dynamic nature of movement more so that the discrete 

finer temporal resolutions as they consist of several smaller movement steps (albeit 



simplified). This further emphasises that many movement-environment relationships are 

only observable at an aggregated level (e.g., segments). Even with movement simulated 

using only three environmental variables in the virtual ecologist approach, the 

movement preferences of individuals are not identifiable when vectors and moves are 

incorporated in SSA. Such results question the ability of using SSA parameterised on 

vectors and moves using real-world data, particularly given the fact that movement will 

likely be influenced by more than three factors. However, given the resolution of real-

world telemetry datasets (Table 2), the resolution may be such that the broader scale 

spatial patterns are still identifiable. With several methods for simulating movement in 

continuous-time (e.g., Harris and Blackwell 2013), further research should investigate 

whether such discrete step spatial statistics can capture the drivers of continuous 

simulations, or whether similar patterns of relationship inversion replicate.  

Recent studies have advocated for incorporating movement parameters (e.g., 

step-length) into the statistical framework to relax the assumption that resource 

selection is independent of movement attributes (Forrester et al. 2009; Avgar et al. 

2016; Signer et al. 2018). Similarly, studies have also called for memory to be 

incorporated within the statistics for the same reasons (Oliveira-Santos et al. 2016; 

Holloway 2018). The decision to omit both movement parameters and memory from the 

analysis meant that the focus of the results and subsequent discussion could centre on 

the movement-environment interactions. Despite this, these are important determinants 

in habitat selection, and future studies should continue to explore the interactions among 

all components of the movement process. This is particularly relevant given that 

external factors (e.g., the environment) are just one of the driving forces of animal 

movement specified in Nathan et al.’s (2008) movement ecology paradigm (internal 

state, navigational capacity, motion capacity). The inclusion of movement parameters 



and memory begin to respectively address the ‘how’ (motion capacity) and ‘where’ 

(navigational capacity) questions associated with animal movement. Therefore, while 

this research focused on the external factors of movement, the results borne out are 

applicable to an integrated movement ecology framework.  

Conclusion 

The static representation of space and time in GIScience and spatial ecology has 

limited the development of the statistical methodologies implemented to explore 

species-environment relationships. Representing movement as a static entity does not 

reliably account for the complex dynamic relationships that exists between movement 

and the environment. Movement conceptualisations that represented a more 

‘aggregated’ definition (e.g., segment) informed animal-movement relationships more 

reliably compared to vectors and moves. The virtual ecologist approach allowed 

resistance to the environment to be systematically altered, meaning the ability of habitat 

selection analyses to accurately inform on these relationships could be tested.  In 

particular, the PathSA models that used a linear representation of movement were the 

only conceptualisation of movement that captured the expected relationship between 

movement and linear features as the resistance to this landscape was increased (Figures 

5 and 6). Systematically changing the temporal resolution that movement was sampled 

at also substantially changed the strength of the coefficients representing selection for 

binary land cover variables (Table 3), with finer time-steps incorrectly specifying 

movement-environment relationships (Figures 5 and 6). These results suggest that 

statistical approaches that are employed to investigate movement-environment 

relationships should advance beyond conceptualising movement as the (relatively) static 

aggregations of vectors and moves and replace these with (more) dynamic aggregations 

of longer-lasting movement processes such as segments and areal representations.  
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Table 1. Information on species datasets used within this study.  

Table 2. Methodology to measure the environmental covariate for the five 

conceptualisations of movement used in the analysis. Step-Selection Analysis (SSA), 

and Path-Selection Analysis (PathSA).  

Table 3. Confusion matrix of Wilcoxon Matched Pairs Signed Rank for both the 
LF_mean and LF_prop models comparing coefficient values among movement 
conceptualisations. Value refers to second group in the comparison. *medium effect, 
**large effect.  

 

Figure 1. Diagram to illustrate the different semantic conceptualisations of movement 

along a single movement trajectory.  

Figure 2. Habitat selection analyses that compare an observed (black) movement 

observation to a set of alternative (grey) movement observations that an individual 

could have theoretically taken. Black dots represent successive telemetry locations of an 

individual (in step-selection analysis and path-selection analysis), with five different 

movement conceptualisations (fix, vector, move, segment, area) represented as the 

moving object.  

Figure 3. Conceptual diagram of the habitat selection analysis undertaken within this 

study. 

Figure 4. Akaike Information Criterion (AIC) scores for the different movement 

conceptualisations and linear feature (LF) representations for a) oilbirds and b) zebras. 

Standardised coefficient values with standard errors for the different models 

parameterised on movement conceptualisations and LF representation for c) oilbirds 

and d) zebras.  

Figure 5. Standardised coefficient values for land cover (LC) variables and linear 

features (LFs) with 95% confidence intervals for the LF_mean (mean distance to LFs) 

for the virtual species. Results include the movement conceptualisations of vectors, 

moves, and segments. Resistance values (0, 0.25, 0.5, 0.75, 1) correspond to the 

resistance of linear features to movement in the simulations, with the expected 

movement-LF relationship to increase in selection preference as resistance increases 

(e.g., selection preference increases as the distance increases away from LFs), while 

movement-LC relationships should remain consistent as LF resistance is increased.  



For each variable, coefficient scores for 1-, 2-, 5-, 10-, 15-, 30-, 60-, 90-, and 120-

minute time steps are reported left to right. 
Figure 6. Standardised coefficient values for land cover (LC) variables and linear 

features (LFs) with 95% confidence intervals for the LF_prop (proportion of movement 

observation within LF buffer) for the virtual species. Results include the movement 

conceptualisations of vectors, moves, and segments. Resistance values (0, 0.25, 0.5, 

0.75, 1) correspond to the resistance of linear features to movement in the simulations, 

with the expected movement-LF relationship to decrease in selection preference as 

resistance increases (e.g., selection preference for movement that has a lower proportion 

within the LF buffer), while movement-LC relationships should remain consistent as LF 

resistance is increased. For each variable, coefficient scores for 1-, 2-, 5-, 10-, 15-, 30-, 

60-, 90-, and 120-minute time steps are reported left to right. 
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