## **Supplement**

This supplement describes the deduction of the formula for approximating the theoretical BAEE model.

# Supplement A. Derivation process of the approximated ellipse for BAEE model



Figure A.1. Diagram for finding the maximum y or x of BAEE model.

Figure A.1 shows a general example that illustrates the calculation of extreme values of the BAEE model. Given two sampled points  $(-\varepsilon/2,0)$  and  $(\varepsilon/2,0)$ , inferring that the theoretical BAEE model is an axisymmetric shape is easy. Therefore, determining the range for the arbitrary point (x,y) on BAEE boundary only requires the calculation of  $\max(x)$  and  $\max(y)$ , whereas  $\min(x) = -\max(x)$  and  $\min(y) = -\max(y)$ .

### 1) Limits of a rotated ellipse:

An ellipse centring at the origin with a rotation of  $\theta$  can be expressed as:

$$\frac{(x\cos\theta - y\sin\theta)^2}{a^2} + \frac{(x\sin\theta + y\cos\theta)^2}{b^2} = 1,$$
 (A.1)

where a and b denote the length of its semi-major and semi-minor axes, respectively. Through considerable algebra and tears, the limits of this ellipse can be easily obtained as follows:

$$\max(x) = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}, \max(y) = \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}. \tag{A.2}$$

Therefore, the limits of an arbitrary ellipse with a rotation of  $\theta$  and  $pt_1 = (x_1, y_1)$  and  $pt_2 = (x_2, y_2)$  as foci, such as the ellipse in Figure A.1, can be expressed as:

$$\max(x) = x_{right} = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \frac{x_1 + x_2}{2},$$

$$\max(y) = y_{top} = \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta} + \frac{y_1 + y_2}{2}.$$
(A.3)

## 2) Possible locations of $pt_1$ and $pt_2$ :



Figure A.2. Diagram for exploring the possible locations of point pair.

Given a certain  $p_1 = (x_1, y_1)$ , for any  $p_2 = (x_2, y_2)$  on the left semi-circle as shown in Figure A.2, we can find a point  $p_3 = (x_3, y_3)$  on the right semi-circle where  $y_3 = y_2$ .

Note that the rotation  $\theta$  can be represented by  $pt_1$ ,  $pt_2$ , that is,  $\cos\theta = \frac{x_2 - x_1}{u}$ ,  $\sin\theta = \frac{y_2 - y_1}{u}$ , and  $\alpha = \beta/2 = c\mu/2$ ,  $b = \sqrt{c^2 - 1} * u/2$ , Therefore, the Equation (A.2) can be simplified as:

$$\max(x) = x_{right} = \frac{1}{2} \sqrt{c^2 (x_2 - x_1)^2 + (c^2 - 1)^* (y_2 - y_1)^2} + \frac{x_1 + x_2}{2},$$

$$\max(y) = y_{top} = \frac{1}{2} \sqrt{c^2 (y_2 - y_1)^2 + (c^2 - 1)^* (x_2 - x_1)^2} + \frac{y_1 + y_2}{2}.$$
(A.4)

Given  $x_3 \ge x_2$ , on the basis of Equation (A.4), we have  $x_{right}(pt_1, pt_2) \le x_{right}(pt_1, pt_3)$ . For this reason, extrapolating the possible domain for  $pt_1, pt_2$  corresponding to the maximum x value of BAEE model is easy. The domain is shown in Figure A.3 (a). Similarly, the domain for  $pt_1, pt_2$  corresponding to the maximum y value of the BAEE model is shown in Figure A.3 (b).



Figure A.3. Possible domain for  $pt_1, pt_2$  corresponding to the limits of BAEE model.

#### 3) Limits of BAEE (y-axis):

Let  $E = \{e_0, e_1, e_2, ...\}$  denote an infinite set composed of the ellipses between all possible point pairs, where the maximum coordinate for  $e \in E$  is expressed as  $x_e$  and  $y_e$ .

$$\forall k \in \mathbb{N}, \exists e^{y} \in E \quad s.t. \quad y_{s,y} \ge y_{e_{s}}. \tag{A.5}$$

Therefore, the computation of maximum y for theoretical BAEE model can be transformed into an objective function, which can be expressed as follows:

$$\max Z = \frac{1}{2} \sqrt{c^{2} (y_{2} - y_{1})^{2} + (c^{2} - 1)^{*} (x_{2} - x_{1})^{2}} + \frac{y_{1} + y_{2}}{2}$$

$$s.t. \begin{cases} (x_{1} + \frac{\varepsilon}{2})^{2} + y_{1}^{2} = r^{2} \\ (x_{2} - \frac{\varepsilon}{2})^{2} + y_{2}^{2} = r^{2} \end{cases}$$
(A.6)

For the example in Figure A.1, the objective function Z can be rewritten as:

$$Z = \frac{y_1 + y_2}{2} + \frac{1}{2} \sqrt{c^2 (y_1 - y_2)^2 + (c^2 - 1)(\sqrt{r^2 - y_1^2} + \varepsilon + \sqrt{r^2 - y_2^2})^2} . \tag{A.7}$$

The limits of Z appear at the stationary point  $(y_1^0, y_2^0)$ , which should satisfy:

$$Z_{y_1}(y_1^0, y_2^0) = \frac{\partial Z}{\partial y_1}\Big|_{\substack{y_1 = y_1^0 \\ y_2 = y_2^0}} = 0 \quad \text{and} \quad Z_{y_2}(y_1^0, y_2^0) = \frac{\partial Z}{\partial y_2}\Big|_{\substack{y_1 = y_1^0 \\ y_2 = y_2^0}} = 0.$$
 (A.8)

After the differential, the partial derivative,  $Z_{y_1}(y_1^0, y_2^0)$ , for instance, can be expressed as

$$Z_{y_1}(y_1^0, y_2^0) = \frac{c^2(y_1^0 - y_2^0) - \frac{(c^2 - 1) * y_1^0 * (\sqrt{r^2 - (y_1^0)^2} + \varepsilon + \sqrt{r^2 - (y_2^0)^2})}{\sqrt{r^2 - (y_1^0)^2}}}{2\sqrt{(c^2 - 1) * (\sqrt{r^2 - (y_1^0)^2} + \varepsilon + \sqrt{r^2 - (y_2^0)^2})^2 + c^2(y_1^0 - y_2^0)^2}} + 1,$$
(A.9)

Similarly, we can compute  $Z_{y_2}(y_1^0, y_2^0)$  as follows:

$$Z_{y_2}(y_1^0, y_2^0) = \frac{c^2(y_2^0 - y_1^0) - \frac{(c^2 - 1) * y_2^0 * (\sqrt{r^2 - (y_1^0)^2} + \varepsilon + \sqrt{r^2 - (y_2^0)^2})}{\sqrt{r^2 - (y_2^0)^2}}}{2\sqrt{(c^2 - 1) * (\sqrt{r^2 - (y_1^0)^2} + \varepsilon + \sqrt{r^2 - (y_2^0)^2})^2 + c^2(y_1^0 - y_2^0)^2}} + 1.$$
 (A.10)

Combining Equation (A-8)–(A-10) and after considerable algebra, we can obtain:

$$y_1^0 = y_2^0 = \frac{r}{c}$$
 and  $Z_{\text{max}} = r * c + \frac{\varepsilon}{2} \sqrt{c^2 - 1}$ . (A.11)

#### 4) Limits of BAEE (x-axis):

Similar to the derivation process in calculating the maximum y, the objective function Z can be written as:

$$Z = \frac{\sqrt{r^2 - y_2^2} - \sqrt{r^2 - y_1^2}}{2} + \frac{1}{2}\sqrt{(c^2 - 1)^*(y_1 - y_2)^2 + c^2(\sqrt{r^2 - y_1^2} + \varepsilon + \sqrt{r^2 - y_2^2})^2} . \quad (A.12)$$

The partial derivative,  $Z_{y_1}(y_1^0, y_2^0)$  can be expressed as:

$$Z_{y_1}(y_1^0, y_2^0) = \frac{(c^2 - 1)^*(y_1^0 - y_2^0) - \frac{c^2 y_1^0 * (\sqrt{r^2 - (y_1^0)^2} + \varepsilon + \sqrt{r^2 - (y_2^0)^2})}{\sqrt{r^2 - (y_1^0)^2}}}{2\sqrt{c^2 * (\sqrt{r^2 - (y_1^0)^2} + \varepsilon + \sqrt{r^2 - (y_2^0)^2})^2 + (c^2 - 1)^*(y_1^0 - y_2^0)^2}} + \frac{y_1^0}{2\sqrt{r^2 - (y_1^0)^2}},$$
(A.13)

The partial derivative,  $Z_{y_2}(y_1^0, y_2^0)$  can be expressed as:

$$Z_{y_2}(y_1^0, y_2^0) = \frac{(c^2 - 1) * (y_2^0 - y_1^0) - \frac{c^2 y_2^0 * (\sqrt{r^2 - (y_1^0)^2} + \varepsilon + \sqrt{r^2 - (y_2^0)^2})}{\sqrt{r^2 - (y_2^0)^2}}}{2\sqrt{c^2 * (\sqrt{r^2 - (y_1^0)^2} + \varepsilon + \sqrt{r^2 - (y_2^0)^2})^2 + (c^2 - 1) * (y_1^0 - y_2^0)^2}} - \frac{y_2^0}{2\sqrt{r^2 - (y_2^0)^2}}, \quad (A.14)$$

By equating Equation (A-13) and (A-14) to zero, we have  $y_1^0 = y_2^0 = 0$ .

Therefore, the maximum x can be calculated as  $Z_{max} = c * (\frac{\varepsilon}{2} + r)$ .