
Supplementary Material 

Abstract 

This document provides some supplementary contents for the paper: A geometry-aware 

attention network for semantic segmentation of MLS point clouds. Section 1 of this 

document presents differences between our proposed method and existing methods. 

Section 2 details the mechanism of our designed GAAM from the feature level. More 

experimental results and analysis can be found in Section 3.     

1 Comparison with existing methods 

We further theoretically compare our proposed point network with other state-of-the-

arts. We start by describing their differences on how to extract the local features from 

point clouds. As a pioneer work, PointNet (Qi et al. 2017a) processes input points 

individually and actually has no local feature extraction. The extended PointNet++ (Qi 

et al. 2017b) extracts local features by grouping local points in a fixed region scale. 

Instead of directly operating on local points, the subsequent graph-based methods such 

as DGCNN (Wang et al. 2019b) conduct local feature extraction of each point by 

attending over its neighbours in a graph-like region. Furthermore, various attention 

strategies, such as the graph attention used in GPM (Wang et al. 2019b), the self-

attention used in PCT (Guo et al. 2021a) and GAPointNet (Chen et al. 2021), are 

applied to highlight different attention weights on the neighbourhood of each point to 

facilitate local feature learning. Encouraged by this, we develop a novel geometry-

aware attention module to conduct the local feature extraction on MLS point clouds. 

Our designed GAAM adopts a multi-heads strategy and refines the self-attention in 

each single-head by constructing a local weighted graph for each input point and 

combining a reliable neighbouring embedding to efficiently capture local 

discriminative features of point cloud. It is worth noting that in the normal local graph 

constructed by DGCNN and GAPointNet, the contribution coefficient of neighbours to 

the central point is equal to 1, which may introduce irrelevant information when 

conducting the edge convolution. While in our local weighted graphs, the geometric 



similarity between the central point and its neighbours is significantly exploited to 

assign a proper contribution coefficient to each edge of the central point. The 

contribution coefficient is quantitively calculated by using a Gaussian kernel function 

with the spatial distance as reference. In addition, instead of utilizing the normal cross 

entropy loss in most existing methods during network training, we introduce an 

adaptive loss to handle class imbalance problem in MLS point clouds by dynamically 

adjusting the training weight of different categories according to their sample 

proportions in the training dataset.  

2 The mechanism of geometry-aware attention module (GAAM) 

To intuitively illustrate the mechanism of our designed GAAM in the feature space, 

we visualize and analyse the output feature maps of an input point set (4096×3) in three 

stacked GAAMs and MLP layers respectively. As shown in Figure 1, the learned 

features of each point marked in the red rectangle can be denoted by a feature vector 

(1×64) with 64 coloured squares and progressively abstracted into more significant 

features by three stacked encoding layers. Specifically, with the increase of feature 

encoding times, the point features learned by the simple MLP layer are suffered from 

serious feature loss and poor feature representation. Especially in the feature map 

generated by MLP3, most of input points with the values of feature channels tending to 

be zero fail to be encoded to obtain significant features. Comparatively speaking, as 

shown in the feature map generated by GAAM3, the learned point features are more 

informative and distinguishable. It demonstrates that the GAAM integrated by 

proposed GAANet can refine the vague feature maps by offsetting significant 

information loss and capturing more abstracted semantic features of point clouds. 



 

Figure 1. The visualization of the learned point features in different MLP layers and 

GAAMs. For better visualization, we only keep the part of top left corner of the whole 

output feature map (4096×64) as 16×16 image.  

3 More experimental results and analysis 

3.1 Loss function analysis  

To validate the effectiveness of the loss function, we compare the proposed GAANet 

with four loss functions on the Oakland 3-D dataset and all experimental settings were 

consistent. The tested loss functions include cross entropy loss (Lce), weighted cross 

entropy loss (Lwce), focal loss (Lfl) and the proposed adaptive loss (La-ce), respectively. 

Table 1 shows the quantitative comparison of the proposed method with different 

loss functions. In Table 1, compared with the other three classical loss functions, the 

GAANet with our proposed La-ce performs significantly better than the second place by 

2.63% in mIoU, especially for some minority classes such as the pole, vegetation and 

wire. Obviously, the GAANet with Lce gives the same training weight to different kind 

of point samples, which easily leads to local optimization on some majority classes and 

the reduction of overall performance. Although the GAANet with Lfl obtains almost the 



same score of OA as the GAANet with our La-ce, it is hard to find the suitable balance 

coefficient through experiments to achieve best overall performance.  

Additionally, we also added the proposed La-ce into other tested methods to verify 

its generalization ability. As shown in Table 2, all of the reference methods achieve 

substantial improvement in mIoU, which further proves the effectiveness of our 

proposed adaptive loss function.   

Table 1. Comparison of the proposed method with different loss functions (%). 

Methods OA  mIoU Facade Ground Pole Vegetation Wire 

GAANet with Lce 96.04 88.02 98.16 99.60 86.08 90.47 65.81 

GAANet with Lwce 96.93 91.01 99.15 99.69 92.45 92.48 71.31 

GAANet with Lfl 97.89 92.57 94.23 99.77 88.57 95.31 84.99 

GAANet with La-ce (Ours) 98.69 95.20 99.37 99.75 90.93 96.95 86.47 

 

Table 2. Comparison of the proposed adaptive loss function used in different methods (%). 

Methods mIoU Improvement 

PointNet (Vanilla) 30.00 1.56 

PointNet ++ (SSG) 47.33 18.30 

DGCNN  78.34 11.19 

GAPointNet  87.33 4.93 

PointASNL 85.69 2.78 

 

3.1 Computational requirements analysis 

To illustrate the efficiency of the proposed method, we consider the computational 

requirements of several classical segmentation methods including PointNet, 

PointNet++, DGCNN, PointASNL and the latest GAPointNet by comparing the 

number of network parameters (Params), the floating point operations (FLOPs) which 

measures the complexity of network, and the inference time (s) of every 4096 points in 

the testing set of the Oakland 3-D dataset. 

As shown in Table 3, although the PointNet has the lowest memory requirements 

with only 1.17M parameters and puts a lowest load on the processor of only 4.42×108 

FLOPs, it yields poorest performance as presented in Section 4.3. By contrast, the 

proposed GAANet consumes modest computational and memory resources but 

achieves best overall performance.  

 



Table 3. Computational resource requirements. 

Methods Params (million) FLOPs (108) Inference time (ms) 

PointNet (Vanilla) 1.17 4.42 5.95 

PointNet++ (SSG)                                                 

PointNet++ (MSG) 

1.47 

1.66 

33.70 

59.27 

8.35 

13.66 

DGCNN 1.84 6.79 19.4 

GAPointNet 2.30 9.67 33.9 

PointASNL 2.24 47.78 58.0 

GAANet (Ours) 1.90 7.39 31.6 

 

3.2 Hyper-parameters analysis 

To further investigate the impact of hyper-parameters set in our proposed method, the 

supplemental experiments are conducted with different hyper-parameter settings on the 

proposed network.  

The experiments are first performed on the Oakland 3-D dataset with different 

numbers of nearest neighbours k in the local weighted graph and multi-heads n in each 

designed GAAM. Limited by the GPU memory, the possible k and n are not completely 

investigated. Table 4 shows the quantitative evaluation of the segmentation results. We 

can observer that the score of overall accuracy (OA) and mean IoU (mIoU) shows an 

increasing trend at first and then decreases with the increase of k and n. The proposed 

method obtains the highest score of 95.20 on mIoU and 98.69% on OA, respectively, 

when k is set to 20 and n is set to 4. 

We note that a small number of neighbours (k of 10) and multi-heads (n of 2) are 

likely to make the network suffer the insufficient neighbouring feature embedding and 

poor feature learning, and excessive k or n values will likewise lead to a decrease in the 

performance due to the introduction of redundant point features and trap of local 

optimization during network training. Therefore, an appropriate setting of k and n has 

positive influence on the performance of the network. 

Table 4. Effectiveness of different numbers of nearest neighbours and heads. 

Neighbours Heads mIoU (%) OA (%) 

k = 10 n = 2 82.06 94.51 

k = 10 n = 4 89.40 96.63 

k = 10 n = 8 86.64 95.56 

k = 20 n = 2 83.88 95.30 

k = 20 n = 4 95.20 98.69 



k = 20 n = 8 86.45 94.95 

k = 40 n = 2 84.60 95.75 

k = 40 n = 4 83.37 93.68 

In addition, the experiments on the Toronto-3D dataset are then conducted with 

different balance coefficients 𝛾 of [0, 1, 2, 3, 5] in the proposed adaptive loss function. 

Seen from the Figure 2 (a), with the increase of 𝛾 value, the convergence speed of 

network becomes faster and the loss value reaches a lower level as the minority classes 

are assigned with the higher training weight. In Figure 2 (b), we can observe that the 

proposed GAANet achieves a relative lower score of 63.44% on mIoU as 𝛾 is set to 0, 

and the overall score presents a general trend of increasing at first and then decreases 

as the value of 𝛾 increases. Note that our GAANet obtains highest score of 65.09% on 

mIoU as 𝛾 is set to a modest value of 2 and the lowest score as 𝛾 is set to a higher 

value of 5, which means excessive higher or lower value of 𝛾 will be not conducive to 

balance the sample training of all classes and easily causes performance degradation. 

Just as illustrated in Figure 3, our GAANet shows a great diminishment on the 

performance of road and fence category when 𝛾 is set to a higher value of 5. By 

contrast, it shows a considerable performance on both the road and fence category when 

𝛾 is set to 2.  

 

Figure 2. Performance of adaptive loss function with different balance coefficients. (a) 

The loss value curve on the training set; (b) The mIoU score curve on the testing set.  



 

Figure 3. The performance of the representative majority and minority class. (a) The 

IoU score curve of road (majority class) on the test samples; (b) The IoU score curve 

of fence (minority class) on the testing samples.   


