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Abstract

In this paper we show how a Pearl Bayes network of inference can be used

with a GIS in order to combine information from different sources of data for the

purpose of classification. Data may include satellite images, topographic maps,

geological maps etc, each one with its own resolution and accuracy. We show how

this uncertainty in the input data is incorporated in the network and develop also a

method to construct the conditional probability matrices used by the network. We

demonstrate our approach within the framework of the problem of assessing the

risk of desertification of some burned forests in the Mediterranean region.

1 Introduction

In Geographic Information Systems most of the time the data represented by the various layers

are of diverse origins with varied degrees of accuracy. These data usually have to be combined

for the inference of some conclusions expressed in the form of labellings. The straightforward

combination of information coming from the various layers often used for convenience (e.g. see

Grunblattet al. 1992, Chuvieco and Congalton 1989, Saderet al. 1995), not only fails to take

into consideration the reliability of each source of information, it also ignores the fact that the

rules of combining the information themselves may be unreliable. Thus, inspite of the uncertain



rules and the uncertain data, the output of such a GIS is a hard labeling with no indication given

as to how reliable this classification is.

This is because most GIS perform reasoning with simplistic inference mechanisms in the form

of IF-THEN rules. In rule-based reasoning, one has to know for certain that an assertion is true

or false in order to draw a conclusion. Although the truth of certain premises may be suggestive

of the truth of a conclusion, it may not imply it conclusively. It is evident that performing

inference in any real world domain always requires some simplifications to be made. It is

necessary therefore to bear in mind that conclusions drawn even from absolutely correct data

may not always be correct.

In this paper we present a Pearl Bayes network for probabilistic reasoning with a GIS for the

purpose of assessing the risk of desertification after a forest fire. The reason we chose this

particular type of network, is because it allows the modelling of both types of uncertainty in

the reasoning process, namely the uncertainty in the reasoning rules (modelled with the help

of the conditional probability matrices involved in the network) and the uncertainty in the data

(modelled by the probability with which a certain input parameter belongs to a certain class).

A Bayesian network (Pearl 1988, Pearl 1986, Pearl 1993, Charniak 1991, Henrion 1989, Gold-

manet al. 1993) is a powerful tool which can be used for the fusion of information coming from

disparate sources with varying degrees of reliability. In these networks each node represents a

variable the label of which is either given or has to be assessed and the relationships between

the nodes are expressed in terms of conditional probabilities. Each variable can be labelled with

a label from a corresponding finite set with a certain degree of confidence. The input data may

concern any of the nodes and once they are fed into the right node, a mechanism is provided for

the propagation of their information to all other nodes of the system.

So far Bayesian networks have been very widely applied in medical systems to perform medical

diagnosis (Olesenet al. 1993, Hamiltonet al. 1994). Medicine is one area where categorical

decisions are not sufficient but instead one has to reason under various sources of uncertainty.

Other applications involve forecasting (Abramson 1994, Guet al. 1994), computer vision



(Gong and Buxton 1993) etc. Bayesian networks are particularly applicable to cause-effect

problems i.e. problems that can easily be represented by cause-effect relationships between the

variables of interest, as is the case in most medical problems and in the particular application

presented in this paper. Their ability to perform bidirectional reasoning has also made them

useful for troubleshooting system failures, including software and hardware problems as well

as mechanical failures of cars and jet engines (Heckermanet al. 1995). The use of Bayesian

networks in Geography, however, has been very limited with a few notable exceptions (e.g.

Ducksbury 1993, Hass 1991).

In section 2 we shall present a brief literature survey of the various methods that have been used

so far for reasoning with a geographic information. In section 3 we shall present a very brief

overview of Bayesian networks so that we can establish our terminology. In section 4 we shall

present the particular problem we have to solve with the help of which we shall exemplify the

various aspects of using a Bayesian network with a GIS. We shall also describe the Bayesian

network constructed for solving this problem. In section 5 we shall discuss how to model the

uncertainty in the data assuming a certain type of error in the corresponding measurements

and how to incorporate the uncertainty of the data into the network. In section 6 we shall

discuss ways of deriving the conditional probability matrices needed by the Bayesian network.

In section 7 we present some results of applying the theory developed in the previous sections

to a set of real data concerning an area of study in Greece for which the expert’s classification is

available from ground inspection. We also compare our method with the IF-THEN rule based

inference method. We conclude in section 8.

2 Literature Survey

We classify the various methods used for fusion of information to two major categories, namely

distributed versus centralised approaches. In the distributed approaches, the data from each

sensor are processed separately and the outcomes from all the sources are combined. The data

from each sensor are processed anyway whatever approach one uses, but in the case we are

talking about, the data from each source are processed fully so that each pixel acquires a label



from the list of labels to be used in the final classification one tries to achieve. Subsequently,

each source is given a different weight of significance and the results from each separate classi-

fication are combined into a final labeling scheme.

More often is preferred to combine data rather than conclusions drawn from individual sources.

The combined data could be raw (as for example in Benediktson and Swain 1990, Benediktson

et al. 1990,) or partly processed (as for example in Peddle and Franklin 1992, Richardset

al. 1982). Such systems are centralised systems where there is a central inference mechanism

employed to do the classification on the basis of all the data received.

Starting with distributed systems, Solberget al. (1993) used satellite images and GIS ground

cover data for land-use classification. The basic fusion model performed a linear combination of

the probabilities of a pixel belonging to a particular class given the measurements from different

sources of information. This linear function is the result of an assumption that the measurements

from each source are independent.

Masonet al. (1992) developed the MuSIP (MultiSensor Image Processing) system for the

development of data fusion techniques for the exploitation of multisensor and multitemporal

images. The approach used was region based and the fusion of information happened at the

high level of region classification. As the regions of each individual image were assigned labels

from the final list of labels to be used, with varying probabilities, this system is a distributed

system. The system was applied to forestry and one of the objectives was to detect changes

occurring in forests, particularly those concerned with deforestation and afforestation. The

input to the high level data fusion are two PUDs (Picture Understanding Databases) designed

for storing 2D vector information, like regions, lines, points etc. For each region, information is

stored concerning its attributes (e.g. size and shape), its bounding frame and adjacent regions.

The output of the fusion model is another PUD, containing the matching regions and an error

PUD containing regions that could not be matched. The matching of regions was based on a

number of matching tests, namely attribute matching, label, relational and boundary matching.

Each of these tests produced a confidence value supporting a specific region. These values were

then combined using the Dempster-Shafer approach(Shafer 1976).



Some centralised systems that combine data instead of conclusions are reviewed next. Grunblatt

et al. (1992) used a GIS together with simple ecosystem models for desertification assessment

and mapping in Kenya. In this study five desertification indicators were selected for investig-

ation: water erosion, wind erosion, vegetation degradation, range utilisation and human settle-

ment. After deriving the status i.e. state or condition of these indicators by assigning values,

the desertification hazard was calculated as a summation of the various indicator class values.

A forest fire hazard mapping was developed by Chuvieco and Congalton (1989). In this study

digitally processed Thematic Mapper data were integrated with other layers of geographic in-

formation to derive a forest fire hazard map. The variables in this model included the basic

factors that affect forest fires. For the integration of the five layers of information mentioned

above, it was assumed that some of those layers have a higher influence on fire hazard than

others and were ranked accordingly. The approach included several steps; first each data layer

was weighted according to its impact on increasing the fire hazard. Second, each data layer was

then divided into different levels which were assigned coefficients of 0, 1 and 2 based on the

ranking of high, medium and low fire hazard respectively. The final formula index was a linear

combination of the results of the different layers.

Saderet al. (1995) used a GIS rule-based model to identify forest wetlands in Maine. An addit-

ive model was developed for this study. The model consisted of four hierarchical layers: each

layer incorporated the GIS data and was arbitrarily assigned a weight based on its presumed

contribution to identify wetlands. Each pixel was analysed at each layer in the model. The

weights assigned to themes and attributes in the GIS model produced a numerical value that

indicated the potential for a forest wetland to exist at any location. A lower weight was given to

a GIS layer which was thought to be correlated with other variables in the database. As we will

see in the description of our model later on, dependencies and independencies among the vari-

ables are presented in the structure of the Bayesian network and the propagation of information

assures that these dependencies or independencies are not violated.

Binaghi and Rampini (1993) used fuzzy reasoning to combine land-use observables and an-

cillary observables to deduce the best fire risk judgement for each pixel in the studied area.



Land-use observables were classified into five classes of land cover using Landsat Thematic

Mapper image. Ancillary observables included elevation, slope and other factors that affect

forest fires. Linguistic labelslow, medium andhigh were then introduced to describe these

observables and were quantified with standard membership functions. The result was a degree

of membership in thelow, medium andhigh fire risk classes.

Middelkoop and Janssen (1991) developed a method of knowledge-based classification based

on temporal relationships between classes. In this study spectral image information, information

stored in a geographic information system and knowledge about crop rotation by means of state

transition matrices were combined in a Bayesian maximum likelihood classification. The study

involved acquisition of knowledge about the temporal relationships between classes from the

available data and experts and representation of the knowledge.

Frank (1988) combined Landsat Thematic Mapper data with topographic and topoclimatic vari-

ables to map dominant vegetation communities in the Colorado Rocky Mountain Front Range.

The thematic spectral bands were transformed into five band ratios and normalised difference

variables to characterise the spectral patterns of vegetation community cover types. Slope,

elevation, aspect and relief measures were also obtained to examine topographic effects on ve-

getation distributions. A topoclimatic index was created from a Digital Elevation Model to

distinguish between favourable habitats for windblown and snow-covered communities. Slope-

Aspect index was used to characterise prevailing wind effects on soil, moisture and subsequent

vegetation distributions. All these variables obtained were combined linearly to provide a dis-

criminant score for an observation, for each dominant community. Then, using discriminant

scores each observation was assigned to the dominant community using the posterior probab-

ility: the probability that an observation with a discriminant score ofD belonged to dominant

vegetation community groupGwas estimated by the conditional probability and the observation

was assigned to the group which produced the largest conditional probability.

Srinivasan and Richards (1990) classified remotely sensed data into urban, woody vegetation,

grass land and soil. The reasoning was based on IF-THEN rules which fired and gave a classific-

ation of the reason for a cover type (label) into three categories: prima facie reason, supportive



or criterion, each of which indicated a certain strength of the conclusion given the premises.

After all the rules fired, the class labels were given endorsements based on the quantity of reas-

ons for and against a class label. The endorsement was mainly biased by the strong reasons that

confirm or deny a label.

Srinivasan and Richards (1990) also developed another system for land-use classification where

the central inference mechanism used was based on the Dempster-Shafer theory (Shafer 1976).

This evidential system was used to classify the pixels in the image of Sydney Harbor, into

three primary features: water, cultural (man-made) and vegetation. Four Landsat Multispectral

Scanner (MSS) images have been used from the bands 4, 5, 6 and 7. The system incorporated

explicit knowledge in the form of several knowledge bases, each relating to a different source.

These contain facts and rules specific to that source. Based on the data available to the source,

the appropriate rules fired giving rise to the basic probability assignments (degrees of belief

showing to what extend the data support the various class labels) to various nodes in a predefined

hierarchy of possible class labels. The control mechanism forward chains through each rule base

going from data to possible labels. Dempster-Shafer theory is then used to provide a consistent

set of beliefs over all available data sources.

Ducksbury (1993) used a Pearl Bayes network to classify urban regions versus non-urban in

aerial photographs. He did not use multisource data, but rather multiprocessor data. In fact

all his data came from an aerial image which, however, was processed in various ways so that

different measurements concerning the same region were deduced. The different measurements

(statistics) were then assessed and combined using a Pearl Bayes network, into a belief of the

region to be urban.

3 Bayesian Networks

Belief or Bayesian networks are directed acyclic graphs in which the nodes represent multi-

valued variables, comprising a collection of mutually exclusive and exhaustive hypotheses. The

arcs signify direct dependencies between the linked variables and the strength of these depend-



encies are quantified by conditional probabilities.

Consider a typical nodeX having m childrenY1; Y2; :::; Ym and n parentsU1; U2; :::; Un as

shown in figure 1 (The node variables will be denoted by capital letters and the parent and

children will also have a subscript to distinguish among them). What follows is a description of

the propagation algorithm developed by Pearl (Pearl 1988, Pearl 1986).

U 1 U U2 n

X

1 2Y Y Y m

Figure 1: The parents and children of a typical nodeX in a polytree

The purpose of the Bayesian network is to give a belief in each possible labeling for each node

after some evidence arrives. That is, it gives the conditional probability of a node being in each

of its states given the evidence observed. In order to estimate the belief of a node we need the

information sent by the parents (causal), the information sent by the children (diagnostic) and

the conditional probability matrices. The messages that communicate this information obtained

by the parents are denoted by� and the messages that carry information from the children are

denoted by�. We denote the belief in each nodeX by BEL(X) which is a vector with elements

BEL(xi) where the small letter indicates a particular value of a statei indicated by the subscript.

Before any propagation commences we initialise the network. Every node is assigned a vector

�, a vector� and a vectorBEL. These vectors have as many elements as there are possible

states for this node. To initialise the network, we set all elements of all� vectors to 1. We also

set all elements of the� vectors of the root nodes equal to the prior probabilities for the corres-

ponding states. All the values of the remaining variables of the network can be computed now



form the above initialised quantities, and the elements of the conditional probability matrices.

An element of the conditional probability matrix looks likeP (xiju1j1; :::; unjn) and gives the

probability of statei for nodex conditioned on the states of its parent nodes. In addition to the

above, each node, except the leaf nodes has a�(send) vector that can be communicated to its

children. This�(send) vector carries as a subscript the name of the child it goes to. For example

�X(uij) indicates thejth element of the� vector of theUi parent sent to its childX. Also, each

node except the root nodes carries a�(send) vector which can be communicated to its parents.

This �(send) vector carries as a subscript the name of the child it comes from. It has as many

elements as the states of the parent node it goes to. For example�Yj(xi) means the contribution

of theYjth child to theith state of parentX.

Having established our terminology, we can now summarize below the steps of the algorithm:

� Step 1: Belief updating

When nodeX is activated it inspects both the�X(uij) messages communicated by its

parents and the�Yj(x), j = 1; :::; m messages communicated by each of its children (In

case of two subscripts, the first indicates which variable’s value and the second indicates

the corresponding state i.e.�X(uij) indicates the� value of thejth state of theUith

parent).

By using these it updates its belief to

BEL(xi) = ��(xi)�(xi) (1)

where

�(xi) =
X
j1

� � �X
jn

[P (xiju1j1; :::; unjn)
Y
m

�X(umjm)] (2)

where each summation ranges over all possible values of each parent,

�(xi) =
Y
j

�Yj(xi) (3)



and� is a normalising constant rendering
P

xBEL(x) = 1

� Step 2: Bottom-up propagation

Using these messages,X computes a new� message to be sent to its parentsUi:

�X(uij) = �
X
m2

4�(xm)X
j1

� � �X
ji�1

X
ji+1

� � �X
jn

[P (xmju1j1; :::; u(i�1)ji�1 ; uij; u(i+1)ji+1
; :::; unjn)

Y
k 6=i

�X(ukjk)]

3
5

(4)

where�(xm) is given by 3 and the summation is over all possible values of all parents

except parentUi, for which we compute the� message for itsuij value.

� Step 3: Top-down propagation

Each node computes the new� messages to be sent to each of its children. The message

thatX sends to itsjth childYj is given by:

�Yj (xi) = �
Y
k 6=j

�Yk(xi)
X
j1

� � �X
jn

[P (xiju1j1; :::; unjn)
Y
i

�X(uiji)] (5)

or equivalently

�Yj (xi) = �BEL(xi)=�Yj(xi)

However, in order to apply the formulae and propagation algorithm above the network has to

be singly connected i.e. only one path should exist between any two nodes. Otherwise the

network is considered to have loops and various methods exist in the literature for handling

them (Suermondt and Cooper 1991, Pearl 1988).



4 Problem Formulation

The purpose of this work was to assess the risk of desertification of certain burned forest areas

in Greece, by combining data from various sources together with expert knowledge about the

desertification processes.

Desertification is land degradation in arid, semi-arid and dry sub-humid areas resulting from

various factors, including climatic variations and human activities. The Mediterranean region

is characterised by extensive aridity, forest fires, overgrazing and improper land use. This,

combined with irregular but intensive precipitation can lead to land degradation.

Two major factors that directly influence the degree of risk of desertification of a burned forest

are its regeneration potential and the danger of soil erosion. Attica is an area of arid and semi-

arid climate that suffers from repeated forest fires. The dominant forest species is Aleppo pine

and a number of bushy species. Aleppo pine regenerates naturally after a forest fire due to the

presence of mineral elements in the ash and the lack of competition for nutrients and water

from other plant species, provided that the pine trees that were burned had left on the ground

enough seeds of good quality. Maquis-type plants regenerate naturally after a forest fire by

re-sprouting. The extent and rate of natural regeneration of a burned forest area, under Medi-

terranean conditions, depend on precipitation, surface geology, surface structure etc. This area

of study in Greece is not thought of containing microclimates in it. We are actually interested

in the relative ranking of burned forests within the same relatively small area of study, for the

purpose of prioritising the reforestation resources of the country. Thus, over the whole area one

can easily assume constant climatic conditions. Therefore, from all the factors that are known

to influence the forest regeneration and soil erosion only those which are expected to vary from

one site to the other are considered, namely soil depth, ground slope, rock permeability, aspect

and animal grazing.

What follows is a description of the network constructed to tackle this problem.

The constructed network is shown in figure 2 alongside the labels (states) each node can take.

Due to the nature of the problem we have designed the network so that the variables are discrete.



The main reason for this is that some of the variables in the network cannot be represented by

real values (i.e. rock type) and due to the restrictions involved in having a network with both

discrete and continuous variables, we have decided to have only discrete valued nodes. The

number of possible classes of each variable is also shown in figure 2.

The arcs between the nodes show causal dependencies and are quantified by conditional prob-

ability matrices which reflect the rules the experts use when making similar decisions. The

exact values of their elements are chosen using training data. In order to specify a Bayesian

network we need to assign prior probabilities to all root nodes and conditional probabilities for

all labels of all non-root nodes given all possible combinations of labels of their parents i.e.

direct predecessors. When no prior knowledge is available, equal probabilities are assigned to

all possible states of the root nodes.

 D

 A

RP E

SD

SD :  Soil Depth (bare, shallow, deep)
A   :  Aspect     (south, west/east, north)

E   :  Erosion    (low, medium, high)
RP:  Regeneration Potential (low, medium, high)

R S

S   :  Slope      (gentle,  middle, steep)
R   :  Rock Type  (permeable, semi-permeable, impermeable)

D   :  Desertification (no/slight, low, medium, high,very high)

AG

AG :  Animal Grazing (slightly, moderately, heavily grazed)

Figure 2: The Bayesian network constructed

The network we have is not singly connected, because there exists more than one path between

two nodes (SD andD). Before we discuss how we deal with this connectivity, we shall give the

basic steps by which the beliefs for each of nodesE, RP andD are updated, ignoring the fact

thatSD influences bothE andRP directly. In particular we may for the moment split node



SD into two, each part influencing one only child node as shown in figure 3.

We now demonstrate the propagation equations of the previous section with an example input

to the network of figure 3:

At the initial state, before observing any evidence, all�’s are unit vectors since no variable has

any observed descendant and therefore no evidence exists to favour any particular state. The

root nodes have a� equal to their prior probability i.e.(1=3; 1=3; 1=3) exceptaspect which has

a prior probability(1=4; 1=2; 1=4) since the second state covers two possible classes (west and

east) and therefore does not have equal prior probabilities.

Suppose thatR receives evidence indicatingpermeable rocks. The actual evidence thatR

receives is represented by a dummy child sending a� message which is of the form(1; 0; 0)

with 1 at the corresponding position indicated by the evidence. This� message is multiplied

element by element with the� message received from the genuine child nodeE, which is

(1,1,1,). NodeR will therefore update its belief using the equation:

BEL(Rperm) = ��(Rperm)�(Rperm) = �� 1� 1=3 =
�

3

BEL(Rsemi) = ��(Rsemi)�(Rsemi) = �� 0� 1=3 = 0

BEL(Rimperm) = ��(Rimperm)�(Rimperm) = �� 0� 1=3 = 0 (6)

Obviously� must be 3.

 D

 A

RP E

SD1 SD2R S AG

Figure 3: Bayesian network without loop



After updating its belief,R sends a� message to its childE which in this case is equal to its

belief i.e. (1,0,0).

Upon receiving this� message,E will update its belief using:

BEL(Ei) = ��(Ei)�(Ei) = ��(Ei)

= ��(Ei) (7)

since�(Ei)= �D(Ei) = 1, for all i, i.e the� message thatD sends toE is a unit vector sinceD

was not instantiated and the�(Ei) is given by:

�(Ei) =
X
k;l;m

[P (EijRk; Sl; SD1m)�E(Rk)�E(Sl)�E(SD1m)]

(8)

where the summation ranges over all possible values of each parentR, S andSD1. Since we

have not yet quantified the matrixP (EijRk; Sl; SD1m), for all i; k; l;m, we will omit writing

down equation (8) explicitly. However, the vectors�E(R), �E(S) and�E(SD1) are equal

to (1; 0; 0), (1=3; 1=3; 1=3) and (1=3; 1=3; 1=3) respectively (R sends its current belief toE

whereasS andSD1 send as� their prior probability). The components of these three vectors

are the ones, whose possible product combinations will be used in equation (8). However, the

final sum will only include all the product combinationsgiven the permeablestate of rocks,

since this is the only non-zero element in the vector�E(R).

SinceS andSD1 represent data nodes and are therefore clamped, their beliefs are not updated

and thereforeE does not send any�message to these parents. However, it will send a� message

to its childD given by:

�D(Ei) = �BEL(Ei)=�D(Ei) = �BEL(Ei) (9)

i.e. the� message thatE will send toD will be its belief.

Upon receiving this informationD will update its belief using:

BEL(Di) = ��(Di)�(Di) = ��(Di) (10)



sinceD did not receive diagnostic information (i.e.�), the�(Di)= 1, and�(Di) is given by:

�(Di) =
X
k;m

[P (DijEk; RPm)�D(Ek)�D(RPm)] (11)

where the summation ranges over all possible values of each parentE andRP . Equation (11)

is identical to equation (8) where again we omit the calculation due to the yet undefined matrix

involved.

NodeD will then send a� to all its parents except the one it received the message from i.e.E.

So the message that it will send toRP is given by:

�D(RPi) = �
X
m

[�(Dm)
X
k

[P (DmjEk; RPi)�D(Ek)]

= �
X
m

[
X
k

[P (DmjEk; RPi)�D(Ek)]

= 1 (12)

�(Dm) is 1, for allm and the summation is over all possible values of all parents except parent

RP , for which we compute the� message for itsith value. SinceD did not receive any dia-

gnostic message and was triggered by a� message, the� vector send byD to RP is a vector

with all its elements 1. ThereforeRP will receive a vector which will not alter its belief. This is

based on the fact that evidence gathered at a particular node (E in our case) does not influence

any of its spouses (RP ) until their common child (i.e. nodeD) gathers diagnostic support. This

is sensible since evidence on rock type should not alter our belief in regeneration potential.

In our network there are two paths betweenSD andD and in order to handle the loop we used

the method of conditioning(reasoning by assumptions) which is based on the ability to change

the connectivity of a network and render it singly connected by instantiating a selected group of

variables (Suermondt and Cooper 1991, Pearl 1988).

5 Coping with Uncertain Data

If there was no uncertainty in the data, the input data concerning a node should be in the form of

hard labeling (Pearl 1988, Olesen at al. 1989). For example the input to a nodeS of our example

network could be of the form (1,0,0) implying thatS is labelledgentle with probability 1 and



both other labels are rejected (they have probability zero). In practice, however, data are never

certain, even when they are given to us as hard classifications. We shall examine below the

various forms of input data and how uncertainty in them can be handled. Then we shall discuss

how the parameters of such process may be assessed in a GIS.

5.1 Data expressed as a continuous-valued variable

Quite often a variable in a problem is a real valued function that can be measured directly.

This is the case for example of soil depth or aspect. Such data are stored in raster form in the

corresponding GIS layer. In the case of continuous variables the way to incorporate uncertainty

is relatively straight forward. In this section, we shall show how, if we have a model of the

error distribution in the measuring process, this error can be taken into consideration when we

define the uncertainty in the data. For simplicity we shall demonstrate our approach assuming

Gaussian error distribution.

Assume that we are given a measurement for one of the input nodes of the network of figure

2. If we assume that the input measurement,�, has an error which is normally distributed with

mean,�, and variance�2, then the probability of the input variable belonging to classi i.e. Ci,

given the measurement� is given by:

P(Cij�) =
Ki

K
(13)

where

Ki =
1p
2��

Z ui

li

e�
(x��)2

2�2 dx (14)

and

K =
1p
2��

Z max

min
e�

(x��)2

2�2 dx (15)

The li andui denote the lower and upper limit of classi respectively andmin andmax denote

the minimum and maximum values that the measured variable can take.

After some manipulation we get:

Ki =
1

2

(
erf

 
ui � �p

2�

!
� erf

 
li � �p

2�

!)
(16)



and

K =
1

2

(
erf

 
max� �p

2�

!
� erf

 
min� �p

2�

!)
(17)

whereerf(x) is the error function defined by:

erf(x) � 2p
�

Z x

0
e�t

2

dt (18)

5.2 Data expressed as class labels

The formula derived above is appropriate if we are given the value of the measured variable

directly. This, however is not usually the case. Quite often the measured variables are quantised

grossly and all we are given is a class label of the object stored in vector or raster format.

Even when the input data are of discrete nature, there is always some uncertainty associated

with them because often this discretization is achieved by measuring a variable that can take

continuous values and grossly discretizing it into a few ranges that define the corresponding

classes, without taking into consideration the error of the measurement.

In the absence of any information, all we can assume is that the measured variable could equally

likely have been any of the values in the range of values that characterise the particular class.

In other words, in terms of the notation introduced above, all we can say is that� has a uniform

probability density function in the range(li; ui). Then we can calculate the probability of the

object to belong to any classCj as follows:

P (Cjjli < � < ui) =
Z ui

li

P (Cjj�)P (�)d� (19)

The above formula can be easily derived as follows:

P (Cjjli < � < ui) =
P (li < � < uijCj)P (Cj)

P (li < � < ui)



=
P (Cj)

R ui
li
P (�jCj)d�R ui

li
P (�)d�

Assuming that� is uniformly distributed over the range[li; ui], the integral in the denominator

is equal to 1 and the equation becomes:

P (Cjjli < � < ui) = P (Cj)
Z ui

li

P (Cjj�)P (�)=P (Cj)d�

=
Z ui

li

P (Cjj�)P (�)d�

which gives equation 19. Now substituting equation 13 into this equation and assuming a uni-

formly distributed� as before we can obtain the probability of the variable to be in classj, i.e.

Cj, given that the measuring process indicated classi, i.e.C 0
i, by:

P (CjjC 0
i) =

1

ui � li

Z ui

li

Kj

K
d� (20)

Thus, the probability of a variable to belong to classi instead of being taken as equal to 1 (after

the evidence), is set to:

P (CijC 0
i) =

1

ui � li

Z ui

li

Ki

K
d� (21)

An exact solution to the above integral is difficult to be obtained. Therefore, standard numer-

ical integration techniques have been employed in order to obtain a satisfactory approximate

solution.

5.3 Data not obviously related to a continuous-valued variable

Some of the data pertaining to a problem may not be easily associated with a measurable con-

tinuous variable. Such data are for example, rock type and human influence and they are stored

in vector format. Although not obvious, both these data, in spite of the fact that they are ex-

pressed by linguistic descriptors, they can still be quantified. For example, there are models

now being developed that attempt to quantify human influence by the number of cattle heads in



the region, or by the distance from the nearest road or town, the population density, etc. If such

a model is available, the uncertainty in this variable can be expressed by one of the methods

described in section 5.1 and 5.2.

Rock type on the other hand cannot really be mapped on the real axis. However, theproperty

of rock type that is relevant to a particular problem may be. For example, if what enters into

the reasoning process is not directly the rock type, but the property of rocks in terms of their

water permeability, then this is a measurable quantity that can be mapped on the real axis. Rock

permeability ranges from10�1 m/sec for pebble beds down to10�12 m/sec for granites. The

three classes of permeability are roughly characterised by the following ranges of this value:

� impermeable:10�12m/s-10�8m/s

� semi-permeable:10�8m/s-10�5m/s

� permeable:10�5m/s-10�2m/s

One can envisage that now we have mapped this property of the rocks on the real axis, we can

apply the method of section 5.1 to define the uncertainty associated with it. In this particular

case however, the range of values is so large that uncertainty in the measurement is probably

of secondary relevance. The most significant uncertainty probably stems from the intrinsic

variability of the properties of the particular rocks, rather than the measuring process. For

example, hard limestones could be characterised by permeabilities anywhere between10�4 and

10�10 depending on the amount of solution features they contain. This uncertainty should be

the one we model in this case rather than the uncertainty in the measuring process.

5.4 Application to the constructed network

Most of the networks considered deal with either continuous or discrete variables. This is

because of the restriction that continuous parents must have continuous children. In the case of

our network, we would like to have as continuous variables only the input (data) nodes but not

the intermediary ones, since some of these variables cannot take continuous values. Therefore,



we formed a network with only discrete variables. To accommodate for input variables of

continuous nature, we can imagine that our network has an extra layer of input nodes each

linked to one of the existing root nodes. These new parent nodes will now form the new set

of roots in the modified Bayesian network. These parents will represent the input as obtained

using the GIS input data with a possible error. So the new set of root variables will consist of

nodesR0, S 0, SD0, A0 andAG0 were the(0) represents thegiveninput.

R S A

ASDSR

RPE

D

SD AG

AG

Figure 4: Bayesian network constructed

Each one of these roots will be linked with the corresponding variable which will represent the

actualvariable i.e. the variable after the incorporation of uncertainty or error in the measuring

process. These variables consist of the nodesR, S, SD, A andAG. As it can be seen from

figure 4 we added 5 extra nodes and 5 more arcs. We therefore need to construct 5 more

conditional probability matrices, one for each arc. Each of these matrices will be of dimension

3� 3. An example of an entry in the second matrix, which relates the ideal slope with the one

given, would be:P (S = steepjS 0 = steep) which is the probability of slope beingsteep given

that the measuring process indicatedsteep.

Assume for example, that we are given by the source that slope issteep. We then input at

nodeS 0 a vector(0; 0; 1) with 1 at the position indicated by the data. The belief that slope is

indeedsteep, i.e. BEL(S = steep), will be the probability of slope beingsteep, given that

the measuring process indicated steep i.e.P (S = steepjS 0 = steep), i.e. the corresponding

entry of the conditional probability matrix relatingS to S 0. This is the actual value that will get

propagated downwards. This value is given by equation 21.



This trick is needed because in a classical Bayesian network with hard classification input,

confidence in the input data can be altered by the evidence propagation procedure. In our case

we want to avoid that. As long as we realize it, we can input our data directly to the unprimed

parent nodes in the form of soft classification which is not to be altered during the reasoning

process. So figure 4 is only a conceptual structure, and in practice instead of changing the

network structure, we modify the beliefs of the input nodes of the original network, so that the

belief will be set according to the error estimation.

Another general issue is the way we choose the uncertainty level. For the case of continuous

valued variables we tried to refer everything to one number. For example, we choose the� of

the variable coming from the most reliable source in such a way that the confidences in each

class were almost hard. Then we chose the standard deviations of the error of the less reliable

variables to be multiples of the previous value appropriately scaled to take into account the

fact that the variables are measured by different units in different scales. These multiplication

factors were chosen according to linguistic expressions of opinion by experts, in the form “I say

that soil depth is twice as unreliable as aspect” and also by tuning the network to agree with the

experts’ opinion in the assessment of some training sites.

For each region we have the DEM data with 20m� 20m resolution. From these we calculate

the aspect and slope. Aspect is expressed as the angle between the normal to the ridge and the

north direction. This is expressed in positive degrees form 0 to 360 measured clockwise from

the north. Aspect is therefore represented by a circle starting clockwise from the north and

completing 360 degrees, as:

� North: 0�-45�

� West:45�-135�

� South:135�-225�

� East:225�-315�

� North: 315�-360�



Due to the nature of these boundaries (non continuous), we created for our network, the follow-

ing classes together with the limits which apply only to half the circle as follows:

� South:180�-225�

� West/East:225�-315�

� North: 315�-360�

Any measurements,�, that fall below 180 degrees, are taken as 360-�.

Slope is calculated by the tangent of the given slope angle times 100 i.e.tan�� 100 where� is

the slope angle calculated from the DEM data. The three classes of slope are:

� Gentle: 0%-20%

� Middle: 20%-40%

� Steep: 40%-1

The GIS data regarding both variables are available in the form of measurements. For each

measurement,�, of each of the variables we have associated with it a standard deviation�.

Since the two variables (namelyslopeandaspect) were obtained from the most accurate source,

we assign a� which will indicate high confidence in the data. Therefore we set�=2 for slope

and set a� for aspect which is equivalent to that of slope, appropriately scaled to correspond to

the range of values of aspect. Therefore� of aspect is estimated to be 9. Since the measurement

is given, we apply equation 13. This will give the probability of each class of each variable

given the measurement, i.e.P (Cij�) which is effectively the belief in that class, i.e.BEL(Ci).

This is shown diagrammatically by figures 5a to 5c.

Figure 5a represents the belief in the variable,slopesay, before the uncertainty i.e.BEL(S 0).

It is represented by the belief vector(0; 1; 0) with 1 at the position being indicated by the

measurement. The�1 and�2 are the bounds of the class indicated. Now, we assume that this

input measurement has an error which is normally distributed with mean�=measurement and



variance�2 as shown in figure 5b. This is the Gaussian which we integrate in equations 14 and

15 to obtain equation 13. Equation 13 will give the belief in each class of theactualvariable,

i.e.BEL(S), which is shown diagrammatically by figure 5c.
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Figure 5: Belief distribution of slope assuming (a) no uncertainty and (c) uncer-
tainty according to the probability density function (b)

For the other two variables soil depth(SD) and rock type(R), the GIS data indicated the

particular class to which each variable belonged.

Soil depth, measured in centimeters (cm), is divided into the following three classes according

to experts:

� Bare: 0cm-5cm



� Shallow: 5cm-30cm

� Deep: 30cm-1

The GIS data indicate the class that each pixel belongs to and therefore we apply equation 20 to

calculate the belief inSD after the incorporation of uncertainty. We choose a� = 2:5 for this

variable which is twice the sigma taken for slope and aspect, scaled accordingly. This is due to

the fact that soil depth is less accurate than the slope and aspect which are obtained from DEM

data. The fact that we set a sigma twice as that of slope and aspect is justified a posteriori by

the training data (i.e. the sites whose desertification risk is known) which are used to tune the

parameters of the network.

The possible rock types for our problem were:

� Hard Limestones

� Mica Schists

� Metamorphic

� Calcareous tertiary deposits

� Siliceous tertiary deposits

� Colluvium

Out of these types, mica schists and metamorphic rocks, are definitely considered as imper-

meable, whereas hard limestones, colluvium and tertiary deposits are on the boarder between

permeable and semi-permeable. In the first case we set the belief of rock permeability to (0,0,1)

with 1 at theimpermeable state and in the second case we set the belief of rock permeability

to (0:50; 0:50; 0) with equal probability in the given rock being permeable and semi-permeable.



6 Coping with Uncertainty in the Rules

The propagation of information in the network relies on the conditional probabilities con-

cerning the nodes that are related to each other by explicit causal relations. In this paper we

also present a novel methodology for constructing the conditional probability matrices for use

by the Bayesian network to perform the inference. A conditional probability matrix such as

P (AjB;C) can be represented by a table with one entry for each possible combination of the

states of the variablesA, B andC. However, when the number of parents is large or/and when

the number of possible states of the participating variables is large, then direct elicitation of

such a table is difficult because the required data grows exponentially with the number of vari-

ables involved. There have been nevertheless proposed some approximation techniques of this

conditional probabilityP (AjB;C) from pairwise relations such asP (AjB) andP (AjC) (Kim

and Pearl 1987, Kim and Pearl 1983). The most common model of this type is disjunctive in-

teraction (the “noisy OR-gate”) (Pearl 1988). The basic theory behind this is that any member

of a set of conditions is likely to cause a certain event and this likelihood does not diminish

when several of these conditions exist simultaneously. However disjunctive interaction is based

on some assumptions which are only true in some cases. Other methods of estimating the

conditional probability matrices are ad hoc based on expert rules (Henrion 1989, Haas 1991).

For the network of the size presented here these conditional probabilities are expressed by a

3�3�3�3 matrix, the elements of which have to be specified. For example, one element of the

conditional probability matrix relatingerosion to its parent variables i.e.rock permeability,

slope andsoil depth would give the conditional probability of erosion to be in a particular state

given the states of each of the three influencing variables. There is no mention in the literature

how the elements of this matrix can be specified in practice.

There are some geophysical phenomena, however, for which either an analytic model exists

in the form of an equation that has been deduced from careful consideration of the underlying

physical processes, or an equation has been defined in an empirical way to express quantitatively

observations and expertise built up over the years. We shall demonstrate here how the elements



of the conditional probability matrix can be defined when such an equation is available. We

shall also discuss what can be done when no such equation is available.

6.1 When an analytic equation relating causes to effects is available

We will demonstrate here a way to specify the independent elements of the conditional probab-

ility matrix of erosion which will take into account not only the relationship between a child

node and its parents but also the importance that each of the parent variables bares on the child.

This is possible because an analytic formula exists that expresses quantitatively the relationship

between erosion and the factors that affect it. The formula used here is the one proposed by

Stehlik (Morgan 1986) and is very similar to the Universal Soil Loss Equation (USLE) and is

as follows:

mean annual soil loss= D �R � P � S � L �O (22)

whereD is the climatic factor which in our case is assumed to be constant over the whole

study area,R is the petrological factor and assesses the rock type according to the permeability

of its weathered debris andP expresses the erodibility of the soil.P is related to soil depth

which is inversely related to erosion. Deep soils, for example, due to their larger water storage

capacity, are less sensitive to erosion than shallow soils. The way we incorporate soil depth

into this erodibility factor is to assume that for a constant type of soil in the study area, soil

depth and soil erodibility are related using a linear function. We can assume this linear function

since we are only interested in a specific, small range of soil depth in which a more or less

linear relationship between the two may be assumed. (As long as the range of the independent

variable is small, any non linear function can be approximated by a linear one.). In this way we

derive a function that will give usP given the depth of the soil.S andL are the slope steepness

and length factor respectively. The length factor may be assumed constant over all the sites.S

is given by:

S = 0:24 + 0:106s+ 0:0028s2

wheres is the slope in per cent.



O in equation 22 is the vegetation cover which is dependent upon the percentage cover. In our

caseO is constant since the area of interest is burned and therefore there is no vegetation cover.

Thus for our problem this formula is simplified as follows:

mean annual soil loss= f(S;R; P ) = � �R � S � P

where� is a constant andP represents erodibility of the soil which is a function of soil depth.

In order to estimate the constant� we will need to estimateD, L andO from equation 22. We

know thatD is expressed in terms of the mean annual precipitation,r, using the equation:

D = 0:0014r � 0:38

In our study area we knowr to be constant to 437mm and therefore we estimateD = 0:23. O

is constant equal to 4 since this corresponds to 0 percentage cover andL is constant equal to 1

which corresponds to 20m length of slope. We therefore derive� = 0:92.

Each one of these variablesf , R, S andP has three possible states or classes corresponding to

the three classes of each one of the variablesE, R, S andSD in the network. Assume that we

denote the lower and upper boundaries of a certain class of a node by subscripts1 and2.

Now assume that we want to estimate the conditional probability of erosion belonging to a

certain class given the classes of the variables that it depends on. This conditional probability

clearly can be estimated by evaluating the following formula:

P (ejr; s; sd) =
R R2
R1

R S2
S1

R P2
P1

u(f(S;R; P )� E1) � u(E2 � f(S;R; P )) dS dRdP

(R2 � R1) � (S2 � S1) � (P2 � P1)
(23)

where small letters for the variables mean their actual assigned class labels andu is a heaviside

function which is equal to1 when its argument is positive and0 otherwise.

The above formula seems pretty straight forward and in principle one can calculate the integ-

rals analytically and derive an expression which for given values of the class boundaries will

yield the value of the conditional probability. However, in practice the analytic calculation of

the triple integral is prohibitively complicated for the general case due to the great number of



possible cases one has to consider. Thus, we estimated the above probabilities by the Monte

Carlo method: For each possible combination of classes of the arguments of the conditional

probability we drew 40000 samples uniformly distributed over the volume [R1, R2], [S1, S2]

and [P1, P2]. The number of samples that make the integrand in the numerator in equation 23

non-zero divided by the total number of samples drawn is an estimate of the conditional prob-

ability. Table 1 gives the entries of this matrix calculated as described above. Each entry gives

the conditional probability of erosion being in one of the stateslow, medium andhigh (L, M ,

H respectively) given the states of the three variables as shown in the first three columns.

We follow the same procedure for all possible combinations of states ofE and its parents in

order to complete the whole conditional probability matrix.

6.2 When no analytic formula is available between causes and effects

When no analytic formula exists between causes and effects, one has to deduce the elements

of the conditional probability matrix using training data and expert rules expressed in vague

linguistic terms. This is the case for assessing the regeneration potential of a forest and its risk

of desertification.

No quantitative formula exists that relates the regeneration potential to its contributing factors.

One can easily reason and derive one such formula but to our knowledge there are no detailed

studies done which would allow us to calculate, for example, the constants that will appear

in it. This situation is similar regarding the dependence of the factor of desertification on the

regeneration potential and erosion. Thus, for the calculation of the elements of these matrices

appropriate numbers had to be chosen to reflect the rules followed by the experts, namely:

1. The more soil, the more seeds and more nutrition and therefore the higher the potential

of a forest to regenerate naturally.

2. The way the land surface area is oriented towards the sun affects the amount of radiation

it receives. South facing aspects due to the higher amounts of heat they receive from the

sun, tend to be drier. On such slopes natural vegetation is usually sparser compared to



vegetation on north-facing aspects.

3. The more animals that graze the land, the lower the potential to regenerate.

4. The higher the erosion, the higher the desertification risk.

5. The lower the potential of an area to regenerate, the higher the risk of desertification. We

are also given that this factor influences desertification more than erosion.

The above general rules were used to give some initial values to the elements of the conditional
probability matrix, interpreting thathigh means80% confidence,low means20% confidence
and so on. Then these values were tuned using training sites for which the experts’ (hard)
classification was available. It must be noted that ideally this tuning should be done using
historical data where the state of a number of sites is compared with the state predicted by he
experts some years earlier and statistics are performed. However, in view of the lack of such
data one can only tune the parameters in such a way that the systems’ assessment agrees with
that of the expert in as many sites as possible.

7 Experimental Results

In this section we will present the results of the network when applied on 53 sites using GIS

data. We have implemented Pearl’s propagation algorithm in C. We then compare our method

with the results obtained using the GIS data with reasoning in the form of IF-THEN rules i.e.

ignoring the uncertainty. In each case we compare the results with the expert’s classification

which was based on field data.

7.1 Reasoning using the Bayesian network

The inference mechanism described above could be applied either at pixel or, preferably, at

region level. The latter would obviously make the algorithm faster. At whatever level it is

applied, it is necessary for the entity that has to be classified to have uniform attributes. For

example, our method could not be applied to a region consisting partly from south looking

slopes and partly from west looking slopes. In that case fuzzy logic would have been more

appropriate, as fuzzy logic deals with partial membership to various classes. Thus, to apply

our inference mechanism to the region level, some preprocessing is needed: As each layer of



Erosion

Rock Type Slope Soil Depth L M H

bare 0.28 0.53 0.19
gentle shallow 0.39 0.57 0.04

deep 0.58 0.42 0.00
bare 0.00 0.00 1.00

permeable middle shallow 0.00 0.07 0.93
deep 0.00 0.34 0.66
bare 0.00 0.00 1.00

steep shallow 0.00 0.00 1.00
deep 0.00 0.00 1.00

gentle bare 0.21 0.43 0.36
gentle shallow 0.29 0.54 0.17

deep 0.45 0.55 0.00
bare 0.00 0.00 1.00

semi-permeable middle shallow 0.00 0.01 0.99
deep 0.00 0.14 0.86
bare 0.00 0.00 1.00

steep shallow 0.00 0.00 1.00
deep 0.00 0.00 1.00
bare 0.15 0.33 0.52

gentle shallow 0.21 0.42 0.37
deep 0.33 0.59 0.08
bare 0.00 0.00 1.00

impermeable middle shallow 0.00 0.00 1.00
deep 0.00 0.02 0.98
bare 0.00 0.00 1.00

steep shallow 0.00 0.00 1.00
deep 0.00 0.00 1.00

Table 1: Conditional probability matrix forerosion.



the GIS has different tessellation of the land into polygons, a composite tessellation must first

be created by considering a union of all polygons in all layers. This way each small polygon

created will have a unique set of attribute classes or measurements which can be fed into our

system to assess its risk of desertification. In our case, part of the data, i.e. aspect and slope,

were given in raster format. Thus, the smallest “polygon” we had was a single pixel and that is

why we had to apply our system at a pixel level.

The final classification of a site was performed by averaging the corresponding probabilities of

the site pixels.

There are 5 possible desertification classes:

� Class 1 : Sites without any risk of desertification after a forest fire

� Class 2 : Sites with a low risk of desertification

� Class 3 : Sites with a moderate risk of desertification

� Class 4 : Sites with a high risk of desertification

� Class 5 : Sites with a very high risk of desertification

All sites have been classified by an expert using ground data.

Out of the 53 available sites, 39 sites were used for training and 14 sites were used for testing

the final system. Table 2 shows the results of the 39 sites using GIS data with uncertainty.

Table 3 shows the results of the 14 test sites using GIS data with uncertainty. Using GIS data

the system agreed with the expert on 28 out of the 39 training sites, with the majority of the

misclassified sites falling into the adjacent classes. Out of the 14 test sites, 8 agreed with the

expert. The sites that were correctly classified are indicated by a “
p

” in the last column of the

tables. We have also tested the system on the 53 sites using GIS data with no uncertainty. In this

case, for slope and aspcet we calculated the mean slope and aspect of each site and classified it

by inputting 100% probability to the class it fell in. For the rest of the variables we gave again

100% probability to the class indicated. When tested with these certain input, the system agreed

with the expert on 28 out of the 53 sites.



7.2 Rule-based reasoning

We compare our results with those obtained when reasoning without uncertainty, but simply

performing inference using IF-THEN rules.

An example of such a rule is:

IF slope is steep

AND rock-type is permeable

AND soil-depth is shallow

THEN risk-of-erosion is high

So for each pixel in each site we test to see if the premises of a rule are satisfied in order to

draw a conclusion. We then classify the site according to the classification of the majority of

the pixels.

For the raster data available for slope and aspect we simply classify them according to which

class range the measurement falls. The rest of the data were already in classes. Out of the total

of 53 sites 18 (13/39+5/14) agreed with the expert’s classification. Results on the 39 sites are

shown again in table 2. The classification of the 14 sites is shown in table 3. In both tables

agreement with the experts is indicated with a “�” in the last column.

The lower accuracy observed when reasoning with IF-THEN rules lies in the fact that hard

labellings were used thus ignoring the degree of uncertainty in the GIS data. This should not be

the case since the degree of belief in the input is significant for determining the output. Although

the classificationof the input may suggest the class to which the output belongs, when we

have degrees of beliefs attached to these input variables we may end up with a different output

classification. This is why probabilistic reasoning with a Bayesian network gives better results.

By including uncertainty only in the inference (i.e. using Bayesian network with certain data)

still we have better results than by ignoring any sort of uncertainty and applying rule-based

inference. However the best results are obtained by incorporating uncertainty in the data as



well as in the inference.

Another notable advantage of the Bayesian network over the traditional IF-THEN inference is

that we can include in the structure of the network variables which latter on can leave unin-

stantiated in case of lack of information. For example, in the network created for this particular

application we have included the variableanimal grazingwhich although affects the potential of

an area to regenerate, there were no data available for input from the GIS. So when performing

the propagation one can leave this variable uninstantiated, as in our case. If we later on receive

some information regarding this variable we can simply input it in the network. In contrast, in

IF-THEN reasoning any variables on which we do not have information are omitted from the

rules. Therefore any future available information on this variable will require altering the rule

base and constructing new rules to account for the new variable.

8 Discussion and Conclusions

In this paper we have shown how a Pearl Bayes network was constructed for the purpose of

fusing information in a GIS systems. The information includes data of different resolution and

accuracy. It was therefore necessary for the system to be able to reason with uncertainty.

We have presented techniques to handle data input as raw measured values or as class member-

ships. We also discussed ways of dealing with data in vector or raster form.

The designed system was tested on 53 sites using the GIS data assuming uncertainty with prom-

ising results. The majority of the misclassified sites were not given a completely wrong clas-

sification but rather a classification into a neighbouring class. This is expected due to the dis-

crepancy between field and GIS data. Results also show that reasoning with uncertainty using a

Pearl Bayes network performed significantly better than rule-based reasoning of the IF-THEN

form. Results of the Baysian network with certain data also performs better than rule-based

reasoning since it still applies some uncertainty in the inference. However, results showed that

the incorporation of uncertainty in the data is also essential in order to get satisfactory results.

This proves the fact that the confidence with which a label is assigned is significant in deriving



the correct conclusion. The incorporation of uncertainty also provides the additional informa-

tion on how probable the alternative labels are.

To summarise, we believe that the major contributions of this work are:

� It showed how artificial intelligence techniques can successfully be applied to geograph-

ical issues. More specifically, how a Bayesian network can be used as a tool for perform-

ing probabilistic reasoning in a GIS.

� It presented a technique for introducing uncertainty not only in the knowledge provided

but in the input data as well, which in most cases are obtained from various sources with

varied degrees of reliability.

� It presented a novel methodology for obtaining the parameters to be used by the system in

case a formula exists relating the connected variables. We believe that this is particularly

useful since the quantification of the Bayesian network, still remains a largely unexplored

area.
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Rule-based Output Bayesian Network Output Expert Output

Site D class BEL(D) D class

lavrio1 3 (0.02, 0.45, 0.40, 0.07, 0.06) 3 �
lavrio2 3 (0.02, 0.39, 0.40, 0.09, 0.10) 3 � p
lavrio3 3 (0.01, 0.38, 0.43, 0.07, 0.11) 3 � p
lavrio4 5 (0.02, 0.45, 0.39, 0.07, 0.07) 2

p
lavrio5 2 (0.03, 0.54, 0.36, 0.05, 0.02) 2 � p
lavrio6 3 (0.02, 0.47, 0.42, 0.05, 0.04) 2

p
pateras1 1 (0.01, 0.33, 0.43, 0.09, 0.14) 3

p
pateras2 1 (0.01, 0.34, 0.42, 0.09, 0.14) 3

p
pateras3 1 (0.00, 0.25, 0.40, 0.13, 0.22) 3

p
pateras4 1 (0.06, 0.60, 0.28, 0.05, 0.01) 3
pateras5 1 (0.00, 0.34, 0.47, 0.07, 0.12) 2
pateras6 1 (0.02, 0.43, 0.43, 0.10, 0.02) 3

p
pateras7 2 (0.03, 0.46, 0.38, 0.07, 0.06) 3
pateras8 1 (0.05, 0.55, 0.32, 0.05, 0.03) 3
pateras9 5 (0.01, 0.31, 0.38, 0.13, 0.17) 3

p
pateras10 2 (0.02, 0.49, 0.43, 0.03, 0.03) 2 � p
pateras11 2 (0.03, 0.44, 0.36, 0.11, 0.06) 2 � p
pateras12 2 (0.03, 0.48, 0.35, 0.11, 0.03) 2 � p
pateras13 1 (0.02, 0.44, 0.44, 0.10, 0.00) 2

p
pateras14 1 (0.00, 0.27, 0.41, 0.12, 0.20) 3

p
pateras15 1 (0.03, 0.47, 0.37, 0.07, 0.06) 3
pateras16 1 (0.03, 0.48, 0.37, 0.06, 0.06) 3

pendeli1-1 3 (0.02, 0.42, 0.42, 0.06, 0.08) 2
p

pendeli1-2 5 (0.01, 0.35, 0.43, 0.07, 0.14) 3
p

pendeli1-3 3 (0.01, 0.34, 0.45, 0.07, 0.13) 3 � p
pendeli1-4 3 (0.02, 0.40, 0.43, 0.06, 0.09) 3 � p
pendeli1-5 3 (0.01, 0.34, 0.40, 0.10, 0.15) 2
pendeli1-6 3 (0.02, 0.39, 0.39, 0.09, 0.11) 3 � p
pendeli1-7 3 (0.01, 0.39, 0.43, 0.07, 0.10) 3 � p
pendeli2-1 5 (0.01, 0.38, 0.44, 0.07, 0.10) 3

p
pendeli2-2 5 (0.00, 0.21, 0.34, 0.12, 0.33) 3

p
pendeli2-3 5 (0.01, 0.34, 0.44, 0.07, 0.14) 3

p
pendeli2-4 5 (0.00, 0.31, 0.45, 0.07, 0.17) 3

p
barnavas1 3 (0.01, 0.32, 0.42, 0.09, 0.16) 4
barnavas2 3 (0.01, 0.39, 0.49, 0.04, 0.07) 3 � p
barnavas3 3 (0.02, 0.41, 0.43, 0.06, 0.08) 3 � p
barnavas4 5 (0.01, 0.33, 0.49, 0.05, 0.12) 3

p
barnavas5 3 (0.01, 0.39, 0.45, 0.06, 0.09) 3 � p
barnavas6 3 (0.01, 0.39, 0.43, 0.07, 0.10) 2

Table 2: Results of the risk of desertification for the 39 training sites using Rule-
based reasoning and Bayesian network inference with GIS data



Rule-based Output Bayesian Network Output Expert Output

Site D class BEL(D) D class

Tlavrio1 3 (0.02, 0.43, 0.45, 0.04, 0.06) 3 � p
Tlavrio2 3 (0.01, 0.41, 0.43, 0.06, 0.09) 3 � p
Tpateras1 5 (0.02, 0.39, 0.43, 0.06, 0.10) 2
Tpateras2 5 (0.01, 0.43, 0.42, 0.06, 0.08) 2

p
Tpateras3 3 (0.01, 0.40, 0.47, 0.04, 0.08) 3 � p
Tpateras4 1 (0.01, 0.33, 0.47, 0.06, 0.13) 2
Tpateras5 1 (0.03, 0.44, 0.37, 0.08, 0.08) 3
Tpateras6 1 (0.04, 0.50, 0.35, 0.06, 0.05) 3

Tpendeli1-1 3 (0.02, 0.43, 0.44, 0.05, 0.06) 3 � p
Tpendeli1-2 3 (0.00, 0.37, 0.52, 0.03, 0.08) 4
Tpendeli1-3 3 (0.00, 0.36, 0.50, 0.04, 0.10) 4

Tpendeli2-1 5 (0.01, 0.33, 0.44, 0.07, 0.15) 3
p

Tbarnavas1 3 (0.01, 0.41, 0.46, 0.05, 0.07) 3 � p
Tbarnavas2 3 (0.01, 0.46, 0.43, 0.04, 0.06) 2

p

Table 3: Results of the risk of desertification for the 14 test sites using Rule-based
reasoning and Bayesian network inference with GIS data


