
Processing Fuzzy Spatial Queries : A Configuration Similarity
Approach

DIMITRIS PAPADIAS
Department of Computer Science, Hong Kong University of Science and Technology, Clearwater Bay,
Hong Kong
email: dimitris@cs.ust.hk

NIKOS KARACAPILIDIS
Department of Computer Science, Swiss Federal Institute of Technology (EPFL), Lausanne,
Switzerland
email: karacapi@di.epfl.ch

and DINOS ARKOUMANIS
Department of Electrical and Computer Engineering, National Technical University of Athens, Greece
email: dinosar@dbnet.ntua.gr

Abstract. Increasing interest for configuration similarity is currently developing in the context of

Digital Libraries, Spatial Databases and Geographical Information Systems. The corresponding queries

retrieve all database configurations that match an input description (e.g., "find all configurations where

an object x0 is about 5km northeast of another x1, which, in turn, is inside object x2"). This paper

introduces a framework for configuration similarity that takes into account all major types of spatial

constraints (topological, direction, distance). We define appropriate fuzzy similarity measures for each

type of constraint to provide flexibility and allow the system to capture real-life needs. Then we apply

pre-processing techniques to explicate constraints in the query, and present algorithms that effectively

solve the problem. Extensive experimental results demonstrate the applicability of our approach to

images and queries of considerable size.

1. INTRODUCTION

As opposed to visual object similarity, which is based on visual features of objects (e.g., shape, size,

texture, colour), configuration similarity refers to their arrangements in space. Related queries retrieve all

images in the database that match some input configuration which is expressed by a set of binary

direction (e.g., north), topological (e.g., overlap, inside) or distance constraints (e.g. about 1 km away).

The significance of configuration similarity for content-based retrieval has already been recognised in a

variety of disciplines including Image, Spatial and Multimedia Databases and Geographic Information

Systems. As a consequence, a number of verbal and pictorial languages has been proposed to

accommodate such queries (Chang et al., 1987; Papadias and Sellis, 1995; Egenhofer, 1997; Agouris et

al., 1998). Increasing interest for configuration similarity is also developing in the context of Digital
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Libraries as a complement to traditional Information Retrieval techniques for text (Smith and Chang,

1996).

Most database approaches on similarity retrieval have focused on narrow domains and applied specific

algorithms to match particular application needs. For instance, Bach et al. (1993) apply exhaustive search

for the retrieval of facial images, while Rabbiti and Savino (1992) propose a multilevel signature

technique for images where the number and the type of objects in all images are known in advance. Some

approaches (e.g., Orphanoudakis et al., 1994; Chu et al., 1994; Petrakis and Faloutsos, 1997) deal with

similarity of medical images to support clinical decision making.

Other researchers have developed more general purpose techniques which may not take full advantage

of the special structure of a given domain, but are applicable to a wider variety of applications. For

instance, Lee and Hsu (1992) use symbolic object projections encoded in 2D strings and string matching

algorithms to retrieve configuration similarity; Nabil et al. (1996) propose another projection-based

technique that uses conceptual neighbourhoods to measure relation similarity; Sistla et al. (1995) present

a set of direction and topological relations in 3D space and similarity measures based on this set. Unlike

previous approaches, where spatial relations are defined on extended objects, Gudivada and Raghavan

(1995) use the angles between object centroids to define image similarity based on directions. An

advantage of this approach is that it can model rotational transformations of images in arbitrary angles,

while projection-based methods can only handle rotations of nπ/2 (rotation is also studied in Tagare et

al., 1992).

The majority of the above methods only deal with cases where images are re-arrangements of the

same set of objects. The queries simply retrieve all images where some configuration of specific objects

is satisfied (e.g., "find all images where object A is above object B"). This paper focuses on the general

problem of configuration similarity where images contain arbitrary objects and the queries refer to object

variables rather than instances. This is, in general, a hard exponential problem as indicated by early

studies on Computer Vision (Ballard and Brown, 1984). In order to provide a solution as general as

possible, we consider extended objects and centroids since both approaches have some advantages. More

specifically, centroids are more appropriate for rotations and distances, while extended objects are needed

for topological relations.

In addition, our approach can deal with the inherent uncertainty of spatial information processing.

There may be three types of uncertainty in real-life applications: (i) the first refers to "fuzzy objects", that

is, objects that do not have well defined boundaries (e.g., residential areas, forests), or have boundaries

that change over time (e.g., shorelines in the presence of tide)1; (ii) even if objects are rigid, they may be

related by "fuzzy relations", i.e., a pair of objects may belong to multiple relations with different grades

of membership (e.g., Greece can be viewed as being both east and south-east of Italy); (iii) the third type
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of fuzziness arises from ambiguous interpretations of spatial relations, that is, different users may imply

different relations when using the same linguistic term2.

In this paper we deal mainly with the last two types of uncertainty. Fuzzy sets theory (Zadeh, 1965)

provides a useful framework to deal with problems characterized by imprecision due to subjective and

qualitative evaluations, as in configuration similarity. The concept of approximation using fuzzy values

has been well addressed in fuzzy set theory (Zimmermann, 1991), while a variety of measures of

similarity for fuzzy sets has been already proposed (e.g., Pappis and Karacapilidis, 1993). Our

contribution consists of: (i) the proposal of a framework for configuration similarity which includes all

major types of spatial constraints and handles efficiently the fuzziness of the problem; (ii) the

development of effective query pre-processing methods, and (iii) the implementation of appropriate

retrieval algorithms.

The paper is organized as follows: Section 2 describes the set of spatial relations allowed in the

expression of queries and defines measures of similarity between images based on these relations.

Section 3 formally defines the problem of configuration similarity and introduces three types of retrieval.

Section 4 presents pre-processing techniques that significantly improve performance, while Section 5

illustrates the proposed algorithms for similarity retrieval. Finally, Section 6 describes the experimental

results and Section 7 concludes the paper with future work directions.

2. SPATIAL SIMILARITY DEFINITIONS

Most researchers in Spatial Databases and GISs, have dealt with three main classes of spatial constraints:

topological, direction and distance. We consider all types of constraints here and use fuzzy similarity

(Dubois at al., 1993) to capture the uncertainty which is inherent in most spatial applications.

2.1. Topological Constraints

Topological constraints express the concepts of inclusion and neighbourhood. A large body of the related

work has focused on the intersection model (Egenhofer and Franzosa, 1991) which describes relations

using intersections of object’s interiors and boundaries. The model defines the following set of 8 pairwise

disjoint topological relations between planar regions:

T={Disjoint, Meet, Overlap, CoVers, Contains, Equal, Covered_By, Inside}.

Figure 1 illustrates these relations in the form of a conceptual neighbourhood graph (Egehnofer and

Al-Taha, 1992; Hernandez, 1994). Nodes in the graph denote relations that are linked through an edge if

they can be directly transformed to each other by continuous deformations (enlargement, reducement,

movement). For instance, starting from relation disjoint and extending (or moving) one of the objects, we
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derive relation meet. With a similar extension we can get the transition from meet to overlap and so on.

Disjoint and overlap are called 1st degree neighbours of meet. Depending on the allowed deformation and

the relations of interest, several graphs may be obtained (e.g., Bruns and Egenhofer, 1996; Nabil et al.,

1996).
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Figure 1 Topological relations

We use the distance between two relations in the graph to define their similarity measure. If T
i
 and T

j
 are

two topological relations (T
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,T

j
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,O))=τ.

UT denotes the universal topological constraint and it corresponds to the disjunction of all relations: UT=

{D, M, O, V, C, E, I, B}. It is used to represent that the topological relation between two objects is

unconstrained. The similarity of UT to any topological relation is 1.

2.2. Direction Constraints

It has been suggested (e.g., Frank, 1996) that people manipulate concrete relations rather than continuous

angles to express and reason about directions. Most previous work defines directions using either object

projections (e.g., Sharma, 1996; Papadias and Egenhofer, 1997) or centroids (e.g., Hernandez, 1994).

Each approach has its advantages and shortcomings; for a detailed discussion see (Frank, 1996). We

                                                       
3 This is one of the many possible definitions (it is used in the experiments of Section 6). Alternative ones may be preferable
for some application domains.
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follow a centroid-based method, where the direction between two objects is determined by the angle

between their centroids. We use the following set of cardinal direction relations:

A={NorthEast, North, NorthWest, West, SouthWest, South, SouthEast, East}.

Similar to (Dutta, 1989), in our approach, the elements of the above set are fuzzy numbers defined on the

interval [0,1] and described by membership functions. Since direction relations are only approximations,

we may apply trapezoidal membership functions to express their vagueness. A (normalized) trapezoidal

fuzzy number is represented by the 4-tuple (a,b,c,d), where a, b, c, d ∈ R, µ
A(a)=µA(d)=0, and

µA(b)=µA(c)=1. For a small angle α, A corresponds to the following set of fuzzy numbers (graphically

represented in Figure 2):

A
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=NE (0o, 45o-α, 45o+α, 90o)

A
2
=N (45o, 90o-α, 90o+α, 135o)

A
3
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A
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A
5
=SW (180o, 225o-α, 225o+α, 270o)

A
6
=S (225o, 270o-α, 270o+α, 315o)

A
7
=SE (270o, 315o-α, 315o+α, 360o)

A
8
=E (315o, 360o-α, α, 45o)
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Figure 2 Membership functions for direction relations
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Similar to topological constraints, a direction constraint C
A
 is a disjunction (set) of direction relations of

A . The similarity between C
A
 and an angle θ is defined as:

σ
A
(C

A 
,θ)=max(1, ∑

∈∀ Ai CA

σ
A
(A

i 
,θ)).

Unlike topological relations where a pair of objects may satisfy only one relation, it is possible that two

objects satisfy two neighbouring directions at the same time; if, for instance, C
A
 is N∨NE and θ =30o,

then σ
A
(C

A 
,30o)= 1. Although neither North, nor NorthEast, are totally satisfied, their disjunction is. UA=

{ NE, N, NW, W, SW, S, SE, E} is the universal direction constraint (σ
A
(U

A 
,θ)=1 for all θ).

2.3. Distance Constraints

Object centroids are also considered for distances between objects. A distance constraint D
di-dj specifies

that the distance between two object centroids must be in the range [di,dj]. If di=0, the constraint

corresponds to closer than dj; if dj=∞, to farther than di, and if di=dj, to about di. As in the case of

direction constraints, we use a trapezoidal membership function to represent such relations. For a small

distance δ, D
di-dj corresponds to the fuzzy number (di-δ, di, dj, dj+δ), which is graphically represented in

Figure 3. The universal distance constraint is UD = D0-∞. Let D
di-dj be a distance constraint and d a given

distance. The distance similarity measure σ
D
 between them is defined as follows:

σ
D(Ddi-dj,d) =
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Figure 3 Membership functions for distance relations

The set of spatial relations described in this section constitutes a comprehensive way to express spatial

queries. In addition to topology and directions, distances are also taken into account and, to our

knowledge, this is the first approach that combines the three types of constraints in similarity retrieval.

The parameters τ, α and δ can be tuned to match different application or user needs providing flexibility

to the model. However, we do not claim that the above relations and similarity measures exhaust all

possibilities. The methods proposed hereafter can be used with alternative definitions.

3. A FRAMEWORK FOR CONFIGURATION SIMILARITY

It is computationally expensive to answer real-time high level queries by processing images representing

information at the pixel level. On the other hand, symbolic representations facilitate query processing by
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explicating the relations of interest. This is in accordance with traditional Information Retrieval

techniques, like the vector processing model (Salton et al., 1994), which use term vectors instead of the

actual text to retrieve document similarity. Let O={o0,…,oD} be the set of all objects in the database.

Then, according to our definition, an image I of a set of objects OI ⊆ O is a complete graph where each

node corresponds to an object in OI and each arc between oi and oj stores: (i) the topological relation

between oi and oj, (ii) the angle and (iii) the distance between their centroids. Such image representations

are called Attributed Relational Graphs (ARG) in Computer Vision terminology.

Consider, for example, the physical image shown in the left part of Figure 4, which may be stored in a

Minimum Bounding Rectangle (MBR) based spatial data structure (e.g., R-trees). Efficient techniques

retrieve the topological relations between the actual objects (Papadias and Theodoridis, 1997), while

directions and distances can be calculated assuming that the centroid lies in the intersection of the MBR

diagonals. The right part of Figure 4 illustrates the equivalent ARG which contains information about the

relations of interest (i.e., topology, angle and distance respectively) between oi and oj, where i<j

(information about the relations between oj and oi is straightforward to derive).
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Figure 4 Physical Image and ARG

3.1. Configuration Similarity Queries as Constraint Satisfaction Problems

Configuration similarity queries can be formalised as constraint satisfaction problems (CSPs). Formally,

a binary CSP is defined as (Mackworth and Freuder, 1985):

• A set of n variables, x0, x1, … ,xn-1

• For each variable xi a finite domain Di  of potential values

• For each pair of variables xi,xj a set of binary constraints Cij, where Cij is a subset of Di × Dj.

Assume, for instance, the query:

“ Retrieve all configurations where there is an object x0, which is 3-5 distance units north-

west of an object x1, and adjacent and north-east of another x2 which contains x3 at its north

side. Furthermore, the distance between the centroids of x0 and x2 should be 2-4 distance

units, and the distance between the centroids of x3 and x2 should be 2-3 units”.
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This query contains four variables x0, x1, x2, x3, whose domain is the set of objects OI in the image I to be

searched (assuming the image of Figure 4, then Di={o0,…,o4}). For each pair of distinct objects there is a

topological, direction and distance constraint (some of which may be universal), resulting in a total of

3n(n-1) binary constraints. Figure 5 illustrates the query constraints in the form of three networks, one for

each type of relation. In real applications some additional unary constraints may appear; these may

specify object properties (e.g., x0 is a building), sizes (e.g., x1 is large), shapes (e.g., x2 is circular) etc. For

generality, we omit such constraints here and deal only with spatial ones. However, unary constraints can

be captured by the proposed retrieval framework (Papadias et al., 1998a).
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Figure 5 Query constraint networks

The goal is to find instantiations of query variables to image objects such that the input constraints are

satisfied to a maximum degree. Consider the binary instantiation {xi←ok, xj←ol} where variable xi is

instantiated to image object ok and xj to ol. The degree of satisfaction of the topological constraint

between xi and xj equals the topological similarity measure: σT
(C

T
(xi,xj) 

,T(ok,ol)). The satisfaction degrees

for the other types of constraints are computed accordingly. Assume, for instance, the example query and

the binary instantiation {x0←o0, x1←o1} in the image of Figure 4. The degree of satisfaction for the

binary constraints that involve x0 and x1 are: σT
(U

T
(x0,x1) 

,Disjoint(o0,o1)) = 1 (since the topological

constraint is unspecified, any such relation fully satisfies it), σA
(NW(x0,x1), 165.96(o0,o1)) = 0.351, and

σD
(D3-5(x0,x1), 4.12(o0,o1)) =  1.

Given the satisfaction degrees of individual constraints, the similarity 6 of a complete solution {x 0←

op, …, xn-1 ← or} can be calculated using several possible metrics. Ruttkay (1994) describes conjunctive

combination (6 is the minimum degree of satisfaction of individual constraints) and productive

combination (6 is the product of satisfaction degrees of individual constraints). The problem with

conjunctive combination is that it does not distinguish between solutions that contain equally “bad”

binary instantiations, while productive combination does not differentiate between instantiations that

fully violate some constraint(s). Here we use an average combination metric which is the sum of all

pairwise similarities divided by the total number of constraints:

6 =
)1(3
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This avoids the drawbacks of the other metrics (i.e., conjunctive and productive combination) but is

more computationally expensive (instantiations cannot be abandoned as early in the search process).

Figure 6a illustrates one (of infinite possible) ideal solution of the example query. Due to the query

constraints, only the marked angles and distances between the centroids, and the topological relations

between x0 and x2, and between x2 and x3 are important in determining similarity. Figure 6b illustrates the

instantiation {x0← o0, x1← o1, x2← o2, x3← o3} using the image of Figure 4. Although, as we saw before,

the satisfaction degrees of constraints between x0 and x1 are relatively high (σT= 1, σA
 = 0.351, and

σD
=1), the total similarity 6 is low because most constraints between other pairs are violated. Figure 6c

illustrates another instantiation from the same image, {x0← o1, x1← o4, x2← o3, x3← o2}, which satisfies

all topological and most direction and distance constraints.

x
1

*

*

x
0*

x
3

x
2

3-5
2-4

2-3

45o

*
135o

90o

*

*

*

*

o
0 o

1

o
2

o
3

x
0

x
1

x
2

x
3

1 3

1

4

5

2 4 5 6 7

2

3

6

7

8

8 9 10

o
4

1 3

1

4

5

2 4 5 6 7

2

3

6

7

8 o
1

o
2

o
3

8 9 10

x
3

x

1

x
0

x
2

5
4.472

63.43o o

x

2

90o

*

*

*
126.86

*

(a) an ideal configuration (b) a poor solution (c) a good solution

Figure 6 Example instantiations

3.2. Types of Retrieval

There is a trade-off between the level of approximation that we intend to retrieve and the cost of query

processing. In general, more approximate solutions involve higher computational cost and vice-versa. We

distinguish three types of image retrieval:

• Hard retrieval, in which all solutions to be retrieved should totally satisfy all constraints of the query

(6=1). The problem is equivalent to a CSP which is NP-Complete (Meseguer, 1989; Grigni et al.,

1995). Hard retrieval will not return any solutions if some constraint is not fully satisfied (i.e., if σ <

1), even if there exist configurations that match the query very closely. The following two methods

overcome this problem.

• Soft retrieval, which finds all solutions that are good on the average (using the average combination

metric), even if they may totally or partially violate some constraints. This type is considerably more

expensive than the first one, because it has to generate more instantiations before it rejects a partial

solution (instantiations that violate some constraint are not immediately discarded).

• Semi-hard retrieval, which uses the same metric as the previous ones, but excludes solutions that

totally violate some constraint (i.e., if σ = 0). The experimental evaluation of Section 6 shows that it
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is generally a good trade-off between the first two retrieval types because it reduces execution time,

compared to soft retrieval, while missing only few solutions.

Figure 7 illustrates an execution using semi-hard retrieval and a test image with 500 random

rectangles. The query (upper right window) contains four variables related with the same spatial

constraints as the example query of Figure 5 (D stands for distance, A for direction and T for topological

constraint). Notice the existence of several universal constraints, i.e., unconstrained pairs of variables

(e.g., (x0,x3), (x1,x2) etc).

Some solutions and their similarities are given in the lower right window; by clicking on them the

user may view the corresponding instantiation in the left window (query variables are in parentheses).

Here we illustrate one where x0 is mapped to object 89 of the image, x1 to 338 and so on. Its score is

0.876036 (some constraints are partially violated) and its rank 88. Notice that the algorithm required only

594635 instantiations, and this is more or less normal for semi-hard retrieval and queries and images of

this size. In order to achieve such efficiency, however, we need some pre-processing techniques described

in the next section.

Figure 7  A sample execution

4. QUERY PRE-PROCESSING TECHNIQUES

If N is the number of objects in image I, and n the number of query variables, the total number of

possible instantiations is equal to the number of n-permutations of the N objects: N!/(N-n)! (this is equal

to 617*108 for the example of Figure 7). In real DBMSs where N>>n, this number is O(Nn), meaning that

the retrieval of structural queries can be exponential to the query size. Query processing becomes more

expensive if inexact matches are to be retrieved, a situation which arises very often in practical

applications. Despite its exponential nature, we have developed two pre-processing methods, path
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consistency and variable ordering, which, when combined with appropriate retrieval algorithms, can

effectively solve the problem for real world image and query sizes.

4.1. Path Consistency

The example query contains several implicit constraints, i.e., relations between query variables that are

not explicitly stated. For instance, given the distance and direction relations for (x1,x0), (x0,x2) and (x2,x3),

it can be inferred that x1 lies somewhere south-east of the x3. In addition to their direction, the potential

distance between x1 and x3 is constrained by the given ranges. In order to explicate such relations, we

need composition tables that encode rules about the permissible relation for (xi,xj), when the constraints

for (xi,x) and (x,xj) are known. The calculation of the whole set of (explicit and implicit) constraints in a

query (i.e., the query closure) aims at achieving:

• efficiency: tight queries quickly lead to "bad" instantiations of variables that effectively prune the

search space;

• early detection of inconsistent queries: in hard retrieval, inconsistent queries (e.g., "find all images

where xi is in xj which is in xk and xk meets xi") always have no solutions and therefore, there is no

need to be executed; furthermore, they provide feedback for potential user errors.

Two composition tables are required: one for topological and one for combined distance and direction

relations. Table 1 illustrates the composition rules for topological relations (Egenhofer, 1991)4. Since, in

the context of this paper, topological relations are defined on extended objects, they are completely

independent from the distance and direction ones (which are defined on centroids). No conclusion5 can be

drawn about the direction and the distance between the centroids of two objects given their topological

relation (and vice versa), unless we take advantage of domain knowledge (e.g., buildings 3-5 kms apart

are disjoint). We intend to provide a general framework for the problem, not tied to any specific

application, thus we assume independence of topological relations.
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Inside(x
 i
,x) D D I I I UT D∨M∨I∨B∨O D∨M∨I∨B∨O

coverBy(x
 i
,x) D D∨M B I I∨B D∨M∨C∨V∨O D∨M∨E∨B∨V∨O D∨M∨I∨B∨O

Contain(x
 i
,x) D∨M∨C∨V∨O C∨V∨O C E∨I∨B∨C∨V∨O C∨V∨O C C C∨V∨O

coVer(x
 i
,x) D∨M∨C∨V∨O M∨C∨V∨O V I∨B∨O E∨B∨V∨O C C∨B C∨V∨O

Overlap(x
 i
,x) D∨M∨C∨V∨O D∨M∨C∨V∨O O I∨B∨O I∨B∨O D∨M∨C∨V∨O D∨M∨C∨V∨O UT

Table 1 Composition table for topological relations

                                                       
4 Composition of topological relations has been applied to detect inconsistencies in spatial databases (Smith and Park, 1992;
Egenhofer and Sharma, 1993) and optimize query processing in (Papadias et al., 1995).
5 This is not true for projection-based definitions of directions relations; sometimes topological information can be conveyed
from directions and vice-versa (Sharma, 1996; Papadias and Theodoridis 1997).
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On the other hand, direction and distance relations are interrelated. Consider again the example query

where the explicit relation between x1 and x0 is SE∧D3-5 (x0 is NW of x1), and between x0 and x2 is

NE∧D2-4 (Figure 8a). From this information, we calculate the implicit direction and distance relations

between x1 and x2. Regarding directions, x1 could be exactly east (Figure 8b) or E-SE (Figure 8c) of x2.

If the distance between x1 and x0 were unconstrained and approached +∞, the direction between x1 and x2
would approach SE. Similarly, x1 could also be E-NE of x2 (Figure 8d). Given the distance constraints,

the minimum distance between x1 and x2 is 32 22 +  (when both x1 and x2 are at the closest positions to

x0), while the maximum distance is 54 22 + . The general composition rule for SE∧Dd1-d2 and NE∧Dd3-d4

is (NE∨E∨SE)∧Dm-M where m= 2

1

2

3d d+  and M= 2

2

2

4d d+ (NE, E, SE are the only relations with

potentially non-zero memberships).

x 2

x 0

x 1

d3=2

d4=4

d1=3

d2=5

3

3

x
2

x 0

x 1

5

2

x 2

x 0

x 1
3

4

x 2

x 0

x 1

(a) explicit relations (b) direction E (c) direction E-SE (d) direction E-NE

Figure 8 Example of distance-direction composition

Table 2 illustrates the complete inferences about direction and distance relations (the example of

Figure 8 corresponds to the entry in the last row and fourth column). The table covers the most general

case in the sense that it contains all relations that may have non-zero membership. However, depending

on the given ranges, further pruning of the direction relations may be possible and is performed by our

pre-processing methods. In the example of Figure 8, if we knew that d1 is greater than d4, we would infer

that x1 can only be SE or E of x2 (not NE).

In this pre-processing phase, a path consistency algorithm (Mackworth and Freuder, 1985; Papadias

and Egenhofer, 1997) explicates constraints (according to Tables 1 and 2) and creates the query closure.

The composition constraint is computed by: (i) generating the cross products of the relation sets that form

the constraints for (xi,x) and (x,xj); (ii) composing each ordered pair by looking up the results in the table,

and (iii) taking the union of the resulting sets. Constraints are refined when the composition constraint

contains a proper subset of relations of the original one. If some relation is left unspecified, the

composition constraint contains the corresponding universal relation. When the intersection of the

composition and original constraint is empty there is an inconsistency, in which case the system informs

the user.

Figure 9 illustrates the transitive closure of the example query where new constraints have been

generated by path consistency (disjunctions are denoted by strings of relations). Notice that in this case,

universal relations have been replaced by relatively tight constraints. Going back to the example in the
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beginning of this section, observe that the possible directions between x1 and x3 are E∨SE∨S, while their

distance lies between 3.36796 and 7.94725.

Figure 9 Closed query
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Table 2 Composition table for distances and directions
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4.2. Variable Ordering

The second phase of pre-processing determines the order in which variables get instantiated, a factor that

significantly affects the search space. In general, a good ordering is one where the most constrained

variables are instantiated first, because bad instantiations are detected and abandoned early in the search

(Dechter and Meiri, 1994). We use a weight W(R,I) to express the rareness of a topological or direction

relation R in a particular image I. In order to calculate W(R,I) we perform an exhaustive search in each

image I and count the pairs of objects N
R
 that satisfy relation R in I. W(R,I) is considered to be equal to

N(N-1)/N
R
 (where N(N-1) is the number of distinct object pairs). According to this rationale, relations that

occur rarely get high weights because they have high discriminative value (this is similar to inverse term

frequency used in information retrieval techniques). For instance, if a query specifies that two variables

are equal, then these two variables should be instantiated first in order to prune the search space as early

as possible. On the other hand, disjoint has a very small weight since, for normal data density, it is

satisfied by more than 95% of the object pairs; therefore, a disjoint constraint is not significant. Figure 10

illustrates the weights of topological and direction relations as derived in two images used in our

experiments.

D M E I

B C V O
1.004002 289.8436 509545 63693.13

40763.6 63693.13 40763.6 2205.823

E NE N NW

W SW S SE
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5.410793 5.857685 13.94977 13.73956
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(a)Weights and distance distributions - roads of Long Beach county
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(b)Weights and distance distributions-VLSI Image

Figure 10  Distributions of weights and distances

Given the pre-computed weights of relations, weights for constraints (i.e., disjunctions of relations of

the same type) are calculated by the following equation, which captures the property that the weight of a

constraint is smaller than the weight of any (tighter) constraint with a proper subset of its relations:

∑
∈∀

=
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For instance, the weight of a constraint C
A
 = NE in the image of Figure 4a would be 5.857, while the

weight of another C
A'
 = N would be 13.949. The weight of a (less restrictive) constraint NE∨N would be:

5.857*13.949/(5.857+13.949) = 4.124. We also computed the distribution of distances normalized by the

maximum distance among all pairs of objects  (Figure 10). Weights of ranges were calculated from these

distributions using the above equation since a range can be thought of as a disjunction of precise

distances (the longer the range the smaller its weight). Image meta-data (weights, distance distribution)

are calculated only once and stored with each image. When an image I is searched for a particular

configuration expressed by Q, its associated meta-data are retrieved and each query variable is assigned a

weight which is equal to the sum of weights of constraints in which it participates. Instantiation order of

variables in Q for retrieval from I is then determined according to the variable weights: the "heaviest"

variable first and the least constrained last.

If the example query is to be processed using the above input images, then x2 should be the variable to

be instantiated first because it is involved in the most restrictive constraints (e.g., covers x3 and meets x0).

The second variable should be x3 followed by x0. The experiments described in Section 6 demonstrate the

improvement achieved by the above pre-processing techniques.

5. RETRIEVAL ALGORITHMS

This section describes how several constraint satisfaction algorithms can be modified for configuration

similarity retrieval. Search is performed solely using the ARG which is maintained in main memory. The

K best complete mappings (K is user-defined), according to the chosen retrieval type (hard, semi-hard,

soft) are retrieved and shown to the user. We developed four retrieval algorithms: three of them are based

on backtracking, while the fourth one is based on forward checking.

5.1 Backtracking-based algorithms

The first algorithm is a non-recursive variation of chronological backtracking (BT). After the ARG has

been constructed, every query variable is instantiated to an image object according to the order

determined during query pre-processing. When a variable is instantiated to some object, this object is

“ locked”, i.e., it is removed from the domain of current and future variables and cannot be mapped to

another query object. The new similarity is calculated by adding to the previous one the satisfaction

degrees of the constraints that relate the new object with already instantiated objects. Depending on the

new similarity and the type of retrieval used, the mapping proceeds forward (to the next variable) or

backward. The algorithm proceeds forward if the instantiations so far constitute a partial solution; i.e., if

all similarity degrees are 1 (for hard retrieval), or if the current similarity can exceed the target similarity

of the Kth solution (for soft retrieval). The condition for semi-hard is the same as for soft, provided that

no constraints have been totally violated. When the algorithm goes backward, another mapping for the
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same variable is chosen and the previous object is unlocked. If the variable domain is empty, the

algorithm proceeds another step back and re-instantiates the previous query variable after releasing the

locks of all objects locked by subsequent variables.

A simplified version of the algorithm is illustrated in Figure 11. Current_instantiations is an 1D array

of n elements that holds the current values of variables (current_instantiations[i] holds the current value

of xi). 6[i]  holds the current similarity at the instantiation level i (variables up to the ith one have been

instantiated). Solutions is a Kxn array that holds the K instantiations that have the highest similarity.

Target is the similarity of the Kth solution; an instantiation will be included in the solutions only if its

similarity is greater than target. When a variable is to be instantiated, BT chooses a value from its

domain and calculates the new_similarity produced by the new instantiation and the already instantiated

variables. If the new instantiation produces a partial solution, the algorithm proceeds forward, or outputs

a solution if there are no other un-instantiated variables. Otherwise, it chooses a new value for the current

variable. For simplicity, the locking/unlocking of values is omitted from the code.

BT (Query q, Image I, int K )
Preprocess(Q) /* compute query closure, retrieve I and metadata, and determine variable ordering (most constrained first) */
FOR j := 0 TO n-1 DO domain[j] = OI /*initialize all domains to OI */
S = target = 0;
i = 0; /* index to the current variable */
WHILE (TRUE) {
      new_similarity := 0;
      new_value := chooseNextValue(domain[i][i] );
      IF new_value = NULL  /* empty domain */
           THEN
                   IF i=0 THEN RETURN; /* end of domain for first variable - end of the algorithm */
                   ELSE i:=i-1; CONTINUE;  /*Backtrack*/
           ELSE /* non-empty domain */

   current_instantiations[i] := new_value; /*store instantiation*/
                   FOR j=0 to i-1  /*calculate the new similarity produced by the instantiation of current variable */

          new_similarity = new_similarity +σ(Cji,R(current_instantiations[j], current_instantiations[i]));
                   S[i] = S[i-1] + new_similarity;

             IF S[i] can exceed target  /*instantiated variables 0,..,i constitute a partial solution (depending on retrieval type)*/
                          THEN IF i < n-1 /* intermediate variable instantiated */
                                    THEN   i := i+1; /* successful instantiation: go forward */

                    ELSE /*last variable instantiated*/
                                        store(current_instantiations, solutions); /* solution stored */
                                         target = solutions[K];
}

Figure 11  Backtracking for configuration similarity retrieval

The second retrieval algorithm is based on Backjumping (BJ) (Dechter, 1990). Assume, for example a

query where the instantiation order is x0, x1, x2, x3, x4, and that there does not exist a value in the domain

of x4 which is consistent with the instantiations of the previous variables. Furthermore, this inconsistency

is solely due to the constraint between and x4 and x1 (e.g., a restrictive constraint such as covers).

Backtracking to x3 or x2 will not solve the problem (the constraints between x4 and x3 or x2 may be non-

restrictive or even universal). Backjumping, on the other hand, will re-instantiate x1, that caused the
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problem, thus reducing the number of consistency checks. In order to do this, a pointer has to be kept for

each variable to the last variable that caused an inconsistency. The forward move is the same as in

backtracking, checking the constraints of the current variable with respect to previously instantiated ones.

In the above example, BJ after re-instantiating x1, would move forward, re-instantiate x2 and so on.

Assume that x2 and x3 are related by a restrictive constraint satisfied only by a few object pairs. In such a

case, finding a good instantiation pair for x2 and x3 may require a significant amount of search which is

basically redundant since such a pair was already found before the deadlock at x4 occurred. Unlike BJ,

Dynamic Backtracking (DBT) (Ginsberg, 1993), after re-instantiating x1, would keep the existing

instantiations of x2 and x3, and directly attempt to find a consistent value for x4. This means that the

instantiation order is changed dynamically, i.e., from x0, x1, x2, x3, x4 it becomes x0, x2, x3, x1, x4, so DBT

can be thought of BJ with dynamic variable ordering (Bachus and Van Run, 1995).

5.2 Forward checking-based algorithm

One of the most effective constraint satisfaction algorithms is forward checking (FC) (Haralick and

Elliot, 1980; Bachus and Grove, 1995) which has been shown to outperform the rest for a wide range of

problems involving "crisp" constraints. FC must be modified for configuration similarity queries in order

to handle soft constraint processing. The adjusted version works as follows: when a variable xi is assigned

a value ok, the domain of each future (un-instantiated) variable xj is pruned according to ok and the

constraint Cij, for all j>i. That is, all values ol that produce similarities that cannot exceed the target are

removed from the domain of xj. Consequently, when we reach instantiation level i, the values of variables

x0,…,xi-1 will constitute a partial solution, and the domains of future variables will contain only values

that may lead to a (complete) solution given the instantiations so far.

The procedure of pruning the domains of the future variables is called check forward. If, after a check

forward, the whole domain of a future variable is eliminated, the algorithm discards the current variable’s

value, and restores the values of future variables, which were eliminated due to the current instantiation.

When the domain of the current variable is exhausted, the algorithm backtracks to the previous one and

assigns a new value to it. FC outputs a solution whenever the last variable is given a value, and

terminates when it backtracks from the first variable.

 In order to keep track of the allowable values for each variable at every instantiation level, FC uses a

nxnxN domain table. Each element of domain[i][j]  is an array of N values that xj can take at different

levels. Before FC starts, domain[0][j] is initialized to OI for all variables. When x0 is assigned a value op,

domain[1][j] is computed for each remaining xj, by including only values ol ∈ domain[0][j]  that can

exceed target. In general, if ok is the current value of xi, domain[i+1][j] is the subset of domain[i][j]

which is valid w.r.t. Cij and ok. In this way, at each instantiation level the domain[i][j] of xj continuously

shrinks; when we reach level j, xj gets instantiated from domain[j][j]  which contains only values

compatible with the instantiations of previous variables. If a value of xi results in the domain of some xj to
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become empty, a new value is chosen and domain[i+1][j]  is re-initialized to domain[i][j] . Figure 12

contains the pseudo-code of FC.

FC (Query q, Image I, int K )
Preprocess(Q) /* compute query closure, retrieve I and metadata, and determine variable ordering (most constrained first) */
FOR j = 0 TO n-1 DO domain[0,j] = OI /*initialize all domains to OI */
S = target = 0;
i = 0; /* index to the current variable */
WHILE (TRUE) {
      new_value := chooseNextValue(domain[i][i] );
      IF new_value = NULL /* empty domain */
           THEN IF i=0  /* end of domain for first variable */
                   THEN RETURN; /* end of algorithm */
                   ELSE i:=i-1; CONTINUE;  /*Backtrack*/
           ELSE /*non- empty domain */
                    current_instantiations[i] := new_value; /*store instantiation*/
                    IF i = n-1 /*last variable instantiated*/
                            THEN
                                     store (current_instantiations, solutions);
                                     target=solutions[K];
                            ELSE /* intermediate variable instantiated */
                                     IF check_forward(i) /* successful instantiation*/
                                             THEN i := i+1; /* successful instantiation: go forward */
   }

BOOLEAN check_forward(int i)
   FOR j = i+1 TO n-1 DO /*for all uninstantiated variables*/
          domain[i+1][j]=  domain[i][j] ;
          FOR all objects ol ∈ domain[i+1][j]

              FOR k=0 to i-1
              new_similarity = new_similarity +σ(Cki,R(current_instantiations[k], ol));

                    S[i] = S[i-1] + new_similarity;
                    IF S[i] cannot exceed target /* depending on the type of retrieval*/

                                 THEN domain[i+1][j]= domain[i+1][j] -{ol};  /* remove ol from the domain */
          IF domain[i+1][j] =∅ THEN RETURN FALSE; /* a future domain becomes empty (the current value of xi is illegal) */
   RETURN TRUE;

Figure 12  Forward checking for configuration similarity retrieval

Figure 13 illustrates the execution of semi-hard FC using the example query and the image of Figure

4. Initially all domains[0][j] are OI for each xj. As discussed in 4.2, the order of variables after pre-

processing becomes: x2, x3, x0, x1. When x2 is instantiated to o0, domain[1][3] becomes empty because

there is no object that satisfies D
2-3

∧S∧covers(x2,x3) for x2
←o0 (the constraints between all pairs of

variables are illustrated in Figure 9). Thus, the instantiation x2
←o0 is abandoned and another value is

chosen for x2 (for demonstration we illustrate what would be the domains of other variables at this point).

Instantiations x2←o1 and x2←o2 are unsuccessful for the same reason (e.g., o1 and o2 do not cover any

other object). When x2 is instantiated to o3 the domains of future variables become: domain[1][3]={o2},

domain[1][0]={o1} and domain[1][1]={o4}. Following these instantiations, as shown in Figure 13, we

reach the solution of Figure 6c. The algorithm will then attempt to re-instantiate x2
←o4 (there are no

further values in the domains of the other variables) because o4 is the only value not yet assigned to x2.

This instantiation will cause the domain of x3 to become empty and FC will terminate.
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6. EXPERIMENTAL EVALUATION

In order to test the performance of the algorithms we used real geographic and VLSI data sets of various

sizes. In particular, we constructed images of 100, 200, 300, 400 and 500 objects using portions of the

map and the VLSI image in Figure 10 (a total of ten images). The parameters of Section 2 for spatial

relations were set to: τ=0.33, α=5 and δ=0, while K=100. Since actual queries may vary significantly

depending on the domain, we constructed an artificial set of 70 queries each consisting of 3 to 9 variables

(10 queries of 3 variables, 10 of 4, …, 10 of 9 variables). Query tightness varies from complete queries

created using a query-by-sketch language6 to very loose queries involving only a few non-restrictive

constraints. The implementation was done using Java Symantec JIT compiler and the experiments were

run on several Pentium PCs 133MHz with 64M Ram.

                                                       
6 The user draws the configuration on a sketch-board and all spatial constraints are automatically generated from the object
locations (see Section 7).
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initialization {o0,o1,o2,o3,o4} {o 0,o1,o2,o3,o4} {o 0,o1,o2,o3,o4} {o 0,o1,o2,o3,o4}

i=1

{x 2
←o0 }

{o1,o2,o3,o4}

(in addition to o0, x2

can be instantiated
to any other object

of OI)

∅

(there is no object
that satisfies D2-3

∧S∧covers(o0,x3))

∅

(there is no object
that satisfies D2-4

∧NE∧meet(o0,x0))

{o1,o2,o3}

(these objects
satisfy D3.6-6.4 ∧

{NW,W,SW}∧{D,
M,C,V,O} (oo,x1))

*
o4

*

*

*

*

o0 o1

o2

o3

i=1

{x 2
←o3 }

{o4} {o 2}

(the only object that
satisfies D2-3∧S∧

covers(o3,o2))

{o1}

(the only object that
satisfies D2-4 ∧ SW

∧ meet(o3,o1))

{o4}

(the only object that
satisfies D3.6-6.4∧

{NW,W,SW}∧{D,
M,C,V,O} (oo,o4))

*
o4

*

*

*

*

o0 o1

o2

o3

i=2

{x 2
←o3, x3

←o2}

{o4} - { o 1} {o 4}

*
o4

*

*

*

*

o0 o1

o2

o3

i=3

{x 2
←o3, x3

←o2,

x0
←o1}

{o4} - - {o 4}

*
o4

*

*

*

*

o0 o1

o2

o3

i=4

{x 2
←o3, x3

←o2,

x0
←o1, x1

←o4}

{o4} - - -

*
o4

*

*

*

*

o0 o1

o2

o3

Figure 13  Demonstration of forward checking
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We executed all 70 queries, for the ten images using the four algorithms (BT, BJ, DBT and FC) with

and without pre-processing, for the three retrieval types (hard, soft, semi-hard) (i.e. a total of 16800 runs).

Each execution was allowed 10 minutes to complete; after this period it was terminated. Figure 14

illustrates the average times (in seconds) for each algorithm and retrieval type combination, for queries

with four variables and images of 300 objects. FC has the best performance for all types of retrieval (the

other combinations of query/image sizes yield very similar relative performance). The trade-off is that it

needs O(n2N) space for keeping the domain table, as opposed to O(nN) of the other algorithms (to store

the domain of each variable).

Among the variations of backtracking, BJ is the best alternative  for the current application. Because

of the small number of query variables and the structure of the problem, DBT is slightly more expensive

due to the overhead of dynamic variable ordering. DBT, in general, performs well when the problem can

be split in independent clusters of variables. However, path consistency generates constraints between

most query variables; therefore, the existence of independent clusters of variables is highly unlikely.

1

10

100

1000

BT BJ DBT FC

hard
semi-hard
soft

Figure 14 Comparison of algorithms for configuration similarity

Another interesting observation from the above graph concerns the different retrieval types. Soft

retrieval is 1-2 orders of magnitude slower than semi-hard retrieval and prohibitively expensive for real-

time applications. On the other hand, semi-hard retrieval is only about 10% slower than hard retrieval,

while in 90% of the cases it retrieved the same solutions as soft (solutions that are good on the average

while totally violating some constraint are rare, especially for large images). In general, semi-hard seems

to be a very good trade-off for applications involving images of 100 or more objects and require

approximate retrieval.

Figure 15 illustrates the effect of pre-processing on the performance of FC. Each chart shows the

response time (in milliseconds) as a function of the number of query variables (3,..,9) and the image size

(100,…,500). Soft retrieval did not terminate successfully for most queries involving more than four

variables. The experiments illustrate that pre-processing speeds up query processing more than an order

of magnitude for all types of satisfiability. The same is true for the rest of the algorithms. For most

queries, semi-hard FC with pre-processing will find solutions in less than 10 seconds even if image sizes

reach 500 objects.
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hard retrieval without preprocessing semi-hard retrieval without preprocessing soft retrieval without preprocessing

hard retrieval with preprocessing semi-hard retrieval with preprocessing soft retrieval with preprocessing

Figure 15 FC performance

In actual applications, much larger images could be effectively processed since queries often involve

some other features that prune the search space. GIS queries, for instance, usually include properties of

objects (e.g., "find all maps where there is a river crossing a large city" etc) that restrict variable domains

to a small percentage of the image size. Papadias et al., (1998b) show how R*-trees (Beckmann et al.,

1990) can be used to facilitate retrieval using very large images (where the size does not permit the whole

process to take place in main memory). Depending on the query properties, images of up to 50,000

objects can be effectively processed.

7. DISCUSSION

Development of efficient retrieval methods will significantly aid the spatial database community to

exploit the large, and steadily increasing, amount of related data available in the form of satellite images,

topographic maps etc. This paper provides a framework for configuration similarity retrieval that

accommodates all major types of spatial constraints and handles the inherent vagueness of spatial queries.

We consider three cases of retrieval (hard, semi-hard and soft) and apply several constraint satisfaction

algorithms for query processing. Pre-processing techniques, which involve computation of the transitive

closure of the query and reordering of variables, significantly improve performance. Our framework

could be used locally, within a single query processor, or on the World Wide Web, as a part of spatial

search engines.

Currently, we work on query languages for configuration similarity retrieval. The expression of

multiple spatial constraints among numerous variables using a verbal query language (e.g., SQL) is

complicated and counter-intuitive. Pictorial languages, where the user draws the query on a sketch-board
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(Smith and Chang, 1996), are more friendly and help avoid inconsistencies. The problem with such

languages, however, is that they are too restrictive. By drawing a pair of objects on the board, the user

specifies the exact distance, angle and topological relation, in addition to some object properties (e.g.,

size), although this may have not been the original intention (for instance, the query example used

throughout the paper cannot be drawn without making unnecessary commitments about the unspecified

relations).

An ideal approach should combine advantages of both worlds, namely, the flexibility of verbal and

the usability of pictorial languages. We have developed a query-by-sketch language for configuration

similarity retrieval which includes several of the above features, and can be executed from the WWW

using any standard browser. Figure 16 illustrates the initial page where the user can draw a configuration

to be matched in the database. The language allows the enabling/disabling of topological and direction

constraints through "tick boxes", and the manual specification of distances through a "pop-up" menu (as

in Figure 16). The algorithm and the type of retrieval can also be selected (semi-hard forward checking is

the default option). The "threshold" specifies the minimum similarity that a configuration should have in

order to be retrieved.

Figure 16 Query-by-draw
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Consider that a user wants to retrieve all configurations containing three variables x0, x1 and x2, where

x0 and x1 are related as in Figure 16, and x2 is SE of x0, without specifying the relative position between x1

and x2. Query-by-sketch allows the expression of such queries using multiple pages. The second page

(Figure 17) illustrates the constraint between x0 and x2. A copy of x0 is created using the "copy rectangle"

option. Topological relations and distances are disabled in the second page, while kept in the first one. In

this way complicated queries, involving many pages and several variable copies can be intuitively

expressed.

Figure 17 Second page in query-by-draw

Future work includes comparison (or even combination) of the proposed algorithms with alternative

ones that have worked well in other domains. We intend to examine other search algorithms such as, hill

climbing (Minton et al., 1992), tabu search (Glover, 1990) and simulated annealing (Johnson et al,

1991). Furthermore, our retrieval algorithms could be enhanced to include additional features, such as

rotation and mirror transformations. Configuration similarity could be also combined with visual

matching algorithms to form more complicated queries (e.g., "find all images where there is a brown

building near a circular lake"). Our framework could easily model such queries using unary constraints.

In order to process visual features, however, appropriate matching techniques (e.g., Jagadish, 1991) are

required.
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