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Abstract

We have developed a qualitative calculus for three-dimensional directions and rotations.

A direction is characterized in terms of the signs of its components relative to an absolute

coordinate system. A rotation is characterized in terms of the signs of the components of the

associated 3 × 3 rotation matrix.

A system has been implemented that can solve the following problems:

1. Given the signs of direction v̂ and rotation matrix P , find the possible signs of the image of

v̂ under P . Moreover, for each possible sign vector of v̂·P , generate numerical instantiations

of v̂ and P that yields that result.

2. Given the signs of rotation matrices P and Q, find the possible signs of the composition

P · Q. Moreover, for each possible sign matrix for the composition, generate numerical

instantiations of P and Q that yield that result.

We have also proven some related complexity and expressivity results. The satisfiability problem

for a qualitative rotation constraint network is NP-complete in two dimensions and NP-hard in

three dimensions. In three dimensions, any two directions are distinguishable by a qualitative

rotation constraint network.

1 Introduction

The field of Qualitative Spatial Reasoning (QSR) develops methods for carrying out geometric
computations using qualitative information about spatial properties and relations, rather than nu-
merically precise information [3]. The majority of the QSR literature has addressed reasoning about
topological constraints between regions; the best known theory of this kind is the RCC-8 system of
relations [19]. However, other work in the area has addressed other geometric properties such as
convexity, relative position, and relative size [3]. A qualitative calculus is a theory that describes
how an inference engine can use a constraint network of qualitative geometric relations to draw
conclusions that are implicit but not explicit in the network.

The research described in this paper defines, implements, and analyzes a qualitative calculus for
three-dimensional directions and rotations. As every rigid motion is the composition of a rotation
and a translation, developing a qualitative theory of rotation is a significant step toward a system

∗Thanks to Richard Cole for helpful discussions about the proof of theorem 5.
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Figure 1: Standard octahedron

that can reason qualitatively about three-dimensional motion generally. This potentially can have
a wide range of applications, from planning to robotics to molecular dynamics; these are discussed
in section 3.

1.1 Qualitative Characterization of Directions and Rotations

In our theory, we consider a domain consisting of two kinds of spatial entities in three-dimensional
space: directions and rotations. There are two operations: applying a rotation Φ to a direction v̂,
denoted “Φ(v̂)” and composing two rotations Φ and Ψ, denoted “Φ◦Ψ.” (We notate composition in
the analysts’ form: (Φ◦Ψ)(v̂) ≡ Φ(Ψ(v̂).) Correspondingly there are two kinds of constraints: “The
image of direction û under rotation Φ is v̂” and “The composition of rotations Φ and Ψ is rotation
Θ”.

To characterize directions and rotations qualitatively, we proceed as follows. We fix an absolute
x̂, ŷ, ẑ coordinate system. We divide the unit sphere into a JEPD partition of 26 cells corresponding
to the 6 vertices, 12 edges, and 8 faces of a standard octahedron, centered at the origin, and with
vertices at the points x̂,−x̂, ŷ,−ŷ, ẑ and −ẑ (figure 1). A direction û is characterized qualitatively
by the cell of the partition that contains û; there are thus 26 qualitative categories of directions. A
rotation Φ is characterized qualitatively by the cells of the partitions that contain Φ(x̂), Φ(ŷ), Φ(ẑ),
where x̂, ŷ, ẑ are the directions along the coordinate axes. As we shall see in section 4.1, there are
336 qualitative categories of rotations.

A standard method for representing directions and rotations numerically is in terms of vectors and
matrices. (We discuss other representations briefly in section 1.3.) A direction v̂ is represented as
the three-dimensional vector of its x, y, and z coordinates; a vector represents a direction if its
magnitude is 1. A rotation Φ is represented as the 3×3 matrix M whose rows are respectively Φ(x̂),
Φ(ŷ) and Φ(ẑ). For example the matrix

M =





1/3 2/3 2/3
2/3 −2/3 1/3
2/3 1/3 −2/3





is the rotation that maps x̂ to the direction 〈1/3, 2/3, 2/3〉; maps ŷ to the direction 〈2/3,−2/3, 1/3〉;
and maps ẑ to the direction 〈2/3, 1/3,−2/3〉.
A numerical matrix M describes a rotation if it satisfies the following two properties.

A. M is orthogonal. That is M ·MT = I. Equivalently, every row and every column has unit
length; each row is orthogonal to every other row; and every column is orthogonal to every
other column. A consequence is that if two elements in a row/column are zero then the third
element must be ±1, and conversely.
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B. The determinant of M is equal to 1. A matrix satisfying (A) is either a rotation or a reflection.
Rotations have determinant 1; reflections have determinant −1.

In this representation, the application of a rotation Φ to a direction v̂ can be computed by multiplying
the vector corresponding to v̂ by the matrix corresponding to Φ. The composition of two rotations,
Φ followed by Ψ is computed as the product of the matrix corresponding to Φ times the matrix
corresponding to Ψ. (See [4], chap. 6).

The qualitative characterization of a direction can be computed as the signs of the components of
the corresponding vector; the qualitative characterization of a rotation can be computed as the signs
of the components of the corresponding matrix. For example, the the direction 〈3/5, 0,−4/5〉 can
be qualitatively characterized in terms of the sign vector 〈+, 0,−〉. The matrix M above can be
qualitatively characterized in terms of the sign matrix





+ + +
+ − +
+ + −





A sign vector with two 0 components corresponds to a vertex of the standard octahedron; for
example, 〈0, 0,−〉 is the −ẑ vertex. A sign vector with one 0 component corresponds to an edge; for
example 〈+, 0,−〉 corresponds to the edge connecting x̂ to −ẑ. A sign vector with no 0 components
corresponds to a face; for example, the vector 〈−,+,+〉 corresponds to the face with vertices −x̂, ŷ, ẑ.
The structure of the calculus developed in this paper is structurally more closely akin to the sign
calculus of [5] than to relational calculi such as RCC [19]. It is fundamentally a functional qualitative
calculus rather than a relational qualitative calculus. In a functional qualitative calculus, the domain
consists of one or more spaces of entities. Each space is partitioned into a JEPD collection of
categories called “qualitative” categories. There is a fixed (small) collection of functions over the
entities. The functional calculus addresses the question, “Given the qualitive categories of entities
x1 . . . xk, what are the possible qualitative categories of f(x1 . . . xk)?” By contrast, in a relational
qualitative calculus such as RCC, the domain generally consists of a single space of entities, and the
qualitative theory is a JEPD collection of relations over those entities.

It is actually possible to construe part of our theory in the form of a relational calculus, as follows.
Let the domain be the set of rotations. For each qualitative category S, define the qualitative binary
relation CS(Φ,Ψ) as holding if there exists a rotation Θ of category S such that Ψ = Θ ◦ Φ. Then,
for any two rotations Φ and Ψ, there is a unique relation CS such that CS(Φ,Ψ); namely, where S
is the qualitative category of Ψ ◦ Φ−1. Therefore the collection of relations CS does form a JEPD
collection of qualitative binary relations over the domain of rotations. Composition, inverse, and
identity of these relations then correspond in the natural way to composition, inverse, and identity
in the underlying rotation Θ. However, this is not probably the most useful way to conceptualize
the domain, since it hides the underlying symmetry between Θ on the one hand and Φ and Ψ on
the other.

Moreover, this approach certainly cannot be applied to the qualitative analysis of applying rotations
to directions, because two directions are not related by a unique rotation. For any two directions
û, v̂ there are many different rotations Φ, of different qualitative categories, such that Φ(û) = v̂. The
part of our theory dealing with directions, therefore, can only be construed as a functional calculus
and not as a relational calculus.

Having defined this qualitative calculus, we address two fundamental problems:

1. Given the qualitative characterizations of a direction û and a rotation Φ, compute the possible
qualitative characterizations of Φ(û).
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2. Given the qualitative characterizations of two rotations Φ and Ψ, compute the qualitative
characterization of the composition Ψ ◦ Φ.

We have implemented a program that computes these, where the qualitative characterizations are
represented in terms of sign vectors and sign matrices.

The most extensively studied form of QSR in general is the problem of determining the consistency
or the consequences of a constraint network. In the context of our theory, such a network would
have directions as the nodes, labelled by a sign vector, or by a set of possible sign vectors, and
rotations as the edges, labelled by a sign matrix or by a set of sign matrices. Our solution to
problem (1) above allows label propagation (Waltz propagation) to be carried out over a constraint
network. Our solution to problem (2) would allows arc propagation to be carried out; that is, the
solution to (2) constitutes a composition table over qualitative rotations. We have not implemented
either propagation algorithm, but, given the functionalities implemented in 3DR, this would be
straightforward; the super-routines to carry out the propagation are entirely standard ([14]; [21]
chap. 6).

The conceptual neighborhood graph over these relations, characterizing continuous change, is easily
characterized; the matrix P may instantaneously transition to Q if some of the non-zero signs in Q
are changed to 0 in P . In this case P dominates Q, in the terminology of [7].

1.2 Reasoning over three-dimensional rotations as compared to two-dimensional

rotations

It should be noted that three-dimensional rotations are intrinsically much more complicated than
two-dimensional rotations, in several respects. In two-dimensions the space of directions is isomor-
phic to the space of rotations; and both directions and rotations can be represented as an angle in
the interval [0, 2π). Both the application of a rotation to a direction and the composition of two
rotations corresponds to addition of angles mod 2π; in particular, two-dimensional rotations are
commutative.

The representation of partial specifications of directions and rotations is similarly simple and well
behaved. A direction or a rotation can be partially specified by an interval of the unit circle;
equivalently, by a subinterval of [0, 4π) of length at most 2π. If û is a rotation with angle bounded
by [a, b] and Γ is a rotation bounded by [c, d], then Γ(φ) is bounded by [a+ c, b+ d] or some variant,
with a small number of easily-characterized special cases. Moreover, any two intervals of the same
length represent the same degree of knowledge or ignorance; e.g. bounds of [0, π/6] and [π/3, π/2]
are congruent intervals on the unit circle.

None of these elegant properties hold for three-dimensional rotations. Three-dimensional rotations
do not commute. Three-dimensional directions comprise a space with two degrees of freedom (a two-
dimensional manifold); whereas three-dimensional rotations comprise a space with three degrees of
freedom (a three-dimensional space). There are representations of direction in terms of two angles
such as latitude and longitude, and representations of rotations in terms of three angles, such as
yaw-pitch-roll or various forms of Eulerian angles. However any such representation necessarily
suffers from topological singularities; for instance, longitude is undefined and discontinuous at the
north and south poles. (These singularities are related to the “gimbal lock” phenomenon.) There is
in general no simple method to express the image of a direction under a rotation, or the composition
of two rotations, where these are expressed in angular form; in fact, in general it is necessary to
convert the direction to Cartesian coordinates and the rotation(s) to matrix form, multiply, and
then convert back to angular form.

Partial specifications of directions and rotations in terms of angles have no simple compositions.
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Figure 2: Regions on the sphere bounded by equal angle ranges

Equal angle ranges do not give congruent regions. For example, the region bounded by latitudes
80◦ and 90◦ and longitudes 0◦ and 10◦ is by no means congruent to the region bounded by latitudes
0◦ and 10◦ and longitudes 0◦ and 10◦. The former is a triangle,1 the latter is a quadrilateral
approximately 6 times as large in area (figure 2).

1.3 Alternative representations

Since our qualitative characterization is fundamentally geometric, it is not inherently tied to using
a vector/matrix-based representation. There are other frameworks for numerical representations
of directions and rotations that are used for a variety of purposes. For instance, in an angular
representation, direction can be represented by two angles, latitude and longitude; and rotations
are represented by any of a number of possible triples of angles. In the quaternion representation,
directions and rotations are represented by a 4-tuple of real numbers; the encoding is too complex
to discuss here. Our qualitative categories can certainly be expressed as combinations of numerical
inequalities in any of these. For instance the qualitative category of direction 〈+,−,+〉 can be
expressed in the constraints “Latitude is between −π/2 and 0; longitude is between 0 and π/2.”
However, the formulation of the constraints, and the calculation of the qualitative application and
composition operators, are substantially more complicated in these alternative representations, and
they do not seem to offer any advantage in this application.

2 Related work

A number of earlier studies have considered qualitative directional constraints of one form and
another, in two-dimensional geometry. [6] considered relations between points described by the
cardinal directions. The STAR calculus of [20] divided the unit circle of directions into m sectors
plus m rays, and considered constraints over a domain of points of the form “The direction from p

to q lies in section k.” The OPRA calculus of [16, 18] used a similar qualitative division of the unit
circle to characterize the relation between directed points; OPRA, however, used relative frames of
reference whereas STAR used an absolute frame of reference. The LR system of [22] used a system
of ternary constraints over points, of the form “Point r lies to the left of the directed line going
from p to q.” The Cardinal Direction Calculus (CDC) [8, 25] characterized the range of directions
between points in two extended objects, relative to absolute coordinate directions.

1Not, strictly speaking, a spherical triangle, since the circle of latitude is not a great circle.
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Rodney Brooks’ ACRONYM computer vision system [2] used a 3-angle system to characterize the
three-dimensional orientation of objects and their parts, and used angular constraints like −π/2 <
TILT < −π/6 to specify partial information about the orientations of both objects and camera.
Special purpose inference modules, essentially carrying out interval propagation, were used to carry
out inferences from these bounds. In themselves, constraints of this kind are of course a much more
expressive language for partial information than that considered in this paper. However, it would
appear that ACRONYM only considered absolute orientation and not relative orientation, and that
inferences only involved two objects at a time (the camera and an object in the image).

The FROB spatial inference system of McDermott and Davis [15] likewise used interval bounds
on Eulerian angles. We do not know of any more recent system that did any kind of reasoning
with partial specifications of three-dimensional orientation. In vision, at least, reasoning with hard
constraints of this kind has largely been superceded by reasoning with soft (probabilistic) constraints.
The complexities of three-dimensional rotations are still significant in reasoning with soft constraints,
but they are easier to ignore.

The sign calculus has been used extensively in qualitative reasoning, particularly qualitative physical
reasoning; a systematic discussion may be found in [5]. Kim’s qualitative theory of linkages [11] used
sign vectors to characterize orientations of segments in a two-dimensional linkage.

3 Potential Applications

Qualitative reasoning is potentially useful in situations where an object undergo rotations in three-
dimensions, and only partial information about these rotations is available, or where the relative
three-dimensional orientation of objects or object parts is only partially known or specified. This
partial information may arise in a number of different ways:

1. Sensors provide limited information. ([9] is an interesting study of the difficulties of planning
motion of a three-dimensional robotic arm with realistic limitations on sensors.)

2. Actions are carried out with limited accuracy. Hence, if one is projecting the consequence of
a sequence of actions, or using dead reckoning to estimate current orientation after a sequence
of actions, then the uncertainties of the rotations are combined.

3. The information comes from a plan that is only partially specified.

4. The information comes from inferences. For instance, if it is observed that a bottle holds liquid,
then one can infer that its orientation has a positive upward component. If one observes the
shadow of an object of unknown height on the ground, then its projection on the x-y plane is
known but not its orientation in the z-direction.

5. Only certain relative orientations are physically possible. For example, two segments of an
articulated object meet at a joint with a limited range.

As an example of (5) above, consider the following model of a robotic arm.2. The arm consists of n
links of length L1 . . . Ln connected in sequence by pin joints. The angle at the connection between
link i − 1 and link i is θi and when all the θi are zero, then the links lie stretched out along the
positive x-axis. However, the direction of the pins alternates. Specifically, the pin at the origin is
always vertical, so that the first link rotates in the x − y plane. When θ1 = 0 the second pin is
parallel to the y axis, so the second link rotates in the x− z plane. When all the θ’s are 0 the third
pin is again vertical, the fourth pin is again parallel to the y axis, the fifth is vertical, the sixth is
parallel to the y axis and so on. (Figure 3)

2We do not know of any actual arm built like this, but it is a convenient model
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Figure 3: Three dimensional robotic arm

In that case, the orientation of the final segment of the arm is the composition of the rotation matrix
from each segment to the next; that is, the product of matrices of the form





cos(θi) − sin(θi) 0
sin(θi) cos(θi) 0

0 0 1



 and





cos(θi) 0 − sin(θi)
0 1 0

sin(θi) 0 cos(θi)





There may additionally be constraints on the values of θi; for example, it may not be possible to
bend any of the joints more than 90◦. A question such as “Is it possible for the final segment to be
facing in the positive x− y direction?” or “Given two such arms can they be positioned so that the
hands face in opposite directions?” can then be cast as a satisfiability problem over the qualitative
calculus that we develop here. (Reasoning about the positions of the objects involved would require
extensions to the theory developed here.)

The use of other forms of qualitative spatial reasoning for planning for robotic manipulation and
navigation has been considered in [23] and [17].

Other domains where this kind of reasoning could be useful include interpreting the motion of a
three-dimensional articulated object (e.g. a video of an acrobat); reasoning about the motions of
satellite or other object in outer space; or reasoning about molecular motions. We are not making
any strong claims as to the immediate applicability of the theory presented here to any particular
practical problems. However, the general problem of qualitative reasoning about three-dimensional
rotations is certainly potentially important in a wide range of applications; and the theory developed
in this paper is a substantial advance in developing techniques for that kind of reasoning.

4 Qualitative Rotations

In this section, we describe the implementation of 3DR. We describe first how the symmetries of
the geometry can be used to dramatically simplify the case analysis, and then how the reduced case
analysis is carried out.
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Cat. 1 Cat. 2 Cat. 3

Cat. 5 Cat. 6Cat. 4

Figure 4: Categories of rotations. The lines are the standard octahedron; the red dots are the images
of x̂, ŷ, ẑ

4.1 Octahedral Rotations

The octahedral rotations map the standard octahedron into itself; equivalently, they map x̂, ŷ, ẑ
into some combination of ±x̂, ±ŷ, ±ẑ. There are 24 such rotations. Proof: You can choose the
image Γ(x̂) to be any of the 6 vertices of the octahedron; then you can choose Γ(ŷ) to be any of
the 4 orthogonal vertices; then Γ(ẑ) is fixed. Alternate proof: Pick a face F of the octahedron. An
octahedral rotation maps F to any of the 8 faces of the octahedron; and for each of these there are
3 ways that the two triangles can be aligned.

The matrix for an octahedral rotation has one non-zero element, either 1 or −1, in each row and
column. For example, the rotation Γ such that Γ(x̂) = −ẑ,Γ(ŷ) = ŷ,Γ(ẑ) = x̂ corresponds to the
matrix





0 0 −1
0 1 0
1 0 0





There are 24 such matrices with determinant 1.

If û and v̂ are directions on the same piece of the octahedron, and Γ is an octahedral rotation then
clearly Γ(û) and Γ(v̂) are still in the same piece of the octahedron. Therefore, if A and B are two
numerical rotational matrices with the same signs, and P is an octahedral rotation matrix, then A·P
and B ·P have the same sign. Therefore, we can define an equivalence relation over the sign rotation
matrices: Q is equivalent to R if Q = R ·P for some octahedral rotation P . Every equivalence class
of sign rotations has 24 elements.

Since the octahedral rotations preserve the geometry of the octahedron, we can be sure that two
sign rotations A and B are from different equivalence classes if the two triples 〈x̂ · A, ŷ · A, ẑ · A〉
and 〈x̂ ·B, ŷ ·B, ẑ ·B〉 are geometrically different, in terms of features of the octahedron. Note that
these are the rows of A and B respectively.

Below is a list of 14 representatives, with geometric features that guarantee that they are distinct.
These fall into 6 categories (figure 4).

Category 1 includes three representatives. In these, x̂ ·R, ŷ ·R, and ẑ ·R are all in faces that share
the vertex 〈1, 0, 0〉.

R1 =





+ + +
+ − +
+ + −



 R2 =





+ + +
+ − +
+ − −



 R3 =





+ + +
+ − −
+ + −





Note that the face corresponding to x̂ · R1 shares an edge with both ŷ · R1 and with ẑ · R1, but
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that ŷ · R1 and ẑ · R1 do not share an edge; that ŷ · R2 shares an edge with both x̂ · R2 and with
ẑ ·R2; ẑ ·R3 shares an edge with both x̂ ·R3 and with ŷ ·R3. (Two faces share an edge if the sign
vectors are equal in two places; they share a vertex if the sign vectors are equal in one place; they
are antipodal if the signs are opposite throughout.)

Category 2 includes a single representative. In this x̂ · R, ŷ · R, and ẑ · R are all inside faces. Each
of the faces connects to each of the other at a vertex.

R4 =





+ + +
+ − −
− + −





Category 3 includes 3 representatives. In these, two of the row vectors lie in faces F1, F2 and one
lies in an edge E. Faces F1, F2 have a common vertex V; edge E connects a vertex of F1 not equal
to V with a vertex of F2 not equal to V. For instance in R5 below, F1 (the second row) is the face
with vertices −x̂, ŷ, ẑ; F2 (the third row) is the face with vertices x̂, −ŷ, ẑ; these meet at vertex
V=ẑ. Edge E (the first row) connects x̂ with ŷ.

R5 =





+ + 0
− + +
+ − +



 R6 =





+ + +
+ 0 −
− + −



 R7 =





+ + +
− − +
+ − 0





Category 4 includes 3 representatives. In these, two of the row vectors lie in a face and one lies in
an edge. The two faces have a common edge; one vertex of the edge meets one of the shared vertices
of the faces.

R8 =





+ + +
+ + −
− + 0



 R9 =





+ + +
− 0 +
+ − +



 R10 =





+ + 0
− + −
− + +





Category 5 includes 3 representatives. In these, one vector is mapped to a vertex and the other two
are mapped to edges. The representatives are rotations around the coordinate axes.

R11 =





+ 0 0
0 + −
0 + +



 R12 =





+ 0 −
0 + 0
+ 0 +



 R13 =





+ − 0
+ + 0
0 0 +





Category 6 is the class of octahedral rotation. The single representative is the identity. All the
vectors are mapped to vertices.

R14 =





+ 0 0
0 + 0
0 0 +





We can show, conversely, that this list of classes is complete. Let Φ be a rotation matrix; then
Φ(x̂),Φ(ŷ), and Φ(ẑ) must be orthogonal. We now carry out the following case analysis:

Case 1. At least one of Φ(x̂), Φ(ŷ), Φ(ẑ) lie on an octahedral vertex . Consider for example the case
where Φ(ẑ) = ẑ. Then either Φ(x̂) and Φ(ŷ) lie on the positive or negative x̂ and ŷ axes
(category 6) or Φ(x̂) and Φ(ŷ) lie on equatorial edges π/2 apart (category 5). By the same
token if any one of Φ(x̂), Φ(ŷ), Φ(ẑ) lie on an octahedral vertex, then Φ is either in category
5 or 6.
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Case 2. Case (1) does not apply, but at least one of Φ(x̂), Φ(ŷ), Φ(ẑ) lies on an octahedral edge. If
two of these lie on octahedral edges, then the third axis would have to lie on the orthogonal
vertex, so we would be back in case 1. So the other two must both lie in the interior of the
octants. Suppose, for example that Φ(x̂) lies on the equatorial edge between x̂ and ŷ; that is
Sign(x̂) = 〈+,+, 0〉. Since Φ(ŷ) and Φ(ẑ) are orthogonal to x̂ and have non-zero z components,
they must each have either the form 〈+,−, ?〉 or 〈−,+, ?〉. If they have the same x and y signs
but opposite z signs, then this is category 4; if they have the same z sign and opposite x and y
signs, then this is category 3. The analogous analysis applies whenever one of the coordinate
axes is mapped to a point with one 0 coordinate.

Case 3. All three of Φ(x̂), Φ(ŷ), Φ(ẑ) lies in the interior of octants. No two can lie in the same octant,
or they would be closer than π/2 and no two can lie in antipodal octants, or they would be
farther than π/2. Therefore either there is one octant that meets each of the other two in an
edge (category 1); or each of the three meets the other two in a vertex (category 2).

Categories 2 and 4 are symmetric in the three vertices, and hence give rise to only one representative.
In the other four categories, the image of one of the vertices is in a distinguished state; hence these
give rise to three representatives each, depending on which of the coordinate axes is mapped to the
distinguished state. Therefore there are 14 representatives in all. Since each of the 24 octahedral
rotations can be applied to each of the 14 representatives, there are a total of 336 different sign
matrices, as stated above.

We can now use the following method to represent the sign matrices. We identify one representative
Q1 . . . Q14 from each of these equivalence classes, and then we can write any sign rotation matrix
in the form Q · P for some representative Q and some octahedral rotation P . Since the octahedral
rotations are easy to deal with, this greatly simplifies the analysis of the sign rotation matrices.

For any numerical matrix or sign matrix M and octahedral rotation R, the product M ·R is simply
a permutation of the columns of M , possibly with one or more change of sign, and the product
R ·M is a permutation of the rows of M , possibly with sign change. Likewise, the product û ·R is
a permutation of the elements of û, possibly with sign changes. In particular, all three products are
always uniquely valued, even when û is a sign vector or M is a sign matrix.

4.2 Using Octahedral Symmetry

Having identified the octahedral rotations and a representative from each equivalence class, we
can use this analysis to simplify the computation of operations on sign vectors and sign rotation
matrices. In particular we define the representative sign vectors to be the vectors 〈+, 0, 0〉, 〈+,+, 0〉
and 〈+,+,+〉. We can then use the octahedral rotations to map any problem involving sign vectors
and matrices to an equivalent problem involving the representative sign vectors and sign matrices.
Thus the number of problems of the form û · P is reduced from 26 · 336 to 3 · 14, a simplification by
a factor of 208, and the number of problems of the form P ·Q is reduced from 336 · 336 to 14 · 14, a
simplification by a factor of 576.

Given the problem, “Compute the possible signs of v̂ · P ,” where v̂ is a sign vector and P is a sign
matrix, we proceed as follows.

1. Let û be the representative sign vector with the same number of 0’s as v̂. Find an octahedral
rotation R such that v̂ = û ·R.

2. Compute the product S = R · P . This is a rotation matrix.

3. Factor the matrix S as the product of a a rotation representative Q and a octahedral rotation
R′: S = Q ·R′.
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4. Compute the possible values of ŵ = û · Q. Note that this is the product of a representative
sign vector with a representative sign matrix.

5. Return ŵ ·R′. Note that ŵ ·R′ = û ·Q ·R′ = û ·R · P = v̂ · P .

Given the problem “Compute the possible signs of P · Q” where P and Q are sign matrices, we
proceed as follows:

1. Factor P = P1 ·R1 where P1 is a representative matrix and R1 is an octahedral rotation.

2. Compute Q1 = R1 ·Q.

3. Factor Q1 = Q2 ·R2 where Q2 is a representative sign matrix and R2 is an octahedral rotation.

4. Compute W = P1 ·Q2. Note that this is the product of two representative matrices.

5. Return W ·R2.

We have thus reduced these two problems to the following subproblems:

A. Multiplying a sign vector or a sign matrix by an octahedral rotation. As discussed above, this
is simply a permutation plus changes of sign.

B. Factor a sign vector ~v = û · R where û is a representative sign vector and R is an octahedral
rotation. This is easily precomputed; there are 26 cases.

C. Factor a sign matrix P = P ′ · R where P ′ is a representative matrix and R is an octahedral
rotation. This can be precomputed by computing Q′ ·R for all pairs of a representative matrix
P and an octahedral rotation R; there are 336 cases.

D. Multiply a representative sign vector by a representative sign matrix or multiply two repre-
sentative sign matrices. These are precomputed; there are 3 · 14 = 42 and 14 · 14 = 196 cases
respectively. However, the analysis here deserves its own section.

4.3 Multiplying representatives

We have thus reduced our two problems to the problem of multiplying a representative sign vector
by a representative sign matrix and the problem of multiplying two representative matrices.

4.3.1 Multiplying a vector by a matrix

One obvious approach to these problems is to use the standard method for computing products,
applying the sign calculus for combining signs. For example,

let v̂ = [+,+, 0] and let R4 =





+ + +
+ − −
− + −





Then multiplying in the usual way by taking the dot product of v̂ with each column of R4, and
using the sign arithmetic we get
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v̂ ·R4 =
[(+⊗+)⊕ (+⊗+)⊕ (0⊗−);
(+⊗+)⊕ (+⊗−)⊕ (0⊗−);
(+⊗+)⊕ (+⊗−)⊕ (0⊗−)] =

[+⊕+⊕ 0;+⊕−⊕ 0;−⊕+⊕ 0] = [+, I, I].

In the above formula, we have used ⊕ and ⊗ for the addition and multiplication operators on signs
and I as the symbol for “indefinite”.

This calculation would suggest that the product may take on any of 9 sign values, all combinations of
the three signs for each of the I values. However, this process loses information; all of these products
would be attainable if R4 were an arbitrary matrix with these signs, but not if R4 is restricted to
be a rotation matrix. In fact, of the 9 possible combinations, only 5 are actually possible. The
calculation, however, obviously gives a necessary condition; no combination of signs that lies outside
[+, I, I] is possible.

The following theorem illustrates that the above product generates values that are in fact impossible:

Theorem 1 If Sign(v̂) = [+,+, 0] and M is a rotation matrix such that Sign(M) = R4, then
Sign(v̂ ·M) is not [+, 0, 0], [+, 0,+], [+,−, 0] or [+,−,+].

Proof: Let ~v = [v1, v2, 0] and let

M =





x1 y1 z1
x2 −y2 −z2
−x3 y3 −z3





where all the variables are positive. Thus û = v̂ ·M = [v1x1 + v2x2, v1y1 − v2y2, v1z1 − v2z2]
Since M is orthogonal, the dot product of the third row with the first and second is 0 so

−x2x3 − y2y3 + z2z3 = 0→ z2z3 > y2y3

−x1x3 + y1y3 − z1z3 = 0→ y3y1 > z3z1

Multiplying these two inequalities we get y1y3z2z3 > y2y3z1z3 so z2/z1 > y2/y1

Now if u2 ≤ 0 we have v1y1 ≤ v2y2, so v1/v2 ≤ y2/y1 < z2/z1, so v1z1 < v2z2 so u3 < 0. Therefore
none of the signed vectors [+, 0, 0], [+, 0,+], [+,−, 0], and [+,−,+] can be the value of Sign(û).

Establishing that a particular sign vector û is a possible product of v̂ ·M is done by finding numerical
instantiations of the û, v̂ and M with the desired properties: The three instantiations must have
the specified signs; û must be equal to v̂ · M ; and M must be an orthogonal matrix. We have
implemented a search method that combines three techniques:

• If a variable has a non-zero sign, assign it a random numerical value with that sign.

• Value propagation: If there is an equation where all but one variable has been assigned a
numerical value, then solve for the value of the remaining variable. We use equations of four
kinds:

– û ·M [:, j] = v̂[j].

– Each direction and each row and column of M has magnitude 1.

– The dot product of any two rows/columns of M is zero.
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– Each row/column of M is equal to plus or minus the cross product of the other two
rows/columns.

• Perturbation. Let p ·A = q be a sign equation with q[3] = 0, and suppose that you have found
a solution û,M where Sign(û) = p, Sign(M) = A, Sign(û ·M) = q. Let q′ be the same as q
except that q′[3] 6= 0. Then unless û[i] ·M [i, 3] = 0 for all i = 1, 2, 3, it is possible to perturb
û and M to a solution of the equation p · A = q′. Similarly, one can perturb away from 0 in
other positions in q and in p and A.

As a final step, û and M can be normalized so that û and each row and column of M have magnitude
1.

We have succeeded in finding, for every “equation” of the form û = v̂ · R, either an instantiation
proving that the equation is satisfiable or an algebraic proof analogous to the one above proving
that the equation is unsatisfiable. Over the space of 3 representative vectors v̂ and 14 representative
matrices M , there are a total of 154 such valid equations. See [1] for details.

4.4 Multiplying two matrices

The problem of finding all possible sign matrices that can be the values of a product P · Q of two
particular representative matrices is much harder.

Three types of constraints are easily found:

1. The result P ·Q must be one of the 336 sign rotation matrices.

2. If we decompose the matrix P into rows then the product P ·Q decomposes into the individual
products of each row of P with Q.

If P =





v̂1
v̂2
v̂3



 then P ·Q =





v̂1 ·Q
v̂2 ·Q
v̂3 ·Q





We can then use the methods described in the previous section to limit the possible values of
v̂i · Q. (The rows v̂i are not in general representative vectors, but we can use the octahedral
rotations to transform the problem into one with representative vectors, as described earlier.)

3. We can write P · Q = (QT · PT )T , and then divide QT into rows and proceed as in part 2
above. (Again PT may not be a representative matrix, but again that does not matter.)

All three of these give necessary conditions on the possible signs of the product, and, in general,
they give different constraints, so applying them all limits the possible values of the signs. However,
they do not together give sufficient conditions; a result may satisfy all three conditions and yet not
be a possible product.

The algebraic analysis of this problem becomes quite formidable, and we have not found algebraic
arguments analogous to those in the previous section that allow us to rule out additional impossible
values. Rather, we have implemented a randomized procedure for searching for instantiations; details
are given in [1]. If the procedure does not find an instantiation for a sign equation after a specified
number of attempts, we presume that no such instantiation exists. The randomized method we used
is similar to those discussed in [12], but tailored to our particular calculus.

These cases, where a possible value cannot be excluded by the above constraints and has not been
instantiated by our search procedure, thus represent a gap in our analysis; in each individual case,
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it seems likely that there is actually no solution, though we would certainly hesitate to claim that
there are none such in the whole collection. Out of 2782 equations that satisfy the above constraints,
we have found instantiations for 2604; there are thus 178 unresolved cases. If these are indeed
unsatisfiable, that may be difficult to verify: each of these 178 cases consists of a system combining
18 quadratic equations with 27 linear inequalities over 27 variables; the constraints, moreover, are
not convex. For the time being, we have left these as open problems.

All the solutions we have found, both of vector times matrix and of matrix times matrix, have been
saved in a database, together with one sample instantiation for each sign solution.

It may be noted that the standard vertex propagation and arc propagation algorithms used in reason-
ing about constraint networks in any case in general calculate supersets of the true class of possible
labels. Therefore if such a constraint propagator were implemented using all the compositional
triples that have not been excluded, the guarantees that could be stated would be the same, and
the behavior would be almost the same, as it would be had we achieved a complete characterization
of the composition table.

4.5 Code

The code used to find the solutions, a database containing the solutions of the representative prob-
lems, and a program with a user interface to find the solution to a specific problem, are available
online at http://www.cs.nyu.edu/QualitativeRotations/. The code is 2000 lines of Java in total. The
code is currently uncommented; however, we will be happy to discuss it and provide documentation
if any readers wish to work with it.

5 Complexity and expressivity results

We have shown a number of complexity and expressivity results for existential languages over this
theory. Proofs are given in the appendix. We begin by defining constraint networks generally, and
qualitative rotation constraint networks (QRCNs) in particular.

Definition 1 Let D be a domain. A constraint network N over D is a directed graph where each
vertex corresponds to a variable that ranges over D and is labelled with a unary relation over D each
arc is labelled with a binary relation over D. An instantiation of N is an assignment of values in D
to the nodes of N such that all the labels are satisfied.

Definition 2 A k-dimensional qualitative rotation constraint network (QRCN) is a constraint net-
work over the domain of k-dimensional unit vectors in which the nodes are either unlabelled or
labelled with a k-dimensional sign vector and the arcs are labelled with a k× k sign rotation matrix.

We next define three restricted classes of QRCN’s:

Definition 3 A k-dimensional rotation Φ lies in a coordinate plane if all but 2 of the coordinates
axes are invariant under Φ.

Thus, a three-dimensional rotation lies in a coordinate plane if the axis of rotation is one of the
coordinate axes. All two-dimensional rotations by definition lie in a coordinate plane.

Let Φ is a rotation that lies in a coordinate plane, let q ∈ 1...m be the index of a coordinate axis
that is invariant under Φ and let M be the sign matrix corresponding to Φ. Then M [q, q] = + and
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for all j 6= q, M [q, j] = M [j, q] = 0. For instance, the sign matrix for a rotation around the ŷ axis
by an angle between 0 and π/2 is





+ 0 −
0 + 0
+ 0 +





Definition 4 A k-dimensional QRCN is pure if every arc is labelled with a sign matrix correspond-
ing to a rotation lying in a coordinate plane.

Definition 5 A QRCN is non-negative if all the coordinates of all the node variables are constrained
to be non-negative.

For example, in three-dimensions, each vertex variable û has one of the seven signs 〈+,+,+〉,
〈+,+, 0〉, 〈+, 0,+〉, 〈0,+,+〉, 〈+, 0, 0〉, 〈0,+, 0〉 or 〈0, 0,+〉.
We can now categorize the complexity of the satisfiability problem for a number of classes of QRCN:

Theorem 2 The problem of determining whether a QRCN is satisfiable is

A. Polynomial time for pure non-negative k-dimensional QRCNs, k ≥ 2.

B. NP-complete for two-dimensional QRCNs.

C. NP-complete for pure k-dimensional QRCNs, k ≥ 3.

D. NP-hard for general k-dimensional QRCNs, k ≥ 3.

The proofs are in appendix A.1. It is an open problem whether the satisfiability problem for general
k-dimensional QRCN’s is in NP. We conjecture that it is.

We next turn to two expressivity results. We begin by defining the concepts of two values being
distinguishable by a constraint network, and of a value being uniquely identifiable.

Definition 6 Let D be a domain and let N be a set of constraint networks over D. A value a ∈ D
is distinguishable from b ∈ D by constraint networks in N iff there exists a network N ∈ N and a
node V in N such that

• there exists an instantiation of N in which the value of V is a; and

• there does not exist an instantiation of N in which the value of V is b.

Definition 7 Let D and N be as in definition 6. A value a ∈ D is uniquely identifiable by constraint
networks in N if there exists a network N ∈ N and node V in N such that every instantiation of
N assigns a to V .

This is a special case of the more general notion of a definable relation presented in [13], definition
3.

Theorem 3 In dimension 3 or higher, any direction is distinguishable from any other direction by
pure QCRN’s.
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Theorem 4 In dimension 3 or higher, the set of directions uniquely identifiable by pure QRCN’s is
dense in the unit sphere.

Essentially, rotations in Q allow one to construct circles on the unit sphere centered at the coordinate
axes, and the proof consists in showing that there are uniquely identifiable patterns among these
circles. The proof is given in appendix A.2.

An interesting class of QRCN’s in dimensions ≥ 3 for which we have practically no such results are
QRCN’s in general position:

Definition 8 A sign rotation matrix is in general position if none of its elements are 0. A QRCN
is in general position if every arc is labelled by a matrix in general position.

For QRCN’s in general position the analogue of theorem 4 fails in the strongest possible way;
any constraint network defines an open neighborhood in the space of valuations and thus there
are no uniquely identifiable directions. However we do not know anything about the analogue of
theorem 3. We also do not know anything about the complexity of the satisfiability problem for
QRCN’s in general positions, in dimensions ≥ 3 (except that it is easily shown to be in the existential
theory of real arithmetic, and thus decidable). We conjecture, with no great confidence, that no two
directions with the same sign vector are distinguishable by general position QRCN’s and that the
decision problem is NP-complete.

6 Future Work

The immediate problems to be addressed would be to close the gaps in our analysis of signed matrix
composition, and to extend the complexity/expressivity results discussed in the previous section.

It would also be helpful to be able to generate random solutions to a specified sign equation. It is not
very important to achieve any specific distribution (e.g. uniform), but it would be desirable to have
a program that at least achieves reasonable coverage; that is, for any given sign equation Q and for
any instantiation I satisfying Q, in some reasonable number of trials the program outputs a solution
to Q fairly close to I. The use of perturbation in the current technique for finding instantiations has
the consequence that, in some cases, instantiations far from 0 may not be found.

More interestingly, the theory could be extended to other tilings of the unit sphere beyond the
octahedral, though the sign calculus would no longer be applicable. Indeed a very similar theory can
be developed for any of the regular (Platonic) polyhedra. Consider, for example, a fixed icosahedron
centered at the origin, with individual names assigned to each vertex, edge, and face. A direction can
be qualitatively characterized by identifying the vertex, edge, or face it passes through. A rotation
can be characterized as follows. Pick a particular face of the icosahedron, and let p̂, q̂, r̂ be the
vertices of that face. Then characterize a rotation Γ in terms of the qualitative characterization of
Γ(p̂),Γ(q̂), and Γ(r̂).

The resultant theory is then very similar to the one we have developed here. The symmetry group
of the icosahedron has 60 elements. There are still three representative qualitative directions, corre-
sponding to vertex, edge, and face. By our count, there are 20 representative rotations in 8 categories
(figure 5).

The geometric calculations involved are, of course, much harder than in our analysis.

Qualitative representations based on the Platonic solids can only achieve a fixed level of granularity,
as there are only five Platonic solids. One can achieve arbitrary levels of granularity by using a finer
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Figure 5: Categories of icosahedral rotations. The lines are edges of the standard icosahedron; the
red dots are the images of x̂, ŷ, ẑ

tiling of the unit sphere, at the cost of losing some of the symmetries. Choose a reference tiling, and
three reference directions p̂, q̂, r̂; characterize a direction in terms of the element of the tiling that it
lies in; and characterize a rotation in terms of the characterizations of the images of p̂, q̂, r̂.

A final problem is to integrate a theory of translation so that, for example, in the case of the robotic
arm discussed in section 3 one can reason qualitatively about the positions of the segments as well
as their orientation.
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Appendix A: Proofs of theorems

This appendix contains the proofs of the theorems discussed in section 5.

Appendix A.1. Complexity

We begin by establish the NP-completeness of the satisfiability problems for two-dimensional QRCNs
in which every arc is labelled with the sign matrix

[

+ −
+ +

]

It is convenient to associate unit vectors with their angle from the x̂ axis, and thus with a number
in the interval [0, 2π). We can then restate the problem as follows:

Given:

• A set of variables U = {u1 . . . um} ranging over the half open interval [0, 2π).

• A collection of constraints of the form 0 < (uj − ui) mod 2π < π/2. That is, the
positive angle from ui to uj is positive and less than 90◦.

Is there a valuation of the variables satisfying all the constraints?

For the remainder of section A.1, a “constraint” means a constraint of this form, unless otherwise
specified. The “qualitative two-dimensional rotation problem” is the satisfiability problem for a
system of such constraints. We prove that this problem is NP-complete.

A.1.1: Preliminaries

We abbreviate the constraint 0 < (uj − ui) mod 2π < π/2 in the form ui→uj , and view a system
of such constraints as defining a directed graph, where the vertices are the variables and the arcs
are the constraints.

Any value ui ∈ [0, 2π) has a unique expression in the form ui = ki · π/2 + fi where ki ∈ {0, 1, 2, 3}
and 0 ≤ fi < π/2.

Lemma 1 Let ui = ki · π/2 + fi and uj = kj · π/2 + fj. Then

0 < (uj − ui) mod 2π < π/2 iff either [kj = ki and fi < fj ] or [kj = ki + 1 mod 4 and fj < fi]

Proof: Immediate.

The cardinal directions are the values 0, π/2, π, and 3π/2.

Throughout this section, let 0 < ǫ < π/10 be a fixed small value. The proof actually goes through
for any value of ǫ between 0 and π/4, but in visualizing the construction, it is helpful to think of ǫ
as quite small.

Definition 9 A valuation φ(u) over the set of variables U is an ǫ-valuation if, for every u ∈ U ,
φ(u) is within ǫ following one of the cardinal directions. That is, 0 < φ(u) − kπ/2 < ǫ for some
k ∈ {0, 1, 2, 3}.
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Lemma 2 If a system of constraints has a satisfying valuation then for any ǫ > 0 it has a satisfying
ǫ-valuation.

Proof: Let ψ(u) be a satisfying valuation. For i = 1 . . .m let φ(ui) = ki ·π/2+fi. Sort the collection
of numbers fi and let σ be the corresponding permutation of indices. Thus σ(i) < σ(j) if and only
if fi < fj .

Define φ(ui) = kiπ/2+ ǫσ(i)/(n+1). It is easily verified that φ is an ǫ valuation and that φ(ui) and
φ(uj) satisfy the condition of lemma 1 if and only if ψ(ui) and ψ(uj) satisfy the same condition.

Corollary 1 The qualitative two-dimensional rotation problem is in NP.

Proof: Take ǫ = π/8. If there exists a satisfying valuation then the construction in lemma 2 shows
that there exists a valuation where every variable has a value of the form kiπ/2 + (mπ/10(n + 1))
for m = 1 . . . n. This valuation is a witness; checking that the conditions of lemma 1 are satisfied is
just a matter of checking the inequalities.

Corollary 2 The satisfiability problem for two-dimensional QRCN’s is in NP.

Proof: We can modify the proof of lemma 2 to include rotations that are an integer multiple of π/2
or that lie in one of the intervals (π/2, π), (π, 3π/2) or (3π/2, 2π). The argument that a valuation
satisfying a two-dimensional QCRN exists if and only if an ǫ valuation exists is essentially the same
as the proof of lemma 2. By the same argument as in corollary 1, such an ǫ valuation is a witness;
it is straightforward to check that it satisfies all the constraints.

In view of lemma 2 we can restrict attention to ǫ-valuations, and we do so for the remainder of this
section. We also eliminate the explicit reference to the valuation, and use the symbol ui to refer
either to the variable or its value, in the usual way.

Given an ǫ-valuation, we can write each value ui in the form ui = qi ·π/2+ ei, where qi ∈ {0, 1, 2, 3}
and 0 < ei < ǫ. The number qi is called the quadrant of ui.

Note that in an ǫ-valuation, if ui→uj then one of two things are true:

• qj = qi and 0 < ej − ei < ǫ. In this case, we say there is a short arc from ei to ej .

• qj = qi + 1 mod 4 and −ǫ < ej − ei < 0. In this case, we say there is a long arc from ei to ej .

A.1.2: Qualitative two-dimensional rotation is NP-hard

We now prove that qualitative two-dimensional rotation is NP-hard. The proof is by reduction from
graph 4-coloring. We build up the construction in pieces.

Lemma 3 Consider a system of constraints that forms a five cycle u→v→w→x→y→u. Any ǫ-
valuation satisfying this system:

a. goes once around the unit circle.

b. has one short arc and four long arcs.

Proof: Since it starts and ends with u, it must go around the unit circle at least once. Since each
of the arcs is less than π/2, their total must be less than 5π/2, so it cannot go around the unit circle
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twice. Since it goes once around the unit circle, it must transition from one quadrant to the next
exactly four times; these are the four long edges.

In fact the above generalizes to any cycle of edges that goes once around the circle

Lemma 4 Let u1→ . . .→un→u1 be a cycle of n-edges and consider a ǫ-valuation in which this cycle
goes once around the unit circle. Then there are 4 long edges in the cycle (those that transition from
one quadrant to the next) and n− 4 short edges (those that stay in the same quadrant).

Proof: Since the cycle goes once around the unit circle, it transits from one quadrant to the next
exactly four times. By definition of an ǫ-valuation, these are the long edges. The rest are short
edges.

We now give a construction with many variables that goes once around the unit circle.

Definition 10 For any m ≥ 2 the simple 5m-cycle is defined as the following system of variables
and constraints

• There are 5m variables arranged in a cycle: u0→u1→ . . .→u5m−1→u0 This is the large cycle
of the construction

• The variables umi, i = 0 . . . 4 are ordered in a 5-cycle: u0→um→u2m→u3m→u4m→u0. These
are the keystone variables.

• The variables uj are constrained to be within π/2 of the preceding keystone. That is, for
i = 0 . . . 4, for 1 ≤ j ≤ m− 1, there is an arc umi→umi+j.

Figure 6 shows the simple 15-cycle.

Lemma 5 In any valuation satisfying the simple 5m-cycle, the large cycle goes once around the
unit circle.

Proof: The 5-cycle of keystone variables must go once around the unit circle, and the remaining
variables are constrained to lie between them in sequence.

We next give a construction that forces a pair of short edges to lie in different quadrants.

Definition 11 Let a→b and c→d be arcs in a system of constraints.
The cycle a→b→e→f→c→ d→g→h→a is called a separator for the two arcs a→b and c→d.

Figure 7 illustrates a separator.

Lemma 6 Suppose that a system of constraints contains two arcs a→b and c→d and contains a
separator for these. Consider any ǫ-valuation in which a→b and c→d are both short arcs. Then
these two arcs are in different quadrants.

Proof: Note that the separator is an 8-cycle, and thus cannot go twice around the unit circle, since
every arc is less than π/2. Therefore, it goes once around the unit circle. By lemma 4, four of the
arcs are long. Therefore at least one of the arcs between b and c is long and at least one of the arcs
between d and a is long.
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Lemma 7 Let a→b→e→f→c→d→g→h→a be a separator for a→b and c→d. Let i be 1,2, or 3.
Let φ be an ǫ-valuation over a, b. Then there exists an ǫ-valuation φ′ over {a, . . . , h} extending φ in
which in which c = (a+ iπ/2) mod 2π and d = (b+ iπ/2) mod 2π

Proof: Without loss of generality, assume that a is in the 0 quadrant (just to save writing ”mod
2π” a lot of times). For brevity, we omit the function φ′ and just write x for φ′(x). There are six
cases:

1.A 0 < a < b < ǫ, i = 1. Let c = a + π/2, d = b + π/2, e = (2b + ǫ)/3, f = (b + 2ǫ)/3,
g = (a+ 2b)/3 + π, h = (2a+ b)/3 + 3π/2. (Shown in figure 7).

1.B 0 < a < b < ǫ, i = 2. Let c = a + π, d = b + π, e = (b + 2ǫ)/3, f = (2b + ǫ)/3 + π/2,
g = (b+ 2ǫ)/3 + π, h = (2b+ ǫ)/3 + 3π/2.

1.C 0 < a < b < ǫ, i = 3. Let c = a+ 3π/2, d = b+ 3π/2, e = (b+ 2ǫ)/3 + π/2, f = (2b+ ǫ)/3 + π,
g = (2b+ ǫ)/3 + 3π/2, h = (b+ 2ǫ)/3 + 3π/2.

2.A 0 < a < ǫ, π/2 < b < a+π/2, i = 1. Let c = a+π/2, d = b+π/2, e = (2b+c)/3, f = (b+2c)/3,
g = (a+ 2ǫ)/3 + π, h = (2a+ ǫ)/3 + 3π/2.

2.B 0 < a < ǫ, π/2 < b < a + π/2, i = 2. Let c = a + π, d = b + π, e = (2a + ǫ)/3 + π/2,
f = (a+ 2ǫ)/3 + π/2, g = (2a+ ǫ)/3 + 3π/2, h = (a+ 2ǫ)/3 + 3π/2.

2.C 0 < a < ǫ, π/2 < b < a + π/2, i = 3. Let c = a + 3π/2, d = b − π/2, e = (a + 2ǫ)/3 + π/2,
f = (2a+ ǫ)/3 + π, g = (2d+ a)/3, h = (d+ 2a)/3.

It is straightforward to check that in each case the separator constraints are satisfied.

We now have all the pieces, and we can put them together into the construction.

Lemma 8 There is a polynomial-time reduction from graph 4-coloring to qualitative two-dimensional
rotation.

Proof: Let G be the graph to be 4-colored. Let m be the number of vertices in G. We construct
the following system of constraints:

• For each vertex v of G, construct a simple 5m-cycle with variables v0 . . . v5m−1.

• For each edge v − w, for each pair of corresponding arcs in the large cycle vi→vi+1 and
wi→wi+1, create a separator between these two arcs.

We need to show that:

I. If the system of constraints is satisfiable, then the graph is 4-colorable.

Proof: If the system is satisfiable, it has an ǫ-valuation.

I claim that, in that valuation, there is at least one index i (in fact, at least m indices) for which
vi→vi+1 is a short arc for all the variables. Proof: Each variable v can supply long arcs for only 4
indices; hence at most 4m indices are associated with any long arcs; hence m indices are associated
with only short arcs.

Let i be an index with only short arcs. Let u− v be an edge in graph G. By construction, there is
a separator for ui→ui+1 and vi→vi+1. By lemma 6 ui and vi are in different quadrants. Hence, if
we color each vertex u in the graph by the quadrant of ui, we have a four-coloring of G.
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II. If the graph is 4-colorable then the system of constraints is satisfiable.

Proof: Assume that the colors are 0 . . . 3. If vertex u is colored 0, then

• for i = 0 . . . 2m− 1, ui← (i+ 1)ǫ/(2m+ 1)

• for i = 2m. . . 3m− 1, ui← π/2 + (i+ 1− 2m)ǫ/(m+ 1)

• for i = 3m. . . 4m− 1, ui← π + (i+ 1− 3m)ǫ/(m+ 1)

• for i = 4m. . . 5m− 1, ui← 3π/2 + (i+ 1− 4m)ǫ/(m+ 1)

It is easily verified that all the constraints of the 5m cycle are satisfied.

If vertex u is colored c = 1, 2, or 3, then rotate this assignment by cπ/2. Clearly the 5m cycle
constraints are still satisfied. Moreover since every pair of corresponding arcs for variables connected
by arcs are place iπ/2 apart for i = 1, 2, or 3, by lemma 7 the separator variables can be assigned
so as to satisfy the separator constraints.

Theorem 5 The qualitative two-dimensional rotation problem is NP-complete.

Proof: Corollary 1 and lemma 8.

Corollary 3 The satisfiability problem for three-dimensional QRCN’s is NP-hard.

Proof: The qualitative two-dimensional rotation problem is equivalent to the special case of the
three-dimensional QRCN where vertices are unlabelled, and every rotation is a positive rotation
between 0 and π/2 around the ẑ axis; that is, the sign matrix of the rotation is





+ − 0
+ + 0
0 0 +





Whether this problem is in NP, we do not know, though we conjecture that it is.

A.1.3: Tractability

Theorem 6 The satisfiability problem over the class of pure non-negative k-dimensional QRCN’s
is decidable in polynomial time.

Proof: Note that for k = 2 a pure non-negative QRCN is simply a collection of order constraints
over the angles, which can be solved by topological sort. We therefore assume that k ≥ 3.

We give the proof for the case k = 3; the proof for k > 3 is essentially identical.

1. A positive vector ~u = 〈ux, uy, uz〉 is a unit vector if and only if u2
x + u2

y + u2
z = 1.

2. Let û = 〈ux, uy, uz〉 and v̂ = 〈vx, vy, vz〉 be positive unit vectors. Then there is a positive rotation
around the x̂ axis mapping û into v̂ if and only if v2

x = u2
x, v2

y < u2
y and v2

z > u2
z. Likewise there is a

positive rotation around the ŷ axis mapping û into v̂ if and only if v2
y = u2

y, v2
z < u2

z and v2
x > u2

x;
and there is a positive rotation around the ẑ axis mapping û into v̂ if and only if v2

z = u2
z, v

2
x < u2

x

and v2
y > u2

y.
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Therefore, the QRCN is equivalent to a set of linear inequalities over the quantities u2
x, u

2
y, u

2
z,

where u ranges over all the variables. But the satisfiability of a set of linear inequalities (linear
programming) is decidable in polynomial time [10].

Theorem 7 The satisfiability problem for a pure k-dimensional QRCN is NP-complete.

Proof: That the problem is NP-hard follows from lemma 8, since the 2-dimensional qualitative
rotation problem is just the special case of the pure QRCN problem, where the arcs are restricted
to be rotations around the ẑ axis.

To show that the problem is NP-easy, note that if the solver “guesses” the sign vector of each of
the vector variables, then the rest of the content of the network can be expressed as a set of linear
inequalities over the squares of the coordinates of the vectors, as in the proof of theorem 6.

At this point we have all the significant upper and lower complexity bounds for theorem 2 of section 5;
the remaining bounds follow from one problem being a special case of another.

Appendix A.2: Expressivity results

In this section, we prove the following two expressivity results:

Theorem 3: In dimension k ≥ 3, any direction is distinguishable from any other direction by pure
QRCNs.

Theorem 4: In dimension k ≥ 3, the set of directions uniquely identifiable by pure QRCNs is dense
in the unit sphere.

Note that at most countably many directions can be uniquely identifiable since there are only
countably many different networks, each with finitely many nodes.

Clearly, a uniquely identifiable direction is distinguishable from any other direction.

Note that the situation in two dimensions is very different; it is easily proved that no two directions
with the signs [+,+] are distinguishable by two-dimensional QRCNs and a fortiori that no such
direction is uniquely identifiable. Proof: Any monotonic bijection from the interval (0, π/2) to itself
preserves the signs of all rotations.

We give the proofs of these in three-dimensions; since the three-dimensional case is a special case of
the higher-dimensional case, this also establishes the result for higher dimensions.

We begin by constructing a particular networkN1 that allows us to construct the vector [
√

2/2,
√

2/2, 0].

Let N1 be the network with

• Three nodes â, b̂, ĉ.

• The sign labels â = [+, 0,+]; b̂ = [0,+,+]; ĉ = [+,+, 0].

• Arcs â→b̂, b̂→ĉ, ĉ→â with the following labels.

b̂ = â ·





0 1 0
−1 0 0
0 0 1



 ĉ = b̂ ·





0 0 −1
0 1 0
1 0 0



 â = ĉ ·





1 0 0
0 0 −1
0 1 0





That is: â is on the longitudinal arc from x̂ to ẑ. b̂ is on the longitudinal arc from ŷ to ẑ. ĉ is on
the equatorial arc from x̂ to ŷ. Also b̂ is the image of â under a rotation around the ẑ axis of π/2.
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Direction ĉ is the image of b̂ under a rotation around the ŷ axis of π/2. Direction â is the image of
ĉ under a rotation around the x̂ axis of π/2.

The construction is shown in figure 8. In reading figures 8, 9, and 10 it should be kept in mind that,
though the triangle x, y, z is displayed as an equilateral triangle, it is in fact an octant on a sphere,
and that the angles at x, y, and z are all right angles

Throughout this, for any directions â, b̂, the notation 6 âb̂ is the angle between â and b̂ as measured
from the center of the sphere (the origin). This of course is equal to the length of the geodesic from

â to b̂ on the sphere, and so obeys the triangle inequality.

Lemma 9 In the network N1 defined above: Direction â is the midpoint of the longitudinal arc
from x̂ to ẑ; that is, [

√
2/2,
√

2/2, 0]. Direction b̂ is the midpoint of the longitudinal arc from ŷ to ẑ.
Direction ĉ is the midpoint of the equatorial arc from x̂ to ŷ.

Proof: Because of the rotations we have 6 ẑâ = 6 ẑb̂; 6 ŷb̂ = 6 ŷĉ; 6 x̂ĉ = 6 x̂â. Also 6 ẑâ+ 6 x̂â = π/2;
6 ẑb̂+ 6 ŷb̂ = π/2; 6 x̂ĉ+ 6 ŷĉ = π/2.

So all these angles are equal to π/4.

For any two orthogonal directions â, b̂ and for any r ∈ [0, 1], let φ̂(â, b̂, r) be the direction on the arc

from â to b̂, a fraction r of the way along; that is,

6 â, φ̂(â, b̂, r) = r · π/2;
6 b̂, φ̂(â, b̂, r) = (1− r) · π/2.

Definition 12 A real-valued function Γ is contracting if, for all a, b, |Γ(a) − Γ(b)| < |a − b|. (In
other words, it obeys a Lipschitz condition with constant less than 1.)

It is immediate that any contracting function is continuous.

Lemma 10 There exists a function Γ : (0, 1)→(0, 1) and a network Nx,y with two distinguished
nodes P and Q with the following properties:

A. Γ is continuous and strictly monotonic; that is, if a < b then Γ(a) < Γ(b).
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B. limr→0+Γ(r) = 0.

C. limr→1−Γ(r) = 1/2.

D. Γ is contracting.

E. For any r ∈ (0, 1) if P has the value φ̂(x̂, ŷ, r) then Q must have the value φ̂(x̂, ŷ,Γ(r)) in any
assignment satisfying N .

Condition (e) above essentially states that the network N computes the function Γ.

Proof: The network implements the following system of geometric constraints (figure 9):

1. Let â be the input value φ̂(x̂, ŷ, r).

2. Draw the circular arc A through â centered at x̂. Let b̂ be the intersection of A with the
longitudinal arc from x̂ to ẑ.

3. Let m̂ be the midpoint of the arc of A between â and b̂.

4. Draw the circular arc C through m̂ centered at ŷ, and the circular arc D through m̂ centered
at ẑ. Let ĉ be the intersection of B with the equatorial arc from x̂ to ŷ and let d̂ be the
intersection of C with the longitudinal arc from x̂ to ẑ.

5. Let Γ(r) = 6 x̂ĉ.

It is geometrically obvious that Γ is continuous and monotonic (part A above) and that limr→0+ Γ(r) =
0 (part B). For part C, note that as r→1−, the arc A converges to the longitudinal arc from ŷ to

ẑ and m̂ converges to the midpoint of that arc. Hence ĉ and d̂ converge to midpoints of C and D
respectively, so Γ(r) converges to 1/2.

To show that Γ is contracting (part D), let â and â′ be points on the x̂ − ŷ arc, with â′ between â
and ŷ. Carry out the above construction twice, first from â to midpoint m̂ to output point ĉ, then
from â′ to midpoint m̂′ to output point ĉ′ (figure 10). Since arcs A and A′ are concentric circles
on the sphere centered at x̂, we have 6 m̂m̂′ = 6 ââ′ Since m̂, m̂′, and ŷ are not collinear (do not
lie on a geodesic) we have 6 m̂m̂′ > 6 m̂ŷ − 6 m̂′ŷ. Since m̂ and ĉ lie on a circle centered at ŷ and
so do m̂′ and ĉ′ we have 6 ŷm̂ = 6 ŷĉ and 6 ŷm̂′ = 6 ŷĉ′. Since ŷ, ĉ and ĉ′ lie on a geodesic, we
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have 6 ĉĉ′ = 6 ŷĉ− 6 ŷĉ′. Putting all this together, we have 6 ĉĉ′ < 6 ââ′, which established that Γ is
contracting.

To implement this construction (part E), we define the network Nx,y as follows.

The nodes correspond to â, b̂, ĉ, d̂, and m̂.

The sign constraints are sg(â) = sg(ĉ) = [+,+, 0]. sg(b̂) = sg(d̂) = [+, 0,+]. sg(m̂) = [+,+,+].

The arcs are

b̂ = â ·





+ 0 0
0 0 +
0 + 0





That is, b̂ is the image of â under a positive rotation around the x-axis.

d̂ = ĉ ·





+ 0 0
0 0 +
0 + 0





That is, d̂ is the image of ĉ under a positive rotation around the x-axis. Note that 6 ĉx̂ = 6 d̂x̂, and
therefore 6 ĉŷ = 6 d̂ẑ.

m̂ = â ·





+ 0 0
0 + +
0 + +





That is, m̂ is an image of â under a rotation of between 0 and π/2 around the x-axis, and thus lies
on arc A.

m̂ = ĉ ·





+ 0 +
0 + 0
− 0 +





That is, m̂ is an image of ĉ under a rotation of between −π/2 and 0 around the y-axis, and thus lies
on arc C.

m̂ = d̂ ·





+ − 0
+ + 0
0 0 +




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That is, m̂ is an image of â under a rotation of between 0 and π/2 around the z-axis, and thus lies
on arc D.

Note that 6 m̂ŷ = 6 ĉŷ = 6 d̂ẑ = 6 m̂ẑ, so m̂ is the midpoint of arc A, as required.

.

Obviously we can define networks Ny,x, Nx,z, Nz,x, Ny,z, and Nz,y analogously to satisfy lemmas
analogous to lemma 10.

Definition 13 Let Γ : (0, 1) 7→ (0, 1) be a function. Define Γ′(x) = 1 − Γ(1 − x). A number r is
said to be constructible by Γ if it can be expressed in the form r = Φn(Φn−1(. . . (Φ2(Φ1(1/2)) . . .))
where each Φi is either Γ or Γ′.

Note that Γ′(1− x) = 1− Γ(x).

Lemma 11 If r is constructible, then 1− r is constructible.

Proof: Let r = Φn(Φn−1(. . . (Φ2(Φ1(1/2)) . . .)) Using the above observation and induction on n, if
one replaces every occurrence of Γ by Γ′ and vice versa, then the result is a construction of 1− r. .

Lemma 12 Let Γ : (0, 1) 7→ (0, 1) be a function satisfying the following constraints:

• Γ is monotonically increasing and contracting.

• limr→0+Γ(r) = 0

• limr→1−Γ(r) = 1/2

Then the set of all constructible numbers is dense in [0, 1].

Proof by contradiction. Suppose not; then there exists some open interval (a, b) containing such
no constructible numbers. Let us extend Γ to the interval [0,1] by defining Γ(0) = 0, Γ(1) = 1/2.
Consider the set of all maximal open intervals containing no constructible numbers. Since no two
such intervals can overlap, there can be only finitely many with size greater than b− a; hence there
is a largest open interval containing no constructible numbers (not necessarily unique). Renaming,
let (a, b) be this largest interval. Since 1/2 is a constructible number, it must not be in the interval
(a, b); hence, either a ≥ 1/2 or b ≤ 1/2. If a ≥ 1/2, then the interval (1−b, 1−a) is of equal size, and
likewise must contain no constructible numbers and is less than 1/2. Thus we can assume without
loss of generality that b ≤ 1/2. Since a and b are both less than 1/2, then by the above conditions
and the continuity of Γ, they are both in the image of Γ; that is, there exist values c and d such that
a = Γ(c), b = Γ(d). If x is in the interval (c, d) then Γ(x) is in (a, b) so Γ(x) is not constructible,
so x is not constructible. Thus (c, d) contains no constructible numbers. But since Γ is contracting,
d − c > b − a, which contradicts the assumption that (a, b) was the largest interval containing no
constructible numbers.

Lemma 13 Let r be any number constructible by Γ. Then there exists a network Hxy(r) and a node

P that construct the vector φ̂(x̂, ŷ, r).

Proof The number r can be expressed in the form r = Φn(Φn−1(. . .Φ2(Φ1(1/2)) . . .)), where each
Φi(x) is either Γ(x) or Γ′(x).

Using lemmas 9 and 10, construct a sequence of n+ 1 networks Q0, Q1 . . . Qn where
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• Q0 constructs φ̂(x̂, ŷ, 1/2)

• If Φi is Γ then Qi is a network of the form Nxy. If Φi is Γ′ then Qi is a network of the form
Nyx. In either case the input node of Qi is the output node of Qi−1.

The overall network Hxy(r) is the union of the Qi; the node P is the output of Qn.

Lemma 14 Let r and s be two numbers constructible by Γ, where r+s > 1. Let v̂ be the intersection
with sign [+,+,+] of the circle of radius r centered at x̂ and the circle of radius s centered at ŷ.
Then there is a network that constructs v̂.

Proof: Use lemma 13 to construct the points â = φ̂(x̂, ŷ, r) and b̂ = φ̂(x̂, ŷ, s). Assert that point v̂

is both the image of â under a rotation around the x-axis towards ẑ and also the image of b̂ under
a rotation around the y-axis towards ẑ. .

We can now prove the theorems.

Theorem 4 The set of directions that are uniquely identifiable in the class of pure positive QRCNs
is dense within the non-negative octant.

Proof: Immediate from lemmas 14 and 12.

Corollary 4 The set of directions that are uniquely identifiable in the class of pure QRCNs (not
necessarily positive) is dense within the unit sphere.

Proof: The construction in lemma 14 can be modified to apply to the remaining seven octants,
simply by changing the sign associated with the vector ~v.

Theorem 3 Any two directions are distinguishable in the class of pure QRCNs.

Proof: Let â 6= b̂ be two directions. If they have different sign signatures, then that sign distinguishes
them. Assume they have the same signs; without loss of generality, assume their signs are all non-
negative. It must be the case that either 6 x̂â 6= 6 x̂b̂ or that 6 ŷâ 6= 6 ŷb̂. (If both are equal, then
they are both at the intersection of the same circles around x̂ and ŷ; but there is only one such
intersection in the positive octant.)

Assume without loss of generality that 6 x̂â < 6 x̂b̂. Using lemma 12 let r be a constructible number
between 6 x̂â and 6 x̂b̂. Using lemma 13, construct a network N whose output is r̂ = φ̂(x̂, ŷ, r). Let

p̂ = φ̂(x̂, ŷ, 6 x̂â). Supplement N with a node A for â and node P for p̂ and with the arcs stating
that â is the image of p̂ under a rotation around the x-axis and that r̂ is the image of p̂ under a
positive rotation around the z-axis. Then the network is satisfied by â at node A, but not by b̂ at
node A. .
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