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Attack Resistance of Power-Law
Random Graphs in the Finite-
Mean, Infinite-Variance Region
Ilkka Norros and Hannu Reittu

Abstract. We consider a conditionally Poisson random-graph model in which the mean
degrees, “capacities,” follow a power-tail distribution with finite mean and infinite
variance. Such a graph of size N has a giant component that is supersmall in the sense
that the typical distance between vertices is of order log log N . The shortest paths
travel through a core consisting of nodes with high mean degrees. In this paper we
derive upper bounds for the distance between two random vertices when an upper part
of the core is removed, including the case that the whole core is removed.

1. Introduction

Power-law (or scale-free) random graphs have become popular objects of both
applied and theoretical interest, because they are simple to define and generate
and yet share some important characteristics with many large and complex real-
world networks. The mathematical models help us to understand how and under
what conditions those characteristics emerge, and this understanding can be
valuable also in the design of new artificial networks.

The general characteristic of power-law random graphs is that their degree
distribution possesses a regularly varying tail, the most interesting region of tail
exponents being that of finite mean and infinite variance. Several models with
these features have been studied. In this paper, we work with the conditionally
Poisson random graph [Norros and Reittu 06], a modification of the expected
degree sequence model of [Chung and Lu 03]. We draw an i.i.d. sequence of
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mean degrees, “capacities,” that follow a Pareto distribution with finite mean
and infinite variance.

Our graph of size N has a giant component that is ultrasmall in the sense
that the typical distance between vertices is proportional to log log N (more
precisely, this is an upper bound, like most of our distance results), whereas
a similar random graph whose degrees have the same mean but finite variance
cannot offer better than log N scalability of distances. Remarkably, the speciality
of the infinite variance case is the emergence of a “core network” consisting of
nodes of high degree, through which the short paths typically travel. It is now
natural to ask what happens to these distances if vertices with highest degrees
are deleted. Our main findings can be summarized as follows:

(i) Any deletion of core vertices leaves the asymptotic size of the largest giant
component intact.

(ii) If vertices with capacity greater than Nγ are deleted, γ not depending
on N , then paths that would have gone through the deleted vertices can
be repaired using “backup paths” that increase the distances only by a
constant depending on γ but not on N . This increase is negligible on the
log log N scaling of distances.

(iii) If the whole core is removed (for the exact meaning of this, see Section 2),
the distances still scale slightly better than log N .

Because of structural similarity (compare [Reittu and Norros 04] with [Norros
and Reittu 06]), we conjecture that our results are transferable to the configu-
ration model of [Newman et al. 01, Reittu and Norros 04]. Perhaps they can be
extended even to preferential attachment models in the finite-mean and infinite-
variance region, since van der Hofstad and Hooghiemstra showed recently that
these models share with the previously mentioned models the log log scalability
of distances [van der Hofstad and Hooghiemstra 07].

It is worth pointing out how our “invulnerability” results are related to the
well-known vulnerability result of [Bollobás and Riordan 03] (which gives rigor to
an earlier observation in [Albert et al. 00]). The models are different, of course.
As regards the results, however, the main difference is that the attacks considered
in [Bollobás and Riordan 03] delete a positive fraction of vertices, choosing the
largest ones in terms of degree, whereas our core consists of an asymptotically
negligible fraction of vertices. It is plausible that such a more massive attack
would have consequences in our model similar to those found in [Bollobás and
Riordan 03].

The next section specifies the graph model and reviews the relevant results
of [Norros and Reittu 06]. Some of them are slightly sharpened in Section 3.
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Section 4 applies results on the diameter of classical random graphs to measure
the core network in the horizontal direction. The main result on robustness
against core losses is stated and proven in Section 5.

2. Model and Earlier Results

Throughout this paper, we work with the following conditionally Poisson power-
law random graph model [Norros and Reittu 06]. There are N vertices that
possess, respectively, i.i.d. “capacities” Λ1, . . . , ΛN with distribution

P(Λ > x) = x−τ+1, x ∈ [1,∞), τ ∈ (2, 3).

Given Λ = (Λ1, . . . , ΛN ), each pair of vertices {i, j} is connected with Eij edges,
where

Eij ∼ Poisson
(

ΛiΛj

LN

)
, LN =

N∑
j=1

Λj,

and the Eij ’s are independent. Loops, i.e., the case i = j, are included for
principle, although they have no significance in the present study. Given Λ, the
degree of vertex i then has the distribution Poisson(Λi). The resulting random
graph is denoted by GN .

The following coupling between neighborhood shells and branching processes
will play an important role, as it did in [Norros and Reittu 06]. Fix N , and
assume that the sequence Λ has been generated and probabilities are now con-
ditioned on it. We shall consider a marked branching process, i.e., a branching
process in which each individual is associated with some element of the mark
space {1, . . . , N}. More specifically, let us define a process (Z,J) = (Zn, (Jn,i)),
where Zn is the size of generation n, and Jn,i ∈ {1, . . . , N} is the mark of
member i of generation n. We set Z0 ≡ 1 and take J0,1 from the uniform dis-
tribution U{1, . . . , N}. The process then proceeds so that an individual bearing
mark i gives birth independently to a Poisson(ΛiΛj/LN) distributed number of
j-marked members of the next generation for each j = 1, . . . , N .

On the other hand, we consider the neighborhood sequence around a random
vertex of GN . Take a vertex i0 from uniform distribution, and define recursively

N0(i0) = {i0} ,

Nk+1(i0) =
{

j ∈
( k⋃

l=0

Nl(i0)
)c

: j ↔ Nk(i0)
}
.

The following coupling was proven in [Norros and Reittu 06].
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Proposition 2.1. Let (Z,J) be the marked branching process defined above. Define a
reduced process by proceeding generation by generation, i.e., in the order

J0,1; J1,1, J1,2, . . . , J1,Z1 ; J2,1, . . . ,

and pruning (that is, deleting) from (Z,J) each individual whose mark has pre-
viously appeared, together with all its descendants (these are considered as not
seen in the procedure). Denote the resulting finite process by (Ẑ, Ĵ), and let Ĵk

be the set of the marks in generation k of the reduced process. Then the sequence
of the sets Ĵk has the same distribution as the sequence Nk.

Moreover, we observed that the size of each generation and its marks can be
generated independently. Denote by qN the distribution

qN (j) .=
Λj

LN
, j = 1, . . . , N, (2.1)

and by π∗ the mixed Poisson distribution Poisson(Γ), where Γ is a random
variable with distribution

P(Γ ∈ dx) = xP(Λ ∈ dx) /E {Λ} .

Obviously, the distribution of Poisson(ΛJ(N)), J (N) ∼ qN , converges weakly to
π∗ in probability.

Let J
(N)
1 , J

(N)
2 , . . . be i.i.d. random variables with distribution qN , and let

J
(N)
0 be a random variable with uniform distribution on {1, . . . , N}, independent

of the previous ones; we often suppress the superscript (N). Start now with
(Z̃0 = 1, J0), and proceed generationwise by drawing the size of the (n + 1)st
generation from the distribution

Z̃n+1 ∼ Poisson

⎛
⎝ Mn∑

i=Mn−1+1

ΛJi

⎞
⎠ ,

where M−1 = 0, Mn =
∑n

0 Z̃k, and then giving each individual a fresh mark
from the sequence JMn+1, JMn+2, . . . .

Proposition 2.2. The marked generation sequence (Zn, (Jn,i)) is stochastically equiv-
alent to (

Z̃n, (JMn−1+1, . . . , JMn)
)
.

We next turn to the definition of the core network mentioned in the introduc-
tion. Fix an increasing function � : N → R such that

�(1) = 1,
�(N)

log log log N
→ 0,

�(N)
log log log log N

→ ∞ as N → ∞, (2.2)
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and define

ε(N) :=
�(N)
log N

.

Note that
ε(N) → 0, N ε(N) = e�(N) → ∞ as N → ∞. (2.3)

Define recursively the functions

β0(N) =
1

τ − 1
+

ε(N)
τ − 2

,

βj(N) = (τ − 2)βj−1(N) + ε(N), j = 1, 2, . . . , (2.4)

and set

k∗ .=
⌈

log log N

− log(τ − 2)

⌉
.

For N sufficiently large, we have β0(N) > ε(N)/(3 − τ), and the sequence
(βk(N))k=0,1,... decreases toward the limit value ε(N)/(3 − τ). With k = k∗,
we are already in the ε(N) order of magnitude:

βk∗(N)(N) ≤ ε(N)
(
1 +

∞∑
i=0

(τ − 2)i
)

=
4 − τ

3 − τ
ε(N). (2.5)

The key of our analysis of GN is the notion of its core C, consisting of all
vertices with capacity greater than Nβk∗ . Note that the exact boundary of the
core depends on �(N) and is thus somewhat arbitrary.

By the definition of ε(N), we can choose a natural number κ = κ(N) such
that

κ(N)
Nθε(N)

→ ∞,
κ(N)
k∗(N)

→ 0, as N → ∞, (2.6)

where θ = (τ −2)(4− τ)/(3− τ). We can now collect the main results of [Norros
and Reittu 06] in the following theorem:

Theorem 2.3.

1. The graph GN has a.a.s. (asymptotically almost surely) a giant component
whose relative size approaches the value

1 −
∞∑

j=1

P(D = j) P

(
Z(π∗)
∞ = 0

)j

, (2.7)

where D is distributed as the conditionally Poisson variable Poisson(Λ), and
(Z(π∗)

n ) is a Galton–Watson branching process with offspring distribution π∗.
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2. A random vertex of the giant component is a.a.s. connected with the core C in
fewer than κ(N) hops. The distribution of the capacity of the first core vertex
found in a random-order breadth-first neighborhood search is asymptotically
identical to the distribution of J

(N)
nC , where nC = inf

{
n : J

(N)
n ∈ C

}
.

3. A random vertex of the core is a.a.s. connected with the vertex i∗ with highest
capacity in at most k∗ hops.

4. As a consequence of the previous items, the distance between two randomly
chosen vertices of the giant component is at most 2k∗(N)(1 + o(1)) a.a.s.

Set Tγ,δ =
{
i ∈ {1, . . . , N} : Λi ∈ (Nγ , N δ]

}
. The idea of the proof of claim 3

of Theorem 2.3 is that if the core is divided into “tiers”

V0 = {i∗} ,

V1 = Tβ1,∞ \ {i∗} ,

Vk = Tβk,βk−1 , k = 2, . . . , k∗,

then for any k > 0, a random vertex of tier k has a.a.s. an edge to Vk−1∪· · ·∪V0.

3. Auxiliary Results

In this section we sharpen the estimate used in [Norros and Reittu 06] for the
aggregate capacity of a set of the form {i : Λi > Nγ}. In particular, we obtain
that the aggregate capacity of a tier Tγ,γ+ε(N) is asymptotically overwhelmingly
larger than all strictly greater vertex capacities together. This holds also when
γ depends on N .

We use frequently the notation x + I := {x + y : y ∈ I}, where x ∈ R and
I ⊂ R is an interval.

Lemma 3.1. Let α = α(N) ∈ (0, ᾱ), where ᾱ < 1/(τ − 1). Then for N sufficiently
large,

P

(∑N
i=1 Λi1{Λi>Nα}

N1−(τ−2)αE {Λ} ∈
(

1
4
, 4
))

≥ 1 −
(

E {Λ}
2

)−τ+1

N−(1−(τ−1)ᾱ)(τ−2).

Proof. Define

p(n) = P

( 1
n

∑n
i=1 Λi

E {Λ} �∈
(

1
2
, 2
))

, Nα =
N∑
1

1{Λi>Nα}.
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Since P[Λ > y |Λ > x] = P(xΛ > y), we have the distribution equality

N∑
i=1

Λi1{Λi>Nα}
D= Nα

Nα∑
k=1

Λ̃k, (3.1)

where the Λ̃k’s are fresh independent copies of Λ. Then

P

(
1

Nα

∑Nα

k=1 Λ̃k

E {Λ} �∈
[
1
2
, 2
])

= E {p(Nα)} (3.2)

≤ P

(
Nα <

1
2

E {Nα}
)

+ E

{
p(Nα)1{Nα≥ 1

2 E{Nα}}
}

.

The distribution of Nα is Bin(N, N−(τ−1)α). The well-known bounds for a bi-
nomial random variable X ,

P(X < E {X} − x) ≤ exp
(
− x2

2E {X}

)
,

P(X > E {X} + x) ≤ exp

(
− x2

2E {X} +
x3

E {X}3

)
,

yield

P

(
Nα

E {Nα}
<

1
2

)
≤ e−E{Nα}/8, P

(
Nα

E {Nα}
> 2
)

≤ e−E{Nα}/8+1. (3.3)

By the well-known result on subexponential variables with finite mean (see, e.g.,
[Goldie and Klüppelberg 98]),

P

(
1
n

n∑
i=1

Λi > 2E {Λ}
)

∼ P(max(Λ1, . . . , Λn) > nE {Λ}) ∼ E {Λ}−τ+1
n−τ+2.

For the large deviation to the opposite direction, the classical Cramér theorem
applies, and the probability goes to zero at exponential speed. Thus, for N

sufficiently large,

E {p(Nα)} ≤ e−E{Nα}/8 +
3
2

E {Λ}−τ+1

(
E {Nα}

2

)−τ+2

. (3.4)

Combining (3.1)–(3.4), replacing α by the worse case ᾱ, and bounding the ex-
ponential terms from above by replacing the factor 3/2 in (3.4) by 2, we get the
assertion.
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Lemma 3.2. Let α0(N), α1(N) ∈ (0, ᾱ), where ᾱ < 1/(τ −1) and α0(N) ≤ α1(N)−
ε(N). Then for N sufficiently large,

P

(∑N
i=1 Λi1{Λi∈(Nα0 ,Nα1 ]}
N1−(τ−2)α0E {Λ} ∈

(
1
5
, 5
))

≥ 1−2
(

E {Λ}
2

)−τ+1

N−(1−(τ−1)ᾱ)(τ−2).

Proof. This follows by applying Lemma 3.1 to both α0 and α1 and noting that
N−(τ−2)(α1−α0) → 0.

Lemma 3.3. For any fixed b > 1,

∑N
i=1 Λi1{Λi>Nbε(N)}∑N
i=1 Λi1{Λi>Nε(N)}

→ 0 in probability.

Proof. By Lemma 3.1,

∑N
i=1 Λi1{Λi>Nbε(N)}∑N
i=1 Λi1{Λi>Nε(N)}

· N (b−1)(τ−2)ε(N) ∈
[

1
16

, 16
]

a.a.s.,

and the claim follows, since N ε(N) → ∞.

Lemma 3.3, combined with our earlier results in [Norros and Reittu 06], entails
the important observation that the first contact to the core is a.a.s. close to its
bottom:

Proposition 3.4. Fix b > 1. Let IN be a random node of the giant component of
GN . Asymptotically almost surely, IN is connected to Tβk∗ ,bβk∗ with a path that
avoids the set

{
i : Λi > N bβk∗

}
, and whose length coincides with the distance

between IN and the core.

Proof. Since the proportional size of the core shrinks to zero, it suffices to consider
the case that IN is picked from outside the core. By the results in [Norros and
Reittu 06], conditional that IN is connected with the core, one of the minimal-
length paths to the core has its core endpoint distributed as the first core element
in an i.i.d. sequence Jn ∈ {1, . . . , N} with common distribution (2.1). Now βk∗

is proportional to ε(N), and Lemma 3.3 can be applied with βk∗ in the role of
ε(N). We conclude that the first core element in the sequence Jn belongs a.a.s.
to the set Tβk∗ ,bβk∗ , and the statement of the proposition follows.
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4. Horizontal Paths in the Core

In this section, we show that quite thin tiers of the form Tγ′,γ′′ are internally (as
induced subgraphs) almost connected in the sense that the proportional size of
the largest component approaches one, and moreover, the diameter of that largest
component is obtained with high accuracy from remarkable results on classical
random graphs. For deterministic γ, the tiers Tγ−ε(N),γ are a.a.s. connected, and
their diameters can be picked almost unequivocally from the following classical
theorem [Bollobás 01].

Theorem 4.1. Consider the Erdős–Rényi random graph Gn,p and let p = p(n) and
d = d(n) > 2 satisfy

log n

d
− 3 log log n → ∞,

pdnd−1 − 2 logn → ∞,

pd−1nd−2 − 2 logn → −∞.

Then Gn,p has diameter d a.a.s.

To include also lower parts of the core, we apply the following rather recent
result of [Chung and Lu 01].

Theorem 4.2. If np → ∞ and (log n)/(log np) → ∞, then almost surely

diam(Gn,p) = (1 + o(1))
log n

log np
,

where diam(G) denotes the diameter of the largest (giant) component of G.

Define

w(γ) :=
⌈

1 − (τ − 1)γ
(3 − τ)γ

⌉
. (4.1)

Proposition 4.3. Let γ(N) be a nonincreasing function such that γ(N) ∈ [ε(N), 1
2 )

for all N . If lim γ(N) > 0, assume also that γ(∞) does not correspond to a jump
of the ceiling function in (4.1). Then there exists another function γ∗(N) such
that

γ∗(N) < γ(N), γ∗(N)/γ(N) → 1, |Tγ∗(N),γ(N)| → ∞,

and
diam(Tγ∗,γ) = (1 + o(1))w(γ(N)) a.a.s., (4.2)
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where diam(·) is generally interpreted as in Theorem 4.2. When γ(N) is bounded
away from zero, Tγ∗,γ is a.a.s. connected and its diameter is a.a.s. equal
to w(γ(N)).

Proof. We shall suppress the N ’s in γ(N) etc. when it improves the clarity of the
presentation.

Considered as an induced subgraph, Tγ∗,γ is denser (respectively sparser) than
the classical random graph Gn,p∗ (respectively Gn,p∗) with

n = n(N) = |Tγ∗,γ |, p∗ = p∗(N) =
N2γ∗

LN
, p∗ = p∗(N) =

N2γ

LN
.

Set γδ(N) = γ−δε(N), where δ ∈ (0, 1). We fix δ for a while and choose γ∗ = γδ.
By Lemma 3.2, |Tγ∗,γ | → ∞, and

|Tγ∗,γ |
N1−(τ−1)γ∗

∈
[
1
5
, 5
]

, a.a.s.

On the other hand,
LN/N

E {Λ} ∈
[
1
2
, 2
]

a.a.s.

Thus a.a.s.,

log n ∈ (1 − (τ − 1)γ∗) log N + [− log 4, log 4],

log(np∗) ∈ (3 − τ)γ∗ log N − log E {Λ} + [− log 8, log 8],

log(np∗) ∈ (2γ − (τ − 1)γ∗) log N − log E {Λ} + [− log 8, log 8].

Note that p∗(N) → 0 and n(N)p∗(N) → ∞, so Theorem 4.2 applies to Gn,p∗
and Gn,p∗ . We distinguish two cases.

First, if γ(N) is bounded away from zero, we are in fact in the regime of
Theorem 4.1, and a computation of the diameter d leads to the expression of
w(γ). Thus, Theorem 4.1 yields the inequalities

diam(Tγ∗,γ) ≤
⌈

1 − (τ − 1)γ∗
(3 − τ)γ∗

⌉
a.a.s.,

diam(Tγ∗,γ) ≥
⌈

1 − (τ − 1)γ∗
2γ + (1 − τ)γ∗

⌉
a.a.s.

Since the right-hand sides are with sufficiently large N both equal to the right-
hand side of w(γ), the claim follows. The value of δ did not matter.

The second case is that γ(N) ↘ 0. Since n(N)p∗(N) → ∞, the subgraph still
has a giant component whose proportional size approaches one, although it is
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not necessarily connected. Choose any sequence δk ↘ 0, and set

ηk = max
{

(3 − τ)γ
(3 − τ)γδk

,
2γ + (τ − 1)γδk

(3 − τ)γ

}
.

Note that ηk → 1. Now define a sequence Nk as

Nk = inf
{

M : P

(
|Tγδk

,γ |
N2γδk

LN
≥ k

)
≥ 1 − 1

k
∀N ≥ M,

P

(
diam(Tγδk

,γ) ∈ (η−2
k , η2

k) · 1
(3 − τ)γ

)
≥ 1 − 1

k
∀N ≥ M

}
.

Thanks to Theorem 4.2, the Nk’s are finite numbers, and obviously they grow
without bound. Finally, set

k(N) := max {k : Nk ≤ N}

and choose γ∗(N) = γδk(N) . Then obviously

diam(Tγ∗,γ) = (1 + o(1))
1

(3 − τ)γ(N)
a.a.s.,

completing the proof.

In a similar way, we can prove a diameter result for the tiers Vk = V
(N)
k ,

defined at the end of Section 2:

Proposition 4.4. The tiers V0, . . . , Vk∗ , considered as induced subgraphs of GN , are
almost connected in the sense that the relative sizes of their largest components
approach 1 as N → ∞, and their diameters satisfy, a.a.s.,

diam(V0) = 0,

diam(V1) = 2,

diam(Vk) ∈ (1 + o(1))[w(βk−1), w(βk)], k = 2, . . . , k∗.

By Proposition 4.3, we can say that the width of the core at height Nγ ,
measured by hop distance, is w(γ). Moreover, this holds also for varying γ =
γ(N) down to the bottom of the core.

When γ ∈ (0, 1
2 ), we have

w((τ − 2)γ) > w(γ) + 2.

This has the following heuristic consequence. For connecting two vertices with
capacities ≈ Nγ , a “horizontal” path staying at about the same height in the
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core is longer than a path that jumps at both ends with one hop to the height
N (τ−2)γ and finds the horizontal connection at that level. On the other hand,
this is how high in the core the neighborhood of a vertex typically reaches. Thus,
a horizontal move should be made at as high a level as possible.

5. The Main Result

We have now essentially collected all elements needed to understand the situation
in which a top part of the core is deleted. First, since the aggregate capacity of
any top part is concentrated at its bottom, the remains of the core are found
from outside almost as easily as the original core was found. Second, if a lower
part of the core is alive, we can find “vertical” paths from the bottom of the core
to a top tier of its remaining part, as we did with the undamaged core in [Norros
and Reittu 06] (a complete proof of this step requires a slight modification of
the proof of [Norros and Reittu 06, Proposition 4.3] and is presented below in
detail). Third, Proposition 4.3 guarantees the existence of a “horizontal” path
between almost any pair of vertices within this top tier, and provides also an
explicit upper bound for its length. It remains to couple these pieces together.

Theorem 5.1. Let γ := γ(N) ∈ (ε(N), 1
2 ) be such that γ(N) is nonincreasing and

γ(N)/ε(N) nondecreasing with respect to N . Denote by Hγ = H
(N)
γ the graph

obtained from GN by deleting all vertices with capacity greater than Nγ, together
with the edges attached to them. The following hold:

1. The graph Hγ has a.a.s. a giant component whose relative size approaches the
relative size of the giant component of GN .

2. The distance between two randomly chosen vertices of the giant component of
Hγ is a.a.s. less than

(1 + o(1))
(

2
− log(τ − 2)

(
log log N − log

1
γ

)
+ w(γ)

)
, (5.1)

where w(γ) is given in (4.1).

Proof. (1) Define

γ0 = γ,

γ1 = γ0 − ε(N),

γk+1 = (τ − 2)γk + ε(N), k = 1, 2, . . . ,



�

�

“imvol5” — 2009/11/4 — 9:40 — page 263 — #13
�

�

�

�

�

�

Norros and Reittu: Attack Resistance of Power-Law Random Graphs . . . 263

and let

k̄ = min
{

k ≥ 1 : γk ≤ 4 − τ

3 − τ
ε(N)

}
.

It is easy to check (see (4) below) that k̄ = O(log log N).
Consider the tiers Tγ1,γ0 , Tγ2,γ1 , . . . , Tγk̄,γk̄−1

. The idea of the proof is to apply
the diameter result, Theorem 4.2, to Tγ1,γ0 , and if k̄ ≥ 2, to imitate our proof
of Theorem 2.3 to show that vertices of tier Tγk̄,γk̄−1

are with high probability
connected to Tγ1,γ0 with a path jumping from tier to tier.

(2) Assume that k̄ ≥ 2. Let I0 = I0(N) be a stochastic (not necessarily uni-
formly random) vertex of Tγk̄,γk̄−1

such that conditioned on Λ, I0 is independent

of the edges within
⋃k̄

1 Tγj ,γj−1 . Define the sequence of vertices I1, I2, . . . recur-
sively as follows. If In ∈ Tγk̄−n,γk̄−n−1

, then In+1 is a neighbor (say with smallest
index) of In belonging to Tγk̄−n−1,γk̄−n−2

if such a neighbor exists. Otherwise,
In+1 = In, and the rest of the sequence repeats In as well. Define

An =
{
In ∈ Tγk̄−n,γk̄−n−1

}
, n = 0, 1, . . . , k̄ − 1,

B′ =
{

LN

N
≤ 2E {Λ}

}
,

Bk =
{

L(Tγk+1,γk
) ∈ E {Λ}N1−(τ−2)γk

(
1
5
, 5
)}

, k = 0, . . . , k̄ − 1,

where L(S) :=
∑
i∈S

Λi,

B = B′ ∩ B0 ∩ · · · ∩ Bk̄−1.

We have Ak̄−1 ⊆ Ak̄−2 ⊆ · · · ⊆ A0. Proposition 3.2 yields

P
(
B0 ∩ · · · ∩ Bk̄−1

)
≥ 1 − 2k̄

(
E {Λ}

2

)−τ+1

N−(1−(τ−1)γ)(τ−2) → 1

as N → ∞. On B in turn, we have for each n by Proposition 3.2 that

P
[
Ac

n+1

∣∣Λ, An

]
= E

[
exp

(
−

ΛInL(Tγk̄−n−1,γk̄−n−2
)

LN

) ∣∣∣∣Λ, An

]

≤ exp
(
− 1

2E {Λ}N
Nγk̄−n · 1

5
N1−(τ−2)γk̄−n−1

)

≤ exp
(
− e�(N)

10E {Λ}

)
.
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It follows that on B,

P
[
Ak̄−1

∣∣Λ, A0

]
=

k̄−1∏
n=0

P
[
Ac

n+1

∣∣Λ, An

]

≥
(

1 − exp
(
− e�(N)

10E {Λ}

))k̄

≥ 1 − k̄ exp
(
−ce�(N)

)
= 1 − k̄

log2 N
exp

(
log3 N − c(elog4 N )�(N)/ log4 N

)

= 1 − k̄

log2 N
exp

(
− log3 N

(
c(log3 N)�(N)/ log4 N−1 − 1

))
→ 1 as N → ∞

by the assumption that �(N)/ log4 N → ∞.
(3) Now let I and I ′ be two independent uniformly randomly chosen vertices

of GN . By Proposition 3.4, I is a.a.s. either outside the largest component of GN

or connected to Tγk̄,γk̄−1
with a path that avoids the set {i ≤ N : Λi > Nγk̄−1}

and whose length is at most κ(N). Denote the endpoint of that path by I0.
In the case that k̄ ≥ 2, step (2) above showed that I0 is a.a.s. connected to
a vertex Ik̄−1 ∈ Tγ1,γ0 over a path of length k̄. The same claim holds for I ′,
with vertices I ′0 and I ′̄

k−1
respectively. Now, Ik̄−1 and I ′̄

k−1
belong a.a.s. to the

largest component of the induced subgraph Tγ1,γ0 , and Theorem 4.2 yields that
the distance between them is at most (1 + o(1))w(γ).

(4) We have now shown that if I and I ′ both belong to the largest component
of GN , then the distance between them is a.a.s. at most

(1 + o(1))(2k̄ + w(γ)).

It remains to show that k̄ can be replaced in this expression by

log log N − log(1/γ)
− log(τ − 2)

. (5.2)

First, if γ(N) ≤ Cε(N) for all N and some finite C > 1, then

log
1
γ
∈ (log log N − log �(N)) + [− log C, 0],

and (5.2) is in this region negligible compared with w(γ). On the other hand,
k̄ is in this region limited by a constant, whereas w(γ(N)) → ∞. Thus, the
assertion of the theorem holds.
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Assume then that γ(N)/ε(N) is unbounded. Then γ1 > ((4− τ)/(3− τ))ε(N)
for large N , so that k̄ ≥ 2. Since

γk+1 = (τ − 2)kγ1 + ε(N)
k−1∑
i=0

(τ − 2)i,

a short computation (using the geometric series formula) yields that the condition
γk ≤ ((4 − τ)/(3 − τ))ε(N) is equivalent to the condition

(τ − 2)k

(
γ1 −

ε(N)
3 − τ

)
≤ ε(N),

and further to

k ≥ 1
− log(τ − 2)

(
log log N + log

(
γ(N) − 4 − τ

3 − τ
ε(N)

)
− log �(N)

)

= (1 + o(1))
log log N − log(1/γ(N))

− log(τ − 2)
.

Thus, k̄ equals the last, asymptotic, expression. This finishes the proof.

Theorem 5.1 tells that removing a top part of the core down to Nγ with fixed
γ > 0 has no effect on the asymptotic upper bound (5.1). On the other hand,
with γ(N) ∝ ε(N) we obtain

w(γ(N)) ∝ 1
(3 − τ)ε(N)

=
log N

(3 − τ)�(N)
.

Combining this with Proposition 3.4, we find that if the whole core is removed,
the remaining graph still has a giant component with the same proportional
size as the original and diameter proportional to log(N)/�(N), slightly smaller
than that of a (supercritical) power-law graph with τ > 3. Asymptotics of
intermediate cases between these two extremes can be computed from (3.4) as
well.
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