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Fast and Efficient Restricted
Delaunay Triangulation in Random
Geometric Graphs
Chen Avin

Abstract. Let G = G(n, r) be a random geometric graph resulting from placing n nodes
uniformly at random in the unit square (or the unit disk) and connecting every two

nodes if and only if their Euclidean distance is at most r. Let rcon =
√

log n
πn

(1 + o(1))

be the known critical radius for connectivity when n → ∞. The restricted Delaunay
graph RDG(G) is a subgraph of G with the following properties: it is a planar graph
and a spanner of G, and in particular it contains all the short edges of the Delaunay
triangulation of G. While in general graphs, the construction of RDG(G) requires Θ(n)
messages, we show that when r = O(rcon) and G = G(n, r), then with high probability,
RDG(G) can be constructed locally in one round of communication with O(

√
n log n)

messages, and with only one-hop neighborhood information. This size of r proves that
the existence of long Delaunay edges (an order larger than rcon) in the unit square
(disk) does not significantly affect the efficiency with which good routing graphs can
be maintained.

1. Introduction

A random geometric graph is a graph G(n, r) resulting from placing n points
uniformly at random in the unit square and connecting two points if and only if
their Euclidean distance is at most r. Such random graphs have long been the
subject of study in relation to topics such as statistical physics and hypothesis
testing [Penrose 03]. They have currently gained new relevance as a model of
random wireless networks, in large part due to advances in the field of sensor
networks [Estrin et al. 99, Pottie and Kaiser 00].
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Sensor networks are constructed from a large number of low-cost, low-power
sensors equipped with wireless communication and limited processing capabili-
ties. These devices are embedded densely in the environment to create a multihop
network in which nodes cooperate to achieve high-level tasks. A wide range of
applications of such networks has been offered in the past few years, ranging
from environmental and habitat monitoring to disaster management and manu-
facturing process flow [Culler et al. 84].

Sensor networks carry new design challenges in that the strict energy and
memory constraints of the sensors and the large scale of the network require
the use of distributed, localized algorithms that minimize memory and energy
use [Estrin et al. 99]. Since most of the energy required by sensor networks is
consumed by radio communication, the number of messages being sent by a given
algorithm is considered as the efficiency metric. Naturally, the above restrictions
and the theoretical modeling of random geometric graphs have led to a variety
of analytical works aimed at investigating different properties of such networks
[Gupta and Kumar 98, Goel et al. 04, Muthukrishnan and Pandurangan 05, Avin
and Ercal 05].

The tasks of topological control and routing in sensor networks have been
studied extensively, and in particular have led to the advent of geo-routing [Bose
et al. 99, Karp and Kung 00]. In geo-routing, an assumption is made that each
node knows both its own location (i.e., its coordinates) and the location of the
destination to which it wants to deliver a message (via Global Positioning System
(GPS) at each node or via some other mechanism). The goal then is to find an ef-
ficient route from source to destination using only the local information (i.e., the
location of its neighbors) available at each node and a limited amount of memory.

Most of the early work on this issue, beginning with the proposals [Bose et
al. 99] and [Karp and Kung 00], was based on greedy forwarding combined with
face-routing over a planar subgraph of the network, i.e., the message is always
forwarded to the neighbor closest to the destination, and if such a neighbor does
not exist, recovery from a local minimum is obtained using a route along the
current face of the planar subgraph.

Although this method guarantees delivery, the efficiency of the method de-
pends on the properties of the planar subgraph. Ideally, the subgraph should be
sparse and locally constructed, but at the same time it should be a spanner, i.e.,
the shortest path between any pair of points is at most a constant factor longer
than the shortest path in the original graph. The sparseness and locality reduce
energy and memory consumption in the construction phase, while the spanner
property allows efficient routing.

Several candidate graphs for geo-routing in wireless networks have recently
been offered in the literature. Let G be a geometric graph (i.e., the nodes
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are embedded in the plane). The relative neighborhood graph RNG(G) [Tous-
saint 80], and the Gabriel graph GG(G) [Gabriel and Sokal 69] are both planar
and can be efficiently constructed locally, but they are not good spanners, even
in random geometric graphs [Bose et al. 02]. Another well-known planar graph
is the Delaunay triangulation, which is known to be a spanner of the complete
graph [Chew 86, Dobkin et al. 90]. Unfortunately, the Delaunay triangulation
Del(G) of a geometric graph G cannot be constructed locally and may contain
long edges; in other words Del(G) is not necessarily a subgraph of G.

To overcome this problem, several authors have proposed the restricted Delau-
nay graph RDG(G). This is a planar subgraph of G that contains all the edges
of Del(G) that are also in G and that has been proved to be a spanner of G [Gao
et al. 01, Li et al. 02].

Note that by definition, RDG(G) is not unique, and different methods have
been suggested for constructing such graphs [Gao et al. 01, Li et al. 02, Wang
and Li 03, Araújo and Rodrigues 05].

In the context of random geometric graphs, we intend to explore the rela-
tions among the range of communication r, the number of nodes n in the graph,
and some desired property P (for example, connectivity). In ad hoc and sensor
networks, interference grows with increased communication radius. It is thus
necessary to find a tight upper bound on the smallest radius rP that will guar-
antee that P holds with high probability (w.h.p.).1 For example, the critical
radius for connectivity, rcon, is of special interest, and it has been shown that if
πr2 ≥ πr2

con = (log n + γn)/n then G(n, r) is connected with probability tending
to 1 as n → +∞ if and only if γn → +∞ [Penrose 97, Gupta and Kumar 98].

It is well known that the maximum edge length of the Delaunay triangulation
of G(n, r) in the unit square, and in particular on a convex hull, is ω(rcon) (i.e.,
an order larger than rcon). Recently, a similar result has also been proved for
the unit disk [Kozma et al. 04]. Therefore, it is clear that when r = O(rcon),
the Delaunay triangulation cannot be computed locally (i.e., with information
obtained only from nodes that are a constant number of hops away).

In this paper, we show that if r = O(rcon), namely, of the order that guaran-
tees connectivity, then w.h.p., we can efficiently and locally construct a restricted
Delaunay graph RDG(G). We show that while for general graphs this construc-
tion requires Θ(n) messages, an order of O(

√
n logn) messages suffices in G(n, r).

We further present a novel algorithm that achieves this bound. Our algorithm
exhibits two unique features that result in a reduced message count. First, the
algorithm requires only one round of communication, and second, only “problem-
atic” nodes are required to send messages. Our results are stated for geometric

1Event En occurs w.h.p. if probability P (En) is such that limn→∞ P (En) = 1.
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graphs that have some nice properties, but are not necessarily random or in a
specific bounded area (i.e., square, disk). Later, we show that random geometric
graphs in the unit square (or unit disk) have these nice properties with high
probability and the results follow.

2. Preliminaries

We consider a wireless ad hoc network (or sensor network) over a set V of n

nodes distributed in the unit square, where each node can communicate with all
the nodes in its transmission range, i.e., a disk of radius r centered at the node.
The resulting graph is a geometric graph G = G(V, r) with V the set of nodes
and E = {{u, v} | u, v ∈ V ∧ d(u, v) ≤ r} the set of edges. This graph is similar
to the unit disk graph UDG(V ) [Clark and Colbourn 91], in which the set of
nodes V is in R

2 and the radius is assumed to be one unit, but in our case we
are interested in a network in a bounded area and in the relation between the
number of nodes n and the transmission range r as a function of n.

Let N(u) denote the neighbors of u, including u, and N(u, v) the set of the
common neighbors of u and v, i.e., N(u, v) = N(v, u) = N(u)∩N(v). Through-
out the paper, we use three disk definitions: let diskr(v) be the disk centered
around v with radius r (with r omitted when the context is clear), disk(u, v) the
disk through u, v with diameter d(u, v), and disk(u, v, w) the unique circumcircle
over u, v, and w.

Next, we present additional graphs over the set of nodes V . Note that in some
cases the graphs are derived directly from V , while others are a function of G

(i.e., r is needed to compute them). The Voronoi diagram Vor(V ) of a set of
nodes (or sites) V in space is the partition of space into cells Vu, u ∈ V , such
that all the points inside Vu are closer to u than to any other node in V . The
Delaunay triangulation Del(V ), is the dual graph of Vor(V ): an edge {u, v} is
in Del(V ) if and only if Vu and Vv share a common boundary.

It is well known that Del(V ) is a spanner of the complete graph Kn [Chew
86, Dobkin et al. 90], which means that the shortest path between any two points
on Del(V ) is at most t times the shortest path on Kn, where t is a positive
constant known as the stretch factor. In the case of Del(V ) and the complete
graph, t ≈ 5.08.

A useful property of the Delaunay triangulation is that a triangle �uvw is
in Del(V ) if and only if disk(u, v, w) is empty, i.e., there is no other node from
V in it, where for simplicity, we assume that no four points in V are cocircular
[de Berg et al. 97].
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(a) (b)

(c) (d) (e)

Figure 1. Various graphs over a set V of 50 random nodes in the unit square
with r = 0.3: (a) G(V, r); (b) Vor(V ); (c) Del(V ); (d) the edges in Del(V ) that
are longer than r; (e) LocalDel(G) where consistent edges are shown as dots and
inconsistent edges that cross edges are shown in solid lines (these types of edges
are defined formally in Definition 5.2).

Let UDel(G) be the subgraph of Del(V ) that contains only the short edges of
Del(V ), that is, the edges that are shorter than r; therefore, UDel(G) is equal
to Del(V ) ∩ G and is also a subgraph of G [Li et al. 02, Gao et al. 01].

Definition 2.1. [Gao et al. 01] A restricted Delaunay graph RDG(G) is a planar
graph such that

UDel(G) ⊆ RDG(G) ⊆ G.

Let T (u) be the set of edges in Del(N(u)) (i.e., the Delaunay triangulation of
the nodes in N(u)) and similarly T (u, v) = Del(N(u, v)). Note that there may
be edges in T (u) and T (u, v) that are not present in Del(G).

Definition 2.2. The graph LocalDel(G) is the graph resulting from computing T (u)
at each node: an edge u, v is in LocalDel(G) if and only if there exists u such
that {u, v} ∈ T (u).

Figure 1 illustrates the graphs discussed above for a set V of 50 random points
in the unit square.
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3. Related Work

3.1. Unit Disk Graphs

The Gabriel graph GG(G) [Gabriel and Sokal 69] is a graph in which there is an
edge {u, v} if and only if there is no other node in disk(u, v). Bose et al. offered
a distributed local algorithm to construct the Gabriel graph over a wireless net-
work and then used face-routing to guarantee message delivery [Bose et al. 99].
Later, Bose and Morin considered different face-routing methods in triangulation
and in particular in the Delaunay triangulation [Bose and Morin 99]. Karp and
Kung independently proposed a greedy perimeter stateless routing (GPSR) al-
gorithm, a memoryless routing algorithm that combines greedy forwarding and
local minimum recovery and is based on face-routing over the Gabriel graph
[Karp and Kung 00]. Subsequently, later work aimed at finding better planar
graphs that can be constructed locally.

Gao et al. proposed the use of a restricted Delaunay graph RDG(G), a graph
that contains all the short edges of the Delaunay graph and is also planar [Gao
et al. 01]. They proved that RDG(G) is a Euclidean spanner of the unit disk
graph G and presented an algorithm to construct it, which can in general be
inefficient with O(n2) messages. Similarly, Li et al. proved that UDel(G) is a
spanner of the unit disk graph G and offered a local algorithm to build a planar
supergraph of UDel(G),2 known as PLDel(G), in Θ(n) messages and Θ(n log n)
bits [Li et al. 02].

They presented yet another graph, LDel(k)(G), a local Delaunay triangulation
in which the circumcircle of u, v, w does not contain any node that is k hops
away from u, v, or w. The authors proved that LDel(k)(G), where k ≥ 1, is a
supergraph of UDel(G) and a subgraph of LDel(k+1)(G) and therefore a spanner.
In addition, they showed that for k = 1, LDel(k)(G) is not planar, but for k > 1
it is.

Recently, Wang and Li showed how to bound the maximum degree of such
graphs, since PLDel(G), or in general UDel(G), is not a graph of bounded degree
[Wang and Li 03]. Arajo and Rodrigues reduced the number of steps in [Li et
al. 02], but their algorithm still has the same order of messages, Θ(n) [Araújo
and Rodrigues 05].

All the above algorithms are nonadaptive, i.e., in some cases they send un-
necessary messages. Essentially, they require each node u to broadcast all the
triangles in T (u) with �wux ≥ π/3. Since the total number of such triangles
(faces) in the above graphs is linear, all the algorithms require a linear number
of messages.

2RDG(G) in the notation of [Gao et al. 01].
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3.2. Random Geometric Graphs

Bose et al. proved (among other results) that the Gabriel graph is not a spanner
of the unit disk graph and that in the worst case, its stretch factor is Θ(

√
n)

[Bose et al. 02]. Moreover, they also proved that for random geometric graphs
in the unit square, the stretch factor of the Gabriel graph is w.h.p.

Θ

(√
log n

log log n

)
,

which proves its inefficiency for face-routing in random networks.
Kozma et al. bounded the longest edge of Del(G) in a random geometric graph

in the unit disk [Kozma et al. 04]. They showed that due to boundary effects,
the longest edge is of order Θ( 3

√
log n/n), an order larger than rcon, and they

left open the question of an algorithm for the case r = O(rcon).
Bern et al. proved that the Delaunay triangulation of a uniform set of points

does not have bounded degree and that the maximum degree grows according to
Θ(log n/ log log n) [Bern et al. 91]. In particular, they showed that this does not
happen next to the boundary. Since the higher the degree, the greater the load
imbalance, one wants a constant-degree planar graph; in our case, the algorithm
we offer does not solve this problem.

4. Computing RDG(G(n, r))

We offer an efficient algorithm to construct RDG(G(n, r)). There are several
advantages to our algorithm: First, it assumes that the transmission range is of
the same order as the necessary range required for connectivity; second, there is
only one round of communication; and most importantly, the number of messages
it sends is adaptive. Our algorithm is based on LocalDel(G), which is known
not to be a planar graph. In the past, some proposals have been put forward to
solve this problem, but all of them require a constant number of messages per
node. In our algorithm, only messages that are needed to eliminate problematic
edges are sent, thereby enabling us to reduce the number of messages from Θ(n)
to O(

√
n log n). Before describing the algorithm, we define the notion of local

inconsistency.

Definition 4.1. An edge {u, v} is locally inconsistent at u if {u, v} /∈ T (u) and
{u, v} ∈ T (u, v), and it is locally consistent otherwise.

The nice property of locally consistent edges is that they can be observed
locally.
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Algorithm 1. (Local RDG(G) construction at node u.)

1. Compute T (u) and for each neighbor v ∈ N(u) compute T (u, v).

2. Keep all edges {u, v} ∈ T (u).

3. If there are locally inconsistent edges, broadcast proofs for each of them
to neighbors.

4. Remove edge {u, v} if a proof of its inconsistency is received.

Lemma 4.2. For each locally inconsistent edge {u, v} ∈ T (u, v) at u there is a
triangle �uwx ∈ T (u) that is the proof that {u, v} is locally inconsistent, i.e.,
{w, x} intersects {u, v}.

Proof. Let w be the node such that the edge {u, w} ∈ T (u) is the first edge in T (u)
clockwise to {u, v}. Similarly, let x be the node such that the edge {u, x} ∈
T (u) is the first edge counterclockwise to {u, w}. Now, since {u, v} /∈ T (u),
the edge {w, x} does not intersect any edge in T (u) (by the angle minimality
of {u, w} and {u, x}), and therefore it must be in T (u). Note that {w, x} must
intersect {u, v}, and we are done.

The main results of this paper are the following theorems about the correctness
and the number of messages in Algorithm 1.

Theorem 4.3. For r ≥ √
128rcon, w.h.p. Algorithm 1 computes RDG(G(n, r)).

Theorem 4.4. For r ≥ √
128rcon, w.h.p. the number of messages in Algorithm 1 is

O(
√

n log n), and the number of bits is O(
√

n(log n)3/2).

To prove these theorems, we next establish a few lemmas.

5. Properties of LocalDel(G)

The graph LocalDel(G) can be constructed locally without exchanging messages
on the assumption that each node knows the locations of all its neighbors. Here,
we assume that this information is obtained by each node using some other
mechanism that is shared with other applications. We therefore do not count
the messages required in this process as part of our algorithm (otherwise Ω(n)
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messages are necessary for any nontrivial task) and consider only algorithm-
specific messages. Next, we prove some properties of LocalDel(G) that are based
on the following proposition.

Proposition 5.1. Let V ′ ⊆ V . Then (u, v ∈ V ′∧{u, v} ∈ Del(V )) ⇒ {u, v} ∈ Del(V ′).

This result clearly follows from the fact that if two Voronoi cells Vu and Vv

share a boundary in Vor(V ), they must share a boundary in Vor(V ′), since
removing nodes cannot decrease their boundary.

Definition 5.2. An edge {u, v} in LocalDel(G) is consistent if {u, v} ∈ T (u) and
{u, v} ∈ T (v), and inconsistent otherwise.

Lemma 5.3. If {u, v} ∈ UDel(G), then {u, v} is a consistent edge in LocalDel(G).

Proof. The assertion of the lemma follows directly from Proposition 5.1. Since
{u, v} ∈ UDel(V ), we have {u, v} ∈ Del(V ), u ∈ N(v), and v ∈ N(u). Setting
V ′ = N(u), we get {u, v} ∈ T (u) = Del(V ′), and similarly, for V ′ = N(v), we
get {v, u} ∈ T (v) = Del(V ′).

It is clear from Lemma 5.3 that UDel(G) ⊆ LocalDel(G), but it is still not
RDG(G), since it may be not a planar graph. There are two types of edges in
LocalDel(G), consistent and inconsistent, and both may cross other edges. First,
we take care of the inconsistent edges.

Lemma 5.4. An edge {u, v} ∈ LocalDel(G) is inconsistent if and only if {u, v} is
locally inconsistent at u or v.

Proof. ⇒: Assume that edge {u, v} ∈ LocalDel(G) is inconsistent. Recall that an
edge {u, v} is in LocalDel(G) if and only if it is in T (u) or T (v). But if it is also
inconsistent, it cannot be in both. Without loss of generality, let {u, v} ∈ T (u)
and {v, u} /∈ T (v). By Proposition 5.1, {u, v} ∈ T (u, v) = T (v, u), so {v, u}
must be locally inconsistent at v.
⇐: By Proposition 5.1, if an edge is consistent, it must be locally consistent

at u and v.

Next, we bound the number of proofs that each node can have for its incon-
sistent edges.

Lemma 5.5. A node can have at most six proofs for all its locally inconsistent edges
in LocalDel(G).



�

�

“imvol5” — 2009/11/4 — 9:34 — page 204 — #10
�

�

�

�

�

�

204 Internet Mathematics

Proof. A triangle �uwx ∈ T (u) with �wux ≤ π/3 cannot be a proof for a
locally inconsistent edge {u, v}, since v must then be a neighbor of w and x, and
Del(N(u)) and Del(N(u, v)) agree on {u, v} and {w, x}.

5.1. Well-Distributed Geometric Graphs

We now turn to a more specific type of geometric graph. First, let us define
them formally:

Definition 5.6. A geometric graph G(V, r) is well distributed if every circle of area
at least (π/64)r2 (in the unit square) has at least one node in it.

In these graphs the nodes are distributed “nicely” across the unit square
and in particular do not contain large “holes,” i.e., empty circles of area larger
than (π/64)r2.

Lemma 5.7. If G(V, r) is a well-distributed geometric graph, then consistent edges
do not intersect in LocalDel(G).

Proof. Assume that {u, v} and {w, x} are two consistent edges that intersect in
LocalDel(G). By Proposition 5.1 we can remove all nodes but u, v, w, and x from
the graph and consider only the two edges that must still exist and intersect. We
use [Gao et al. 01, Lemma 4.1], which states that if two edges cross, then one of
the four nodes must be a neighbor of each of the other three. Without loss of
generality let it be w. We now claim that both u and v are not neighbors of x.

Assume, by contradiction, that u is a neighbor of x. But in this case, since
w and u see all four nodes, T (w) = T (u) and either {w, x} and {u, v} do not
intersect or at least one of them is inconsistent, which leads to a contradiction.
The same is true for v. Note that since w selected {w, x} as an edge while
having information on the four nodes, {u, v} is the non-Delaunay edge of the
two edges.

Observe that x must be outside disk(u) ∪ disk(v) (otherwise, u or v sees the
four nodes), so it must be the case that d(w, x) ≥ (

√
3/2)r, since d(u, v) is

at most r and the edges intersect by assumption (see Figure 2). Note also
that since u and v choose {u, v} as an edge in LocalDel(G), the circumcircle
disk(u, v, w) ∩ (disk(u) ∪ disk(v)) must be empty.

In particular, this implies that the disk D of diameter (
√

3/2)r, which is tan-
gent to the midpoint between u and v, is empty (see the gray disk in Figure 3).

Since w, x, u, v are all in the unit square, it must be the case that at least half
of D is also inside the unit square. This half of D contains a circle D′ of radius
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Figure 2. A case in which edges {w, x} and {u, v} are consistent and intersect in
LocalDel(G).

Figure 3. A disk D′ that must be included in the area of disk(u, v, w)∩ (disk(u)∪
disk(v)).

(
√

3/8)r and has area (3π/64)r2. Since G is well distributed, there is at least
one node in D′, contradicting the consistency of {u, v} in LocalDel(G).

This lemma is at the core of our algorithm. For a well-distributed graph G, all
one needs to do to compute RDG(G) is to remove all inconsistent edges. Note,
however, that even for well-distributed G, there may be inconsistent edges in
LocalDel(G). As Figure 4 illustrates, an edge {u, v} can be inconsistent at v,
since the area of disk(v) ∩ disk(u, v, w) (the gray area in the figure) can become
arbitrarily small next to the boundaries of the unit square. (For a similar reason,
it can be shown that long Delaunay edges can exist in Del(G), and in particular
on the convex hull of V .)
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Figure 4. An example in which an inconsistent edge {u, v} exists next to the
border of the unit square.

Before formally proving the correctness of Algorithm 1, we need to show that
random geometric graphs are well distributed. We will do so by utilizing a
coupon-collector argument.

Lemma 5.8. If r ≥ √
128rcon, then w.h.p. G(n, r) is well distributed.

Proof. We first claim that if we partition the unit square into bins of size (π/128)r2,
every bin will have w.h.p. at least one node. We then show that every circle of
area (π/64)r2 contains at least one such bin. Recall that r2

con = (log n + γn)/πn

and γn → ∞. Partition the unit square into square bins of size (π/128)r2, so
that the number of bins is at most B, where

B =
128
πr2

=
128
π

πn

128(logn + γn)
=

n

log n + γn
.

It is a known result [Motwani and Raghavan 95] that if one throws balls
uniformly at random into B bins, the expected number of balls needed to fill
every bin with at least one ball is B log B. If we require the result w.h.p., then
we need to throw at least B log B + γnB balls [Mitzenmacher and Upfal 05]. To
conclude the first claim and to prove that every bin has at least one node w.h.p.,
we need to show that n ≥ B log B + γnB:
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B log B + γnB =
n

log n + γn
log
(

n

log n + γn

)
+ γn

n

log n + γn

= n

(
log n

log n + γn
− log(log n + γn)

log n + γn
+

γn

log n + γn

)

= n(1 − log(log n + γn)
log n + γn

) ≤ n.

Now we consider a circle of area (π/64)r2 in the unit square. Consider the bin
that contains the center of the circle. Since the radius of the circle is 1

8r and
the side of the bin is (1/8

√
2)r, the whole bin must be inside the circle, and the

claim follows.

Now we can proceed to prove the correctness of Algorithm 1.

Proof of Theorem 4.3. From the last lemma, for r ≥ √
128rcon, w.h.p. G(n, r) is

well distributed. Steps 1 and 2 compute a subgraph of G. In step 4, the algo-
rithm removes all locally inconsistent edges, which by Lemma 5.4 is equivalent
to removing all inconsistent edges.

After step 4, the resulting graph contains only consistent edges, and so by
Lemma 5.3, it is a supergraph of UDel(G). Lemma 5.7 guarantees that the
graph is also a planar graph (since consistent edges do not intersect in well-
distributed graphs), so we get an RDG(G).

5.2. Bounding the Number of Messages

Let I = [r/2, 1 − r/2]2 be the inner square centered in the unit square such
that each side of I is at distance r/2 from the side of the unit square. For a
well-distributed G we have the following result:

Lemma 5.9. If u ∈ I and {u, v} ∈ LocalDel(G), then d(u, v) < r/2.

Proof. Let {u, v} ∈ LocalDel(G) and u ∈ I. Assume d(u, v) ≥ r/2. Then each half
of disk(u, v) contains a disk of size at least (π/64)r2 that is completely inside
the unit square. Since G is well distributed, each such half contains at least one
node, so {u, v} cannot be an edge in LocalDel(G), which is a contradiction.

Lemma 5.10. If {u, v} ∈ LocalDel(G) and u, v ∈ I, then the edge {u, v} is consistent.

Proof. Let {u, v} ∈ LocalDel(G) and u, v ∈ I. Assume that {u, v} is inconsistent
and without loss of generality assume that it is locally inconsistent at u. Then
u must have a proof for the inconsistency; let it be �uwx ∈ T (u). Since u ∈ I,
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w and x are at most at distance r/2 from u. Since d(u, v) is also less than r/2,
both x and w are in N(u, v), and �uwx cannot be a proof. Contradiction.

Now we can also prove the upper bounds on the number of messages.

Proof of Theorem 4.4. As before, G(n, r) is well distributed w.h.p. There is only
one step of communication, and messages are sent only from nodes with locally
inconsistent edges. From Lemma 5.10 only edges {{u, v} | u, v /∈ I} can be
inconsistent. The result follows, since there are Θ(rn) = Θ(

√
n log n) nodes

outside I, and each sends at most six proofs, where the size of each proof is
Θ(log n), since it reports the tree nodes belonging to a triangle.

6. Conclusions

In this paper we have offered a novel local algorithm to construct a planar spanner
graph in random wireless networks. Previous algorithms for computing restricted
Delaunay graphs send a message for each triangle in the restricted Delaunay
graph, and in particular via the node with the largest angle. In contrast, our
algorithm avoids sending unnecessary messages far from the boundary and thus
reduces the total number of messages from Θ(n) to O(

√
n log n). Moreover, our

results are stated in terms of well-distributed graphs, deterministic or random,
and can thus be applied to more general graphs than those discussed here.
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anteed Delivery in Ad Hoc Wireless Networks.” In Proceedings of the 3rd Interna-
tional Workshop on Discrete Algorithms and Methods for Mobile Computing and
Communications, pp. 48–55. New York: ACM Press, 1999.

[Chew 86] P. Chew. “There Is a Planar Graph Almost as Good as the Complete
Graph.” In Proceedings of the Second Annual Symposium on Computational Ge-
ometry, pp. 169–177. New York: ACM Press, 1986.

[Clark and Colbourn 91] B. A. Clark and C. J. Colbourn. “Unit Disk Graphs.” Discrete
Mathematics 86 (1991), 165–177.

[Culler et al. 84] D. Culler, D. Estrin, and M. Srivastava. “Guest Editor’s Introduction:
Overview of Sensor Networks.” Computer 37:8 (2004), 41–49.

[de Berg et al. 97] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. New York: Springer-
Verlag, 1997.

[Dobkin et al. 90] D. P. Dobkin, S. J. Friedman, and K. J. Supowit. “Delaunay Graphs
Are Almost as Good as Complete Graphs.” Discrete Comput. Geom. 5:4 (1990),
399–407.

[Estrin et al. 99] D Estrin, R. Govindan, J. Heidemann, and S. Kumar. “Next Century
Challenges: Scalable Coordination in Sensor Networks.” In Proceedings of the 5th
Annual ACM/IEEE International Conference on Mobile Computing and Network-
ing, pp. 263–270. New York: ACM Press, 1999.

[Gabriel and Sokal 69] K. Gabriel, and R. Sokal. “A New Statistical Approach to Ge-
ographic Variation Analysis.” Systematic Zoology 18:3 (1969), 259–278.

[Gao et al. 01] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu. “Geo-
metric Spanner for Routing in Mobile Networks.” In Proceedings of the 2nd ACM
International Symposium on Mobile Ad Hoc Networking & Computing, pp. 45–55.
New York: ACM Press, 2001.

[Goel et al. 04] A. Goel, S. Rai, and B. Krishnamachari. “Sharp Thresholds for Mono-
tone Properties in Random Geometric Graphs.” In Proceedings of the Thirty-Sixth
Annual ACM Symposium on Theory of Computing, pp. 580–586. New York: ACM
Press, 2004.

[Gupta and Kumar 98] P. Gupta and P. R. Kumar. “Critical Power for Asymptotic
Connectivity in Wireless Networks.” In Stochastic Analysis, Control, Optimization
and Applications: A Volume in Honor of W. H. Fleming, edited by W. M. McE-
neaney, G. G. Yin, and Q. Zhang, pp. 547–566. Boston: Birkhäuser, 1998.
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