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Deterministic Decentralized Search
in Random Graphs
Esteban Arcaute, Ning Chen, Ravi Kumar, David Liben-Nowell,
Mohammad Mahdian, Hamid Nazerzadeh, and Ying Xu

Abstract. We study a general framework for decentralized search in random graphs.
Our main focus is on deterministic memoryless search algorithms that use only local
information to reach their destination in a bounded number of steps in expectation.
This class includes (with small modifications) the search algorithms used in Kleinberg’s
pioneering work on long-range percolation graphs and hierarchical network models. We
give a characterization of searchable graphs in this model, and use this characterization
to prove a monotonicity property for searchability.

1. Introduction

Since Milgram’s famous “small world” experiment [Milgram 67], it has generally
been understood that social networks have the property that a typical node can
reach any other node through a short path (the so-called “six degrees of separa-
tion”). An implication of this fact is that social networks have small diameter.
Many random graph models have been proposed to explain this phenomenon,
often by showing that adding a small number of random edges causes a highly
structured graph to have a small diameter (see, for example, [Watts and Strogatz
98, Bollobás and Chung 88]). A stronger implication of Milgram’s experiment,
as Kleinberg observed [Kleinberg 00], is that for most social networks there are
decentralized search algorithms that can find a short path from a source to a
destination without a global knowledge of the graph. As Kleinberg proved, many
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of the random graph models with small diameter do not have this property (i.e.,
any decentralized search algorithm in such graphs can take many steps to reach
the destination), while in certain graph models, with a delicate balance of param-
eters, decentralized search is possible. Since Kleinberg’s work, there have been
many other models that provably exhibit the searchability property [Kumar et
al. 06, Fraigniaud 05, Slivkins 05, Liben-Nowell et al. 05, Kleinberg 01, Duchon
et al. 05]; however, we still lack a good understanding of what contributes to this
property in graphs.

In this paper, we look at a general framework for searchability in random
graphs. We consider a general random graph model in which the set of edges
leaving a node u is independent of that of any other node v �= u. This framework
includes models such as the directed variant of the classical Erdős–Rényi graphs
[Erdős and Rényi 59], random graphs with a given expected degree sequence
(e.g., [Chung and Lu 03]), ACL graphs [Aiello et al. 01], long-range percolation
graphs [Kleinberg 00], hierarchical network models [Kleinberg 01], and graphs
based on Kronecker products [Leskovec et al. 05, Mahdian and Xu 07], but not
models such as preferential attachment [Barabási and Albert 99] in which the
distribution of edges leaving a node is dependent on the other edges of the graph.
It is worth noting that in a random graph model where edges can have arbitrary
dependencies, the search problem includes difficult learning problems as special
cases, and therefore one cannot expect to have a complete characterization of
searchable graphs in such a model.1

Throughout most of this paper, we restrict the class of decentralized search
algorithms that we consider to deterministic memoryless algorithms that succeed
in finding a path to the destination with probability one. This is an important
class of search algorithms, and includes the decentralized search algorithms used
in Kleinberg’s work on long-range percolation graphs and hierarchical network
models. For this class, we give a simple characterization of graphs that are
searchable in terms of a node-ordering property. We will use this characterization
to show a monotonicity property for searchability: if a graph is searchable in our
model, it stays searchable if the probabilities of edges are increased.

The rest of this paper is organized as follows: Section 2 contains the description
of the model. Section 3 presents a characterization of searchable random graphs.
The monotonicity theorem is presented in Section 4.

1For example, the graph can include a sequence of layers, where each node in each layer is
connected to the same set of nodes in the next layer, and this set encodes a labeled example
(x, f(x)) of an unknown function picked from a prior distribution. For the last layer, however,
this set encodes only the input x and not the output f(x). At this point, the algorithm faces a
choice between a number of nodes as the next node to go to, each corresponding to one value
of f(x), and only the node that corresponds to the correct value of f(x) has a short path to t.
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2. The Model

We define a random graph model parameterized by a positive integer n (the
size of the graph) and n independent distributions Ω1, Ω2, . . . , Ωn. For each
i ∈ {1, . . . , n}, Ωi is a distribution over the collection of all subsets of {1, . . . , n}.
The random digraph G(n, Ω) is defined as follows: the node set of this graph
is V = {1, . . . , n}, and for every i, the set of nodes that have an edge from i

(i.e., the out-neighbors of i) is picked (independently) from the distribution Ωi.
For i ∈ V , let Γ(i) denote the set of out-neighbors of i. We denote by ωi,S the
probability that Γ(i) = S.

This graph model is quite general and includes many random graph models
such as those proposed in [Chung and Lu 03, Aiello et al. 01, Kleinberg 00,
Kleinberg 01, Leskovec et al. 05, Mahdian and Xu 07]. For example, for the
long-range percolation graphs [Kleinberg 00], the support of the distribution Ωi

is all possible subsets consisting of all nodes with Hamming distance 1 to i in
the lattice and one extra “long-range” node j, and the probability of any such
set is a decreasing function of the distance between i and j.

A special case of this model that deserves special attention is that in which all
edges of the graph are independent. In this case, given a positive integer n and
an n × n matrix P with entries pi,j ∈ [0, 1], we define a directed random graph
G(n,P) with the node set V = {1, . . . , n} and with a directed edge connecting
node i to node j with probability pij , independently of all other edges. Note
that this is a special case of the G(n, Ω) random graph model, with ωi,S :=∏

j∈S pij

∏
j �∈S(1 − pij).

We fix two nodes s, t ∈ V of G(n, Ω) as the source and the destination. We
investigate the existence of a decentralized search algorithm that finds a path
from s to t of at most a given length d in expectation.2 We restrict our attention
to deterministic memoryless algorithms. A deterministic memoryless algorithm
can be defined as a partial function A : V × 2V → V . Such an algorithm A

defines a path v0, v1, v2, . . . on a given graph G as follows: v0 = s, and for every
i ≥ 0, vi+1 = A(vi, Γ(vi)). The length of this path is defined as the smallest
integer i such that vi = t. If no such i exists, we define the length of the path as
infinity.

We are now ready to define the notion of searchability. For a given (n, Ω),
source and destination nodes s and t, and a number d, we say that G(n, Ω) is d-
searchable using a deterministic memoryless algorithm A if the expected length

2Alternatively, we could ask for which graphs a decentralized search algorithm can find a
path between every pair of nodes s and t, or between a random pair of nodes s and t. Our
techniques apply to these alternative formulations of the problem as well. The only point that
requires some care is that the orderings in the characterization theorem can depend on s and t.
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of the path defined by A on G(n, Ω) is at most d. Note that this definition
requires the algorithm to find a path from s to t with probability one.

3. A Characterization of Searchable Random Graphs

In this section, we provide a complete characterization of searchable random
graphs. We begin by defining a class of deterministic memoryless search algo-
rithms parameterized by two orderings of V , and then prove that if a graph is
d-searchable, it is also d-searchable using an algorithm from this narrow class.

Definition 3.1. Let σ, π be two orderings (i.e., permutations) of the node set V .
We define a deterministic memoryless algorithm Aσ,π corresponding to these
orderings as follows: for every u ∈ V , Aσ,π(u, Γ(u)) is defined as the maximum
element according to π of the set {v ∈ Γ(u) : σ(v) > σ(u)}.

In other words, algorithm Aσ,π never goes backward according to the order-
ing σ, and, subject to this restriction, makes the maximum possible progress
according to π.

Before stating our main result, we comment on why the class of search algo-
rithms we are considering is defined based on two permutations and not just one.
Common intuition based on the known results (e.g., on the long-range percola-
tion model [Kleinberg 00], or the hierarchical network models [Kleinberg 01])
might lead one to conjecture that it is enough to consider decentralized search
algorithms that always try to get as close to the destination as possible according
to a single ordering of the nodes. This, however, is not true, as the following
simple example shows.

Example 3.2. Consider a graph with the node set {s = u1, u2, . . . , un = t}. For every
i, j ∈ {1, . . . , n/2}, i �= j, there is an edge from i to j with probability one. For
i = n/2, . . . , n−1, there is an edge from ui to ui+1 with probability one. Finally,
for i = 2, . . . , n/2− 1, there is an edge from ui to t with probability 1

2 . One can
find a path in this graph using a deterministic memoryless search algorithm as
follows: The algorithm traverses the path su2u3 . . . un/2−1 in this order until it
finds the first node that has a direct edge to t. If it finds such a node, it goes
to t; otherwise, it takes the path un/2un/2+1 . . . un to t. The expected length
of this path is 2 + 1

2 + 1
4 + · · · + 1

2n/2−1 + n
2n/2 < 4. However, a memoryless

algorithm that is based on a single ordering cannot visit more than one of the
nodes in the set S = {u2, . . . , un/2−1}. This is because if the first node in S that
the algorithm visits is ui, then ui must be ahead of all other nodes of S in the
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ordering. Hence, if the algorithm visits another uj ∈ S, as its next step it must
go back to ui (since it has the exact same set of choices that it had at the step
at which it first visited ui), and therefore it will fall into a loop. Therefore, such
an algorithm cannot achieve an expected distance smaller than n/4.

We are now ready to state our main theorem.

Theorem 3.3. For a given n, collection of out-neighbor distributions Ω, source and
destination nodes s and t, and number d, if G(n, Ω) is d-searchable using a
deterministic memoryless algorithm A, then there exist two orderings σ and π

of V such that G(n, Ω) is d-searchable using Aσ,π.

To prove this theorem, we first construct the ordering σ using the structure
of the search algorithm A. Next, we define an ordering π using σ. Finally, we
use induction with respect to the ordering σ to show that the expected length
of the path defined by Aσ,π on G(n, Ω) is not more than the one defined by A.

We assume, without loss of generality, that for every set S ⊆ V , A(t, S) = t.
In other words, we assume that A never leaves t once it reaches this node.

Define a graph H with the node set V as follows: for every pair u, v ∈ V , the
edge (u, v) is in H if and only if this edge is on the path from s to t defined by A

on some realization of G(n, Ω) (i.e., on some graph that has a nonzero probability
in the distribution G(n, Ω)). We have the following important lemma.

Lemma 3.4. The graph H is acyclic.

Proof. Assume, for contradiction, that H contains a simple cycle C. Note that by
the definition of H , if an edge (u, v) is in H , then u must be reachable from s in
H . Therefore, every node of C must be reachable from s in H . Let v∗ be a node
in C that has the shortest distance from s in H , and let s = v0, v1, . . . , v� = v∗

be a shortest path from s to v∗ in H . Also, let v∗ = v�, v�+1, . . . , vk, vk+1 = v∗

denote the cycle C. Therefore, v0, v1, . . . , vk are all distinct nodes, and for every
i ∈ {0, . . . , k}, there is an edge from vi to vi+1 in H .

By the definition of H , for every i ∈ {0, . . . , k}, there is a realization of G(n, Ω)
in which A traverses the edge (vi, vi+1). This means that there is a realization
of G(n, Ω) in which the set Γ(vi) of out-neighbors of vi is S∗

i , for some set S∗
i

such that A(vi, S
∗
i ) = vi+1. Recall that by the definition of G(n, Ω), the random

variables Γ(u) are all independent. Hence, since the vi’s are all distinct and for
each i, there is a realization satisfying Γ(vi) = S∗

i , there must be a realization in
which Γ(vi) = S∗

i for all i. In this realization, the algorithm A falls in the cycle
C, and therefore will never reach t. Thus the path found by A in this realization
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is infinitely long, and therefore the expected length of the path found by A is
infinite. This is a contradiction.

By Lemma 3.4, we can find a topological ordering of the graph H . Further-
more, since by assumption t has no outgoing edge in H , we can find a topological
ordering that places t last. Let σ be such an ordering; more precisely, σ is an
ordering of V such that

(i) t is the maximum element of V under σ;

(ii) for every edge (u, v) in H , we have σ(v) > σ(u); and

(iii) all isolated nodes of H are placed at the beginning of σ in an arbitrary
order, i.e., σ(u) > σ(v) for any isolated node v and nonisolated node u.

By the definition of H , these conditions mean that the algorithm A (starting
from the node s) never traverses an edge (u, v) with σ(u) > σ(v).

Given the ordering σ, we define ru for every u ∈ V to be the expected time to
reach t from u following the best path that does not backtrack with respect to
σ. The value of ru can be computed recursively as follows:

ru =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if u = t,

1 +
∑

S⊆Tu
S �=∅

qu,S · min
v∈S

{rv} if u �= t and qu,∅ = 0,

∞ if u �= t and qu,∅ > 0,

(3.1)

where Tu := {v : σ(v) > σ(u)} and, for a set S ⊆ Tu, we write

qu,S :=
∑

S′:S′∩Tu=S

ωu,S′

to denote the probability that the subset of nodes of Tu that are out-neighbors
of u is precisely S.3 Note that the above formula defines ru in terms of rv for
σ(v) > σ(u), and therefore the definition is well founded.

We can now define the ordering π as follows: Let π(u) > π(v) if ru < rv. Pairs
u, v with ru = rv are ordered arbitrarily by π.

The final step of the proof is the following lemma, which we will prove by
induction using the ordering σ. To state the lemma, we need a few pieces of
notation. For a search algorithm B, let d(B, u) denote the expected length of
the path that the algorithm B, started at node u, finds to t. Also, let V0 denote

3In the special case of G(n, P), we have qu,S := (
∏

v∈S puv)(
∏

v∈Tu\S(1 − puv)).
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the set of nonisolated nodes of H , i.e., V0 is the set of nodes that the algorithm
A (started from s) has a nonzero chance of reaching.

Lemma 3.5. Let σ and π be the orderings defined as above. Then for every node
u ∈ V0, we have that d(A, u) ≥ d(Aσ,π, u) = ru.

Proof. We prove this statement by induction on u, according to the ordering
σ. The statement is trivial for u = t. We now show that for u ∈ V0 \ {t},
if the statement holds for every node v ∈ V0 with σ(v) > σ(u) (i.e., for every
v ∈ Tu ∩ V0), then it also holds for u. Observe that for any deterministic
memoryless algorithm B,

d(B, u) = 1 +
∑
S⊂V
S �=∅

ωu,S · d(B, B(u, S)). (3.2)

This statement follows from the fact that the algorithm B is memoryless, and
that ωu,∅ = 0 since u ∈ V0. Applying (3.2) to Aσ,π implies

d(Aσ,π , u) = 1 +
∑
S⊂V
S �=∅

ωu,S · d(Aσ,π , Aσ,π(u, S))

= 1 +
∑

S′⊂V
S′ �=∅

ωu,S′ · d(Aσ,π , Aσ,π(u, S′ ∩ Tu)) (3.3)

= 1 +
∑

S⊆Tu

S �=∅

∑
S′:S′∩Tu=S

ωu,S′ · d(Aσ,π , Aσ,π(u, S))

= 1 +
∑

S⊆Tu

S �=∅

qu,S · d(Aσ,π, Aσ,π(u, S)), (3.4)

where (3.3) follows from the fact that by definition of Aσ,π, Aσ,π(u, S) depends
only on u and S ∩ Tu, and (3.4) follows from the definition of qu,S . Since by the
definition of Aσ,π, σ(Aσ,π(u, S)) > σ(u), the induction hypothesis implies that
d(Aσ,π , Aσ,π(u, S)) = rAσ,π(u,S). Furthermore, by the definition of Aσ,π and π,
we have that rAσ,π(u,S) = minv∈S{rv}. Combined with (3.4) and the definition
of ru, this shows that d(Aσ,π , u) = ru, as desired.

We now prove that d(A, u) ≥ ru. By Lemma 3.4 and the definition of V0, we
have A(u, S) ∈ S ∩ Tu ∩ V0. Therefore,

d(A, A(u, S)) ≥ min
v∈S∩Tu∩V0

{d(A, v)}. (3.5)
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By the induction hypothesis, we have that d(A, v) ≥ rv for every v ∈ Tu ∩ V0.
This, together with (3.2) and (3.5), implies

d(A, u) ≥ 1 +
∑
S⊂V
S �=∅

ωu,S · d(A, A(u, S))

≥ 1 +
∑
S⊂V
S �=∅

ωu,S · min
v∈S∩Tu∩V0

{d(A, v)}

≥ 1 +
∑
S⊂V
S �=∅

ωu,S · min
v∈S∩Tu∩V0

{rv}

= 1 +
∑

S⊆Tu

S �=∅

∑
S′:S′∩Tu=S

ωu,S′ · min
v∈S∩V0

{rv}

= 1 +
∑

S⊆Tu

S �=∅

qu,S · min
v∈S

{rv} (3.6)

= ru,

where (3.6) follows from the definition of qu,S and the fact that by property (iii)
of σ, S ∩ V0 = S for every S ⊆ Tu. This completes the proof of the induction
step.

Proof of Theorem 3.3. Define the graph H , the ordering σ, the values ru, and the
ordering π as above. By Lemma 3.5, we have that d(Aσ,π , s) ≤ d(A, s). Since
G(n, Ω) is d-searchable using A by assumption, we have that d(A, s) ≤ d. Hence
we have d(Aσ,π , s) ≤ d, as desired.

Note that in the above proof, the second ordering π was defined in terms of
the first ordering σ. Therefore, the condition for the searchability of G(n, Ω) can
be stated in terms of only one ordering σ as follows:

Corollary 3.6. G(n, Ω) is d-searchable if and only if there is an ordering σ on the
nodes for which rs ≤ d, where r is defined as in (3.1).

A second corollary of the above characterization is that the following problem
is in NP.

Searchability: Given a positive integer n, an n×n matrix P, two
nodes s and t, and a positive number d, decide whether G(n,P) is
d-searchable.
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Corollary 3.7. Searchability is in NP.

Proof. We use the ordering σ as a polynomial-size certificate for membership in
Searchability. By Corollary 3.6, it is enough to show that ru can be computed
in polynomial time. We prove this by rewriting (3.1) for nodes u with u �= t and
qu,∅ = 0. To do this, fix any such u and let v1, . . . , vt denote the nodes of Tu

ordered in increasing order of their rv’s, i.e., rv1 ≤ rv2 ≤ · · · ≤ rvt . We have

ru = 1 +
∑

S⊆Tu

S �=∅

∏
v∈S

puv

∏
v∈Tu\S

(1 − puv) · min
v∈S

{rv}

= 1 +
t∑

i=1

∑
S⊆{1,...,t}
min{S}=i

∏
j∈S

puvj

∏
j∈{1,...,t}\S

(1 − puvj ) · rvi

= 1 +
t∑

i=1

rvipuvi

i−1∏
j=1

(1 − puvj )
∑

S⊆{i+1,...,t}

∏
j∈S

puvj

∏
j∈{i+1,...,t}\S

(1 − puvj )

= 1 +
t∑

i=1

rvipuvi

i−1∏
j=1

(1 − puvj ).

Given this equation, we argue that it is possible to compute ru given rv for all
v ∈ Tu in polynomial time. This is obvious in the real-computation model. To
see that this is also possible in the standard bit operation model, note that the
above equation gives the value of ru as a linear combination of rvi ’s, where each
coefficient in this linear combination is a product of at most n probabilities of the
form puvj or 1−puvj . Therefore, if �max denotes the length of the longest binary
representation of any element in the probability matrix P, each coefficient in the
linear expression of ru in terms of the rvi ’s is of bit-length at most n(�max + 1).
Using a simple induction on u, this implies that the size of the binary represen-
tation of any ru is at most n(1 +n(�max + 1)), which is polynomial in the size of
the input. Therefore, using the above expression, all the ru’s can be computed
exactly in polynomial time.

Therefore, by Corollary 3.6, membership in Searchability can be tested in
polynomial time given the certificate σ.

4. The Monotonicity Property

Armed with the characterization theorem of the previous section, we can now
prove the following natural monotonicity property for searchability.
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Theorem 4.1. Let P, P′ be two n× n probability matrices such that for every i and
j, we have pij ≤ p′ij. Fix the source and destination nodes s and t. Then, if
G(n,P) is d-searchable for some d, so is G(n,P′).

Proof. By Corollary 3.6, since G(n,P) is d-searchable, there is an ordering σ such
that the value rs defined using (3.1) is at most d. To show d-searchability of
G(n,P′), we apply the same ordering σ. Let {r′u} denote the values computed
using (3.1), but with P replaced by P′. Similarly, we define q′u,S ’s. By Corollary
3.6, it suffices to show that r′s ≤ d. To do this, we prove by induction that for
every u ∈ V , we have r′u ≤ ru. This statement is trivial for u = t. We assume
that it has been proved for every v ∈ V with σ(v) > σ(u), and prove it for u.
First, note that if q′u,∅ > 0, we have

qu,∅ =
∏

v∈Tu

(1 − puv) ≥
∏

v∈Tu

(1 − p′uv) = q′u,∅ > 0.

Hence, ru = ∞ and the inequality r′u ≤ ru holds. Therefore, we may assume
q′u,∅ = 0. Thus, we have

r′u = 1 +
∑

S⊆Tu

S �=∅

∏
v∈S

p′uv

∏
v∈Tu\S

(1 − p′uv) · min
v∈S

{r′v}

≤ 1 +
∑

S⊆Tu

S �=∅

∏
v∈S

p′uv

∏
v∈Tu\S

(1 − p′uv) · min
v∈S

{rv}.

Let 1, 2, . . . , k denote the nodes of Tu, ordered in such a way that r1 ≤ r2 ≤ · · · ≤
rk. Recall that

∏
v∈S p′uv

∏
v∈Tu\S(1 − p′uv) is the probability that in G(n,P′),

Γ(u) ∩ Tu = S. Therefore, we have

r′u ≤ 1 +
∑

S⊆Tu
S �=∅

PrG(n,P′)[Γ(u) ∩ Tu = S] · min
v∈S

{rv}

= 1 +
k∑

i=1

ri ·PrG(n,P′)[min{Γ(u) ∩ Tu} = i]

= 1 +
k∑

i=1

ri

(
PrG(n,P′)[min{Γ(u) ∩ Tu} ≤ i] − PrG(n,P′)[min{Γ(u) ∩ Tu} ≤ i − 1]

)

= 1 + rk −
k−1∑
i=1

PrG(n,P′)[min{Γ(u) ∩ Tu} ≤ i](ri+1 − ri).
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The coefficient of (ri+1 − ri) in the above expression is the probability of the
event that the set of nodes that have an edge from u in G(n,P′) contains at least
one of the nodes 1, . . . , i. This event is monotone; therefore the probability of
this event under G(n,P) is less than or equal to the probability under G(n,P′).
Therefore,

r′u ≤ 1 + rk −
k−1∑
i=1

PrG(n,P)[min{Γ(u) ∩ Tu} ≤ i](ri+1 − ri)

= 1 +
k∑

i=1

ri ·PrG(n,P)[min{Γ(u) ∩ Tu} = i]

≤ ru,

where the last inequality follows from the definition of ru (and holds with equality
unless qu,∅ > 0). This completes the proof of the induction step.

We want to point out that the monotonicity result may seem surprising es-
pecially to those who are familiar with Kleinberg’s result on the searchability
of long-range percolation graphs [Kleinberg 00]: in that graph model, there is a
critical value for a parameter r such that the graph is searchable in polylogarith-
mically many steps only if r takes on this value; either larger or smaller values
for r would render graphs with polynomial-time decentralized routing time. Our
result is not contradictory to Kleinberg’s result: in his model, changing the pa-
rameter r affects the probabilities of many edges simultaneously; in particular,
those probabilities sum up to 1, so either increasing or decreasing the value of r

will cause the probability of certain edges to decrease. Therefore the condition
for our monotonicity result does not hold in his model.

Note that simple as the statement of Theorem 4.1 sounds, we do not know
whether a similar statement holds for randomized memoryless algorithms. On
the other hand, we have proved the monotonicity property for randomized algo-
rithms with memory; the proof can be found in [Mahdian and Xu 07].

5. Conclusions and Open Problems

In this paper, we defined a general class of random graphs, and gave a simple
characterization of random graphs in this class that are searchable using decen-
tralized deterministic memoryless algorithms. Our framework includes many of
the previously studied small-world networks. Two important corollaries of our
characterization are the monotonicity of the searchability property, and mem-
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bership of the problem of testing searchability of a given graph in the complexity
class NP.

Our framework and results lead to many interesting open questions. First,
it would be interesting to settle the complexity of Searchability. We proved
that this problem belongs to NP. However, we do not know whether this problem
can be solved in polynomial time, or whether it is NP-complete.

Characterizing searchability with respect to more general classes of decentral-
ized search algorithms is another important open question. The class of search
algorithms we considered in this paper can be generalized in three ways: allowing
the algorithm to use randomization, allowing the algorithm to have memory, and
allowing the algorithm to fail (i.e., not find a path to t) with a small probability
ε. The following simple example shows that any of these generalizations (or in
fact, even allowing the algorithm to store one bit of memory) can drastically
increase the power of the algorithm.

Example 5.1. Consider a graph, consisting of nodes s = u0, u1, . . . , un−2 = t, and
v. For every i = 0, . . . , n − 1, there is an edge from ui to ui+1 with probability
one. Also, there is an edge from s to v and one from v to s with probability one.
Finally, there is an edge from v to t with probability 1 − 1/n. A deterministic
memoryless algorithm on this graph cannot ever visit v, since if it does and the
direct edge from v to t is not present, it has to go back to s and then it will fall
into a loop, since it has to go back to v. Therefore, any such algorithm reaches
t in expected n − 2 steps. However, if the algorithm is allowed to have one bit
of memory, it can first go to v, and if the edge to t is not present, go back to
s, remembering that it has already visited v. This achieves an expected path
length of (1 − 1/n)2 + 1

n · n < 3. Similarly, if the algorithm is allowed to use
randomization, it can flip a coin at s, and choose to go to either v or u1 with
probabilities 1 − 1/n and 1/n, respectively. If it goes to v and the edge to t is
not present, it returns to s and flips the coin again. It is not hard to prove that
the expected number of steps that this algorithm takes to reach t is at most 6.

The above example suggests that a characterization as simple as the one in
Theorem 3.3 is probably impossible for algorithms that have memory, use ran-
domization, or are allowed to fail. But at least it would be interesting to deter-
mine whether these problems belong to NP.

Finally, we note that despite the fact that it seems intuitive that the searchabil-
ity property is monotone, we know how to prove this property only for determin-
istic memoryless algorithms and for algorithms with memory. Most importantly,
proving this property for randomized memoryless algorithms is an intriguing
open question.
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