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The Structure of PEC Networks
Dana Richards and Zhenlei Jia

Abstract. A packed exponential connections (PEC) network is a grid-based network
with connectivity and routing results that are competitive with hypercubic networks.
The prior results are all empirical, since the structure of the network has been under-
stood only through an indirect existence proof. In this paper we provide the first direct
characterization of a PEC network.

1. Introduction

A packed exponential connections (PEC) network is a network that tries to
solve the scalability and connectivity problems of tightly coupled interconnection
networks [Kirkman and Quammen 91]. It has been studied extensively and found
to have connectivity problems very similar to the hypercube network. However,
since it is defined as a set of mesh networks, it is essentially a two-dimensional
design, and it has superior layout properties.

Nevertheless, the PEC network is not yet well understood analytically. There
have been some loose routing and algorithmic results [Quammen et al. 96, Wong
et al. 95]. However, most of the results for routing are empirical [Quammen et
al. 96, Liao and Sun 99]; this is also true for other properties such as diameter and
congestion. While the PEC definition is essentially based on a two-dimensional
grid, it is possible to define a much simpler one-dimensional PEC network (by
using only the first row of the 2-D construction). It is only for this simpler 1-D
PEC network that exact results are known for routing and diameter [Lin and
Prasanna 95, Raghavendra and Sridhar 96].
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4 Internet Mathematics

In this paper, we study the properties of two-dimensional PEC networks. The
PEC network has resisted analysis because the definition of the PEC network
is indirect, by way of a construction. Unfortunately, the construction does not
allow us to know the details of one part of the PEC network without essentially
generating a large portion of the network. The main contribution of this paper
is a new direct definition of the PEC network, which will lead to better and more
precise knowledge of the network’s properties.

The paper is organized as follows: Section 2 defines two matrices that charac-
terize the PEC matrix but that are easy to understand and construct. Based on
results in Section 2, we are able to provide an algorithm in Section 3 that can
compute the PEC value of any entry directly, without computing PEC values for
other entries. In Section 4 we will reexamine the definition of the PEC matrix
and prove that the PEC matrix can be defined by other properties.

2. Definitions

Informally, the PEC network is an augmentation of a grid network (where each
node is connected to its four neighbors, except on the edges). Each node has
a label, say i > 0, and connections to four additional neighbors (N, S, E, W),
each a distance 2i away in the grid. The nodes labeled i > 0 form grids with
edges of length 2i, and each node is in exactly one such grid. Roughly 1/2i of
the nodes are in grids with the label i. This provides enough grid connections
with long edges to allow efficient routing. The definition, given below, is for an
infinite PEC network, but any implementation would use a finite truncation (not
discussed here).

More formally, the PEC network consists of an infinite matrix of nodes N [i, j],
where 0 ≤ i, j < ∞. Each such node is connected by a bidirectional link to
N [i±1, j] and N [i, j±1] (if they exist). Further, each such node has an associated
value P [i, j] and is connected by a bidirectional link to N [i±2P [i,j], j] and N [i, j±
2P [i,j]] (if they exist). Clearly, the crux of the definition is the specification of
P , which is called the PEC matrix.

An (i, j)-tile is a “properly aligned” submatrix of P of size 2i × 2j , and its
upper left corner is the entry P [k2i, m2j], for some integers k and m. An (i, j)-
tile contains at least two entries, so i > 0 or j > 0. Note that a (0, j)-tile would
be a portion of a row of the matrix and is called a row-tile of size 2j . Given some
two-dimensional matrix M , we will use M [i1..j1][i2..j2] to denote the submatrix
of M that consists of all entries M [i, j] such that i1 ≤ i < j1, i2 ≤ j < j2. The ith
“row” R of the matrix is M [i..i + 1][0..∞]. Given a row R, we will use R[i..j] to
represent the subarray of R that consists of all the entries R[k], where i ≤ k < j.
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Richards and Jia: The Structure of PEC Networks 5

Definition 2.1. The PEC matrix P satisfies

1. P [0, 0] =∞,

2. in any (i, j)-tile there is exactly one entry i + j,

3. if P [i, j] = n, then P [i + 2n, j] = n and P [i, j + 2n] = n.

It is easy to show that the following property follows from the definition of the
PEC matrix [Shermer 02]. (Interestingly, it was part of the original definition.)

Lemma 2.2. [Shermer 02] In any (i, j)-tile there is exactly one entry that is greater
than i + j.

Proof. Let T be any (i, j)-tile. Then T has 2i+j entries altogether, and we will
prove the lemma by showing that the total number of entries in T that are less
than or equal to i + j is 2i+j − 1.

For any k such that 0 < k ≤ j, each row of T can be divided into 2j−k subtiles
of size (0, k), and in each such subtile, there is exactly one entry equal to k, so
in T , there are altogether 2j−k × 2i = 2i+j−k entries equal to k.

For any k such that j < k ≤ i + j, T can be divided into 2i+j−k subtiles of
size (k − j, j), and in each such subtile, there is exactly one entry equal to k, so
there are 2i+j−k entries equal to k in T .

So in T , the total number of entries that are less than or equal to i + j − 1 is∑i+j
k=1 2i+j−k = 2i+j − 1.

It has been shown [Kirkman and Quammen 91] that the definition uniquely
defines P . It is a constructive argument and can be used to fill in the P matrix
one entry at a time, working away from the origin. The goal of this paper is to
calculate P [i, j] without calculating any other entries of P . Figure 1 shows the
beginning of the P matrix; at first, it seems very regular, but on close inspection
it becomes clear that any pattern is very obscure.

Definition 2.3. Consider any row R of P . The encoding array ER of R is a binary
array such that

ER[i] = 0 iff the maximum entry in R[0..2i+1] is in R[0..2i].

We say that ER is an encoding array, since it contains enough information
to reconstruct the row R, as the following theorem shows. First, we introduce
some notation. We use 〈xn . . . x0〉 to denote the binary representation of the
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∞ 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5
2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1
1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2
3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1
1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3
2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1
1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2
4 1 2 1 3 1 2 1 8 1 2 1 3 1 2 1
1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4
2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1
1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2
3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1
1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3
2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1
1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2

Figure 1. The upper left corner of the P matrix.

integer x =
∑n

i=0 xi · 2i, where xi ∈ {0, 1}. Given an integer x = 〈xn . . . x0〉, we
define the reverse binary representation RB(x) to be the infinite binary sequence
x0x1 . . . xn000 . . . . Further, we use ⊕ for the binary exclusive-or operation; if
the operands are binary arrays (finite or infinite), then the operation is done
bitwise.

Lemma 2.4. Let R be any row of P , and ER the encoding array of R. Let ei = ER[i].
For any integers j ≥ i ≥ 0, we divide row-tile R[0..2j+1] into 2j−i+1 smaller
row-tiles of length 2i and index them with 0, 1, . . . , 2j−i+1 − 1. If m is the index
of the row-tile that contains the unique entry that is greater than j + 1, then
m = 〈ejej−1 . . . ei〉. Further, if m′ is the index of the row-tile that contains the
unique entry that is equal to j + 1, then m′ = 〈(1− ej)ej−1 . . . ei〉.

Proof. We prove the lemma by induction on j − i. For j − i = 0, by the definition
of ej , the lemma is true.

Now suppose the lemma is true for j−i = k. Consider the case of j−i = k+1.
Let n be the index of the row-tile of size 2i in R[0..2j] that contains the entry
that is greater than j. Since (j − 1)− i = k, by induction, n = 〈ej−1ej−2 . . . ei〉.
For any entry R[l] in the other row-tiles of size 2i, we have R[l] ≤ j, and by the
definition of P , R[l + 2j ] = R[l] ≤ j. Thus the only two possible values for m

and m′ are n and n + 2j−i. By the definition of ej , if ej = 0, then m ≤ 2j−i,
and m = n = 〈ejej−1 . . . ei〉. If ej = 1, then m = n + 2j−i = 〈ejej−1 . . . ei〉. In
either case, the lemma is true.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Figure 2. The upper left portion of the E array.

The following theorem shows how to calculate a row from its encoding array.

Theorem 2.5. Let R be a row of P and let ER be its encoding array. Then

R[i] = 1 + the index of the first 1 in E ⊕ RB(i).

Proof. Let ER[i] = ei. Suppose that RB(i) = i0i1 . . . ik . . . , where el = il, for every
l < k and ek 	= ik. Applying Lemma 2.4 with i = 0, j = k, we have that the
position of the unique k +1 in R[0..2k+1] is 〈(1− ek)ek−1 . . . e0〉 = 〈ikik−1 . . . i0〉.
We will call it i′. There are two cases:

Case 1: 2k ≥ i. Then 〈ikik−1 . . . i0〉 equals i, and so R[i] = k + 1.

Case 2: 2k < i. Then i− i′ = m · 2k+1 for some integer m, and by the definition
of P , R[i] = R[i′] = k + 1.

Definition 2.6. Define the encoding matrix E of the PEC matrix P as follows: the
ith row of E is the encoding array of the ith row of P .

Figure 2 shows the E matrix; the reader should verify that each row is the
encoding of the corresponding row of the P matrix. The following lemmas give
various properties of the matrix E that will prove to characterize it.

Lemma 2.7. (Zero initial row property.) The first row (indexed by 0) of E is composed of
all zeros.
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Proof. The entry at position 0 is ∞, so the largest entry is always in the lower
half. Therefore, E[0, i] = 0, for all i.

Lemma 2.8. (Distinct rows property.) Let m, i ≥ 0 and j > 0 be integers. Then all
the rows in the submatrix E[m · 2j ..(m + 1) · 2j ][i..i + j] are different from one
another.

Proof. Denote the submatrix by E′, and consider the corresponding tile of P ,
P ′ =P [m · 2j ..(m + 1) · 2j ][0..2i+j ]. If we divide each row of P ′ into row-tiles of
size 2i, then by Lemma 2.4, each row of E′ represents the index of the row-tile
that contains the entry greater than i + j in the corresponding row of P ′.

Note that all the row-tiles with the same index from all the rows will form a
(j, i)-tile. By Lemma 2.2, there will be only one entry in this tile that is greater
than i + j, which implies that all the rows in E′ must be distinct.

Lemma 2.9. (Repeating headers property.) For any m, n ≥ 0 and i > 0,

E[m · 2i..(m + 1) · 2i][0..i] = E[n · 2i..(n + 1) · 2i][0..i].

Proof. First we prove the lemma for the case of n = m + 1.
Let R, R′ be the rth and (r + 2j)th rows of P and m · 2i ≤ r < (m + 1) · 2i.

Suppose R[k] is the unique entry that is greater than i in R[0..2i]. Then for
l < 2i and l 	= k, R[l] ≤ i, we have by the definition of P that R′[l] = R[l] ≤ i.
This leaves R′[k] as the only possible entry in R′[0..2i] that is greater than i.

Note that for a row L, EL[0..i] depends only on the comparison between the
entries in L[0..2i]. Since R[0..2i] and R′[0..2i] are all the same except for the
value of their largest entry, we have ER[0..i] = ER′ [0..i].

So we have E[m · 2i..(m + 1) · 2i][0..i]=E[(m + 1) · 2i..(m + 2) · 2i][0..i].
For other cases, without loss of generality, we can assume that m < n. Then

E[n · 2i..(n + 1) · 2i][0..i] = E[(n− 1) · 2i..n · 2i][0..i]
...

= E[m · 2i..(m + 1) · 2i][0..i].

In fact, E is the only matrix that has all these three properties. Let F be a
matrix that has the properties stated in Lemmas 2.7, 2.8, and 2.9. The following
lemma shows that there is a unique way to fill in F , starting from the origin.

Lemma 2.10. The first row of F consists of all 0’s, and the second row of F consists
of all 1’s.
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Proof. By the zero initial row property, the first row of F consists of all 0’s. For
any integer m ≥ 0, consider F [0..2][m..m + 1]. By the distinct rows property
and the fact that F [0, m] = 0, we have F [1, m] = 1.

Lemma 2.11. Given F [0..2i][j..j + i + 1] and F [2i..2i+1][j..j + i], there is a unique
way to fill in F [2i..2i+1][j + i..j + i + 1].

Proof. Let B1 be the set of binary strings in F [0..2i][j..j + i + 1], and B2 the set
of the binary strings in F [2i..2i+1][j..j + i + 1]. Then B1 ∪ B2 contains all the
2i+1 binary strings of length i + 1.

Note that F [0..2i][j..j + i] and F [2i..2i+1][j..j + i + 1] both consist of all the
binary strings of length i.

For each string s in B2, let t be its prefix of length i. Since F [0..2i][j..j + i]
contains all binary strings of length i, it contains t and there is one string s′ in
B1 that has prefix t. But s is not equal to s′, and so they must be different in
their last bit. Because the last bit of s′ is given, there is only one choice for the
last bit of s. So F [2i..2i+1][j + i..j + i + 1] is uniquely determined.

Now we are ready to prove the following theorem.

Theorem 2.12. There is a unique matrix that satisfies Lemmas 2.7, 2.8, and 2.9.

Proof. Let F be a matrix that has these three properties. For any i, j ≥ 0, we
need to prove that F [i, j] is uniquely determined.

Take integers n such that 2n > i and n > j. We will prove the following
statement by induction on m: For m ≤ n, F [0..2m][0..n] is uniquely determined.

First of all, by Lemma 2.10, the first two rows of F are uniquely deter-
mined. Specifically, F [0..2][0..n] is uniquely determined. The statement is true
for m = 1.

Now suppose we have filled in F [0..2k][0..n] for an integer k < n. By Lemma 2.9,
F [2k..2k+1][0..k] = F [0..2k][0..k] is uniquely determined. By repeatedly ap-
plying Lemma 2.11, we can fill in F [2k..2k+1][0..n] column by column. So
F [0..2k+1][0..n] is uniquely determined.

Thus the statement is proved. Since F [i, j] is an entry of F [0..2n][0..n], it is
uniquely determined.

The irregular E matrix can be constructed from a compact matrix M that
has a simple and regular definition.
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 3. The upper left portion of the M matrix.

Definition 2.13. Define the M matrix as follows:

1. M [0, i] = 1 for i ≥ 0, M [i, 0] = 0 for i > 0, and

2. M [i, j] = M [i, j − 1]⊕M [i− 1, j − 1] for i, j > 0.

The M matrix is illustrated in Figure 3. It is easy to show that for i > j,
M [i, j] = 0. The following theorem describes the relation between E and M .

Theorem 2.14. E can be computed from the matrix M in the following way:

Ei =
l⊕

k=0

ik ·Mk,

where Ei is the ith row of E, i = 〈il . . . i0〉, and Mk is the kth row of M .

Proof. Let E′ be the matrix that is constructed using M , as above. By Theo-
rem 2.12, we need to show only that E′ has properties described in Lemmas 2.7,
2.8, and 2.9, and it follows that E = E′.

Zero Initial Row Property: By the construction of E′, its first row is all 0’s.

Repeating Headers Property: Let i be any integer. Consider the prefix of length
i of the rows. It is sufficient to prove that for any m, E′[m · 2i..(m + 1) · 2i][0..i]
is the same as E′[0..2i][0..i].
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Consider the nth row of E′ that lies in E′[m · 2i..(m + 1) · 2i][0..i]. Let
〈nj . . . ni . . . n0〉 be the binary representation of n and

n′ = n mod 2i = 〈ni−1 . . . n0〉.
Then E′

i = ⊕j
k=0 nk ·Mk = (⊕(i−1)

k=0 nk ·Mk)
⊕

(⊕j
k=i nk ·Mk).

For each Mk in the second term, its prefix of length i consists of all zeros. So

E′
n[0..i] =

i⊕
k=0

ik ·Mk[0..i] = E′
n′ [0..i].

Thus the repeating headers property holds for E′.

Distinct Rows Property: To prove that E′ has the distinct row property, view
each row of M and E′ as a vector over Z2. Then the rows of E′[0..2j][i..i + j]
are all the vectors in the linear space spanned by M [0..j][i..i + j]. To show that
all the rows of E′ are distinct, we need to show only that the vectors in M are
linearly independent, which can be proved by showing that the determinant |M |
is nonzero.

We prove this by induction on the order j of |M |. For j = 1, since the first
row of M contains only 1’s, we have |M | = 1.

Now suppose that for any i, |M [0..j − 1][i..i + j − 1]| 	= 0.
To calculate |M [0..j][i..i+ j]|, apply the following linear transformation on it:

for i = 1, . . . , j − 1, add the ith column to the (i − 1)st column. Because of
condition (2) in Definition 2.13, it is easy to see that

|M [0..j][i..i + j]| =
∣∣∣∣ 0 1

M [0..j − 1][i..i + j − 1] B

∣∣∣∣ = |M [0..j − 1][i..i + j − 1]|,

where B is a (j − 1)× 1 binary matrix.
By induction, the determinant is not 0, and the distinct rows property is

proved.

3. Algorithm

Based on the results in the last section, we can directly compute an entry of the
PEC network using Algorithm 1.

What is the time complexity of this algorithm? The cost of steps 1 through 3 is
O(m+n). The body of the while loop will be executed l = P [i, j] ≤ m+n times,
while the body of the for loop takes O(m) steps. So the total time complexity of
the algorithm is O(l·m+n), or O(m2+mn) in the worst case. Since the P matrix
is symmetric, we can assume without loss of generality that m ≤ n, so we can
simplify the worst-case analysis to O(mn), or alternatively, to O(log(i) · log(j)).
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Algorithm 1. (Computing an entry of a PEC network.)
Input: coordinates i and j.
Output: the value of the entry P [i, j].

1. Compute the binary representation of i = 〈im . . . i0〉
2. Compute the binary representation of j = 〈jn . . . j0〉
3. Create an array M ′ of m integers with initial value 100 . . .0 (this is

column 0 of the M matrix)

4. l← 0

5. e0 ← i0

6. while el 	= jl do (treat jl as 0 if l > n)

(a) l = l + 1 (let M ′ be the lth column of the M matrix)

(b) for k ← m downto 1 do

M ′[k]←M ′[k]⊕M ′[k − 1]

(c) el =
⊕m

k=1 ik ·M ′[k]

7. return l + 1

4. More on the Definition of the PEC Matrix

In this section we show that the original definition of P was too strong. After
proving the following theorem we get a corollary that shows that the definition
of P did not need to specify that each entry of value n was on a grid with
spacing 2n.

Theorem 4.1. Let Q be a matrix that satisfies

1. Q[0, 0] =∞,

2. in each (i, j)-tile of Q there is exactly one entry i + j.

Then Q is uniquely determined by its first row and first column.

We will give the proof of Theorem 4.1 at the end of this section.
The main result of this section is the following corollary.



�

�

“imvol6” — 2010/7/6 — 15:17 — page 13 — #11
�

�

�

�

�

�

Richards and Jia: The Structure of PEC Networks 13

Corollary 4.2. The PEC matrix P can also be defined as a matrix that satisfies

1. P [0, 0] =∞,

2. in each (i, j)-tile of P there is exactly one entry i + j,

3. the first row and first column are the one-dimensional PEC matrix.

First of all, we investigate some properties of the matrices defined in Theo-
rem 4.1.

Lemma 4.3. Let Q be a matrix defined in Theorem 4.1. Then

(a) in an (m, n)-tile of Q, there are 2m+n−i entries equal to i, for 1 ≤ i ≤ m+n,

(b) all entries of Q are greater than 0,

(c) in an (m, n)-tile of Q, there is exactly one entry greater than m + n,

(d) the largest 2i numbers in an (m, n)-tile are the numbers in that tile that are
greater than m + n− i.

Proof. We prove (a) by induction on m + n.
For the case m + n = 1, by definition of Q, there is one entry equal to 1, so

(a) is true for this case.
Suppose that (a) is true for m + n = k ≥ 1, and consider the case of m + n =

k + 1. Since k + 1 ≥ 2, we can assume without loss of generality that m > 0.
Split the tile into two (m− 1, n)-tiles.

For 1 ≤ i ≤ m+n−1, by induction, in each subtile there are 2m+n−1−i entries
equal to i, so there are altogether 2 · 2m+n−1−i = 2m+n−i entries equal to i in
the (m, n)-tile. For i = m + n, by definition of Q, there is one m + n in this tile.
Thus (a) is true for m + n = k + 1.

(b) For any (i, j), take m, n such that 2m > i, 2n > j. The number of entries
in Q[0..2m][0..2n] that are greater than 0 is 1 +

∑m+n
i=1 2m+n−i = 2m+n, i.e., all

entries in this (m, n)-tile are greater than 0. So Q[i, j] > 0.
(c) From (a) and (b), the number of entries in an (m, n)-tile that are greater

than m + n is 2m+n −∑m+n
i=1 2m+n−i = 1.

(d) The number of entries in an (m, n)-tile that are greater than m + n− i is

1 +
m+n∑

k=m+n−i+1

2m+n−k = 1 +
i−1∑
l=0

2l = 2i.
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The following lemma is just a corollary of Lemma 4.3.

Lemma 4.4. For any m, n ≥ 0, consider the tile Q[2m..2m+1][2n..2n+1]. In this
tile, there is one m + n + 2, and for 1 ≤ i ≤ m + n, there are 2m+n−i entries
equal to i.

So for any m, n, the set of integers in the submatrix Q[2m..2m+1][2n..2n+1] are
uniquely determined. Determining the submatrix is only a matter of determining
the positions of these integers.

For a given entry e, we will use FP(e) to denote its feasible positions. For
example, if e is the entry in M [2m..2m+1][2n..2n+1] with value m + n, then
without any other information, FP(e) is the whole block. Given the position of
the entry m + n + 2, since e cannot be in the same half-side with m + n + 2,
FP(e) will be a quarter of the tile.

Note that given an (m, n)-tile B, for any s > 0, there is a unique (m+s, n)-tile
Bs that contains B. We call such a tile the supertile of B in the first direction.
The two (m − 1, n)-tiles contained in B are called the subtiles of B in the first
direction. We also define similar terms for the second direction.

The following lemma shows that we can narrow down the feasible positions
using the information from other entries.

Lemma 4.5. (Expand–shrink lemma.) Let B be an (m, n)-tile, and max is the entry with
the largest number in B. Suppose B′ is a supertile of B in the first direction,
and max, max′ are the largest two entries in B′. Given the position max′, then
for the two subtiles of B in the second direction, we can determine which one of
them contains FP(max).

Proof. Split B′ into two subtiles in the second direction. Then max and max′ must
be in different subtiles. Since the position of max′ is given, we can determine
which subtile of B′ max must be in. Let it be A. Then A ∩B is a subtile of B

in the second direction and max ∈ A ∩B.

The positions of larger entries in a tile will restrict the feasible positions of
smaller entries, as proved in the following lemma.

Lemma 4.6. Let B be an (m, n)-tile of M , m > n, and suppose that the set of
integers in B is known. For 1 ≤ i ≤ m + n, if the positions of the entries with
values greater than i are given, then for the 2m+n−i entries with values i, we can
determine 2m+n−i tiles of size h×w such that each such tile has one entry with
value i as the largest entry; here h = max{1, 2i−1−n}, w = max{1, 2i−1−m}.
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Proof. There are two cases, depending on i:

Case 1: i > n. Divide B into 2m+n−i+1 subtiles of size 2i−1−n × 2n. Each such
subtile contains one entry that is greater than i− 1. We know the positions of
the 2m+n−i−1 entries with value greater than i, so we know the subtiles they are
in, and we can determine the subtiles that contain i.

Take one subtile that contains an entry max with value i. We can expand it in
the first direction, and the maximum entry max′ in its supertile will be an entry
with value greater than i, so we know the position of max′. Applying Lemma 4.5,
we can shrink the “width” of FP(max) to 2n−1. Applying Lemma 4.5 repeatedly,
we can further reduce the “width.”

This procedure will terminate for one of two reasons:

1. FP(max) cannot expand to encounter another max′ whose position is
known, which will happen after applying the lemma for m− (i− 1− n) =
m + n− i + 1 times.

2. The “width” of FP(max) becomes 1 and cannot be reduced any further,
which will happen after n times.

If i > m, m + n− i + 1 ≤ n, the procedure will terminate after m + n− i− 1
steps, and the final width of FP(max) is 2n−(m+n−i+1) = 2i−1−m.

If n < i ≤ m, then m + n − i + 1 > n, the procedure will terminate after n

steps, and the final width of FP(max) is 1.
For both cases, the lemma is true.

Case 2: i ≤ n. Divide B into subtiles of size 1× 2i−1. Using a similar argument
to that in (1), in this case we can apply Lemma 4.5 for i − 1 times, and the
feasible position for one entry with value i will be reduced to a point, which
means that its position is uniquely determined.

The following lemma shows how to fill in M uniquely.

Lemma 4.7. Let

B = M [0..2m+1][0..2n+1] =
[

B11 B12

B21 B22

]
,

where m, n ≥ 1 and the Bij are matrices of size 2m × 2n, for i, j ∈ {1, 2}. Then
B is uniquely determined by the three blocks B11, B12, and B21.

Proof. Without loss of generality, we can assume that m ≥ n.
Suppose B11, B12, and B21 are determined. As we noted before, determining

B22 is to determine the positions for its entries.
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First we will show that there is a unique feasible position for m + n. Then
for i = m + n, . . . , 1, we will determine the positions of the entries with value i

based on the positions of entries with value greater than i, as well as B11, B12,
and B21.

For the entry m+n, it is the maximum entry in B22, and B22 can be expanded
in the first direction. Since all entries in B12 are determined, Lemma 4.5 can
apply n times, and FP(m + n) is narrowed down to a column of B22. Similarly,
in the other direction, FP(m + n) can be narrowed down to a row. Thus its
position is uniquely determined.

Suppose that all entries with value greater than i have determined positions.
Consider the entries with value i. By Lemma 4.6, each entry’s feasible position
is a subtile of size h×w. If h, w are not 1, then we can apply Lemma 4.5 in the
appropriate direction and find the unique position for that entry.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Given the first row and first column of Q, we show that for
any i, j, we can fill in Q[i, j] uniquely.

Take m, n such that 2n > j and 2m > i. We prove the following statement by
induction on k:

Q[0..2k][0..2n] is uniquely determined.

For k = 0, since the first row is given, the statement is true.
Suppose the statement is true for k, and consider the case of k + 1. By

induction, Q[0..2k][0..2n] is known and Q[0..2k+1][0..1] is given by the boundary
condition; by Lemma 4.7, Q[0..2k+1][0..2] is uniquely determined. Repeatedly
applying Lemma 4.7, we can fill in Q[0..2k+1][0..2n] uniquely. Thus the statement
is true for k + 1.

5. Conclusion

We have shown how to calculate the entries of the PEC matrix directly. The
method first constructs some entries of the compact M matrix and then some
entries of a row of the E matrix. The algorithm is very efficient.

The paper [Kirkman and Quammen 91] anticipated our approach. The authors
provided a table that is essentially the same as our M matrix and used it to
compute “shift values” that relate successive rows to the top row. This makes
sense only for finite truncations of P . (Our work shows that most rows of the
infinite P matrix are not a finite shifted copy of the top row; our approach never
considered shift values.) Their discussion of how to compute the shift values was
only for one finite case with no proof or technique for generalization.
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There remain many open problems. For example, even though it is clear by
construction that P [i, j] = P [j, i], the algorithm is very asymmetric in terms of i

and j. Also, the M matrix is the well-known “Sierpiński gasket,” and there are
probably further relationships to be discovered.
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