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Spectral Properties of the
Threshold Network Model
Yusuke Ide, Norio Konno, and Nobuaki Obata

Abstract. We study the spectral distribution of the threshold network model. The
results contain an explicit description of the distribution and its asymptotic behavior.

1. Introduction

The threshold network model Gn(X, θ), where X is a random variable, n ≥ 2
is an integer, and θ ∈ � is a constant called a threshold, is a random graph
on the vertex set V = {1, 2, . . . , n} obtained as follows: Let X1, X2, . . . , Xn be
independent copies of X and draw an edge between two distinct vertices i, j ∈ V

if Xi + Xj > θ. In other words, Gn(X, θ) is specified by the random adjacency
matrix A = (Aij) defined by

Aij =

{
I(θ,∞)(Xi + Xj), if i �= j,

0, otherwise,

where IB denotes the indicator function of a set B.
As a small variant one may allow self-loops; see, for example, [Bose and Sen 07].

In this case the threshold network model is denoted by G̃n(X, θ), where two
vertices i, j ∈ V (possibly i = j) are connected if Xi + Xj > θ. The adjacency
matrix Ã = (Ãij) is given by

Ãij = I(θ,∞)(Xi + Xj), i, j ∈ V.

The threshold network model has been extensively studied as a reasonable
candidate model of real-world complex graphs (networks), which are often
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characterized by small diameters, high clustering, and power-law (scale-free) de-
gree distributions [Albert and Barabási 02, Boccaletti et al. 06, Newman 03]. In
fact, the threshold network model belongs to the so-called hidden variable models
[Caldarelli et al. 02, Söderberg 02] and is known for being capable of generating
scale-free networks. Their mean behavior [Boguñá and Pastor-Satorras 03, Cal-
darelli et al. 02, Fujihara et al. 09b, Hagberg et al. 06, Masuda et al. 04, Servedio
et al. 04, Söderberg 02] and limit theorems [Fujihara et al. 09a, Ide et al. 07, Ide et
al. 09, Konno et al. 05] for the degree, the clustering coefficients, the number of
subgraphs, and the average distance have been analyzed. For related work, see
also [Diaconis et al. 09, Ide et al. 07, Ide et al. 09, Konno et al. 05, Mahadev and
Peled 95, Masuda et al. 05, Masuda and Konno 06].

Spectral properties of the threshold network model are also of interest. As a
simple case, the binary threshold model appears in [Taraskin 05]. The strong
law of large numbers and central limit theorem for the rank of the adjacency
matrix of the model with self-loops are given by [Bose and Sen 07]. Eigenvalues
and eigenvectors of the Laplacian matrix of the model have been studied in
[Merris 94, Merris 98]. For general results of spectral analysis of graphs, see, for
example, [Hora and Obata 07].

The main purpose of this paper is to study the spectral distribution, i.e., the
distribution of the eigenvalues of the adjacency matrix of the threshold network
model. Theorems 2.1 and 3.1 show the representations of the spectral distri-
bution of the models. Moreover, we give some examples whose eigenvalues are
asymptotically dominated by the special eigenvalues −1 and 0. Theorem 4.3 cov-
ers the preceding study of the rank of the adjacency matrix [Bose and Sen 07].

This paper is organized as follows: In Section 2 we recall the hierarchical
structure of the threshold network model and derive the spectral distribution of
each sample graph (threshold graph). In Section 3 we obtain similar results for
the threshold network model that admits self-loops. In Section 4 we derive some
asymptotic behavior for the spectral distributions, and in Section 5 we give a
simple example called the binary threshold model.

2. Spectra of Threshold Graphs

Each sample graph G ∈ Gn(X, θ) has a hierarchical structure described by the
so-called creation sequence, introduced in [Hagberg et al. 06]. Here we adopt
a variant from [Diaconis et al. 09]. Each G being determined by the values of
random variables X1, X2, . . . , Xn, we arrange them in increasing order: X(1) ≤
X(2) ≤ · · · ≤ X(n). If X(1) + X(n) > θ, we have

θ < X(1) + X(n) ≤ X(2) + X(n) ≤ · · · ≤ X(n−1) + X(n),
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Figure 1. A threshold graph G corresponding to SG = {1, 1, 0, 0, 1, 0, 1, 0}.

which means that the vertex corresponding to X(n) is connected with the n − 1
other vertices. Otherwise, we have

θ ≥ X(1) + X(n) ≥ · · · ≥ X(1) + X(3) ≥ X(1) + X(2),

which means that the vertex corresponding to X(1) is isolated. We set sn = 1
or sn = 0 according to whether the former case or the latter occurs. Then,
according to the case we remove the random variable X(n) or X(1), and we use
a similar procedure to define sn−1, . . . , s2. Finally, we set s1 = s2 and obtain a
{0, 1}-sequence {s1, s2, . . . , sn}, which is called the creation sequence of G and
is denoted by SG.

Given a creation sequence SG, let ki and li denote the number of consecutive
bits of 1’s and 0’s, respectively, as follows:

SG = {
k1︷ ︸︸ ︷

1, . . . , 1,

l1︷ ︸︸ ︷
0, . . . , 0,

k2︷ ︸︸ ︷
1, . . . , 1,

l2︷ ︸︸ ︷
0, . . . , 0, . . . ,

km︷ ︸︸ ︷
1, . . . , 1,

lm︷ ︸︸ ︷
0, . . . , 0}. (2.1)

It may happen that k1 = 0 or lm = 0, but we have k2, . . . , km, l1, . . . , lm−1 ≥ 1,
and m ≥ 1. Moreover, by definition we have two cases: (a) k1 = 0 (equivalently
s1 = 0) and l1 ≥ 2; (b) k1 ≥ 2 (equivalently s1 = 1).

For example, if SG = {1, 1, 0, 0, 1, 0, 1, 0}, then k1 = 2, l1 = 2, k2 = 1, l2 = 1,
k3 = 1, l3 = 1, and Figure 1 shows the shape of G.

The creation sequence SG gives rise to a partition of the vertex set:

V =
m⋃

i=1

V
(1)
i ∪

m⋃
i=1

V
(0)
i |V (1)

i | = ki, |V (0)
i | = li.

The subgraph induced by V
(1)
i is the complete graph on ki vertices, and that

induced by V
(0)
i is the null graph on li vertices. Moreover, every vertex in V

(1)
i

(respectively V
(0)
i ) is connected to (respectively disconnected from) all vertices in

V
(1)
1 ∪ · · · ∪ V

(1)
i ∪ V

(0)
1 ∪ · · · ∪ V

(0)
i−1.
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In general, a graph possessing the above hierarchical structure is called a thresh-
old graph [Mahadev and Peled 95]. Hereinafter, we use δλ as the point measure
on λ ∈ �.

Theorem 2.1. Let G be a threshold graph with a creation sequence SG = {s1 =
s2, s3, . . . , sn}. Define ki and li as in (2.1) and set

Cn(−1) =
m∑

i=1

ki − (m − 1) − I{1}(s1), Cn(0) =
m∑

i=1

li − (m − 1). (2.2)

Then the spectral distribution of G is given by

μn(G) =
Cn(−1)

n
δ−1 +

Cn(0)
n

δ0 +
1
n

J∑
j=1

δλj , J = 2(m − 1) + I{1}(s1), (2.3)

where {λj} exhausts the eigenvalues of the matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

km − 1 lm−1 km−1 lm−2 . . . l1 k1

km 0 0 0 . . . 0 0

km 0 km−1 − 1 lm−2 . . . l1 k1

km 0 km−1 0 . . . 0 0

...
...

...
...

. . .
...

...

km 0 km−1 0 . . . 0 0

km 0 km−1 0 . . . 0 k1 − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.4)

for s1 = 1 (equivalently k1 ≥ 2), or⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

km − 1 lm−1 km−1 lm−2 . . . k2 l1

km 0 0 0 . . . 0 0

km 0 km−1 − 1 lm−2 . . . k2 l1

km 0 km−1 0 . . . 0 0

...
...

...
...

. . .
...

...

km 0 km−1 0 . . . k2 − 1 l1

km 0 km−1 0 . . . k2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.5)

for s1 = 0 (equivalently k1 = 0). Moreover, any λj in (2.3) differs from 0 and
−1, i.e., Cn(−1) and Cn(0) are respectively the multiplicities of the eigenvalues
−1 and 0.
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Proof. Let 1i,j denote the i × j matrix consisting of only 1’s, 0i,j the i × j zero
matrix, Ii the i × i identity matrix, and 1̄i,i = 1i,i − Ii. By the hierarchical
structure mentioned above, the adjacency matrix AG of G is represented in the
form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0lm,lm 0lm,km 0lm,lm−1 0lm,km−1 0lm,lm−2 . . . 0lm,l1 0lm,k1
0km,lm 1̄km,km 1km,lm−1 1km,km−1 1lm,lm−2 . . . 1km,l1 1km,k1

0lm−1,lm 1lm−1,km 0lm−1,lm−1 0lm−1,km−1 0lm−1,lm−2 . . . 0lm−1,l1 0lm−1,k1
0km−1,lm 1km−1,km 0km−1,lm−1 1̄km−1,km−1 1km−1,lm−2 . . . 1km−1,l1 1km−1,k1
0lm−2,lm 1lm−2,lm 0lm−2,lm−1 1lm−2,km−1 0lm−2,lm−2 . . . 0lm−2,l1 0lm−2,k1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0l1,lm 1l1,km 0l1,lm−1 1l1,km−1 0l1,lm−2 . . . 0l1,l1 0l1,k1
0k1,lm 1k1,km 0k1,lm−1 1k1,km−1 0k1,lm−2 . . . 0k1,l1 1̄k1,k1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The adjacency matrix A acts on �n from the left. We define subspaces of
�n by

Vi(−1) =

⎧⎨⎩
⎡⎣0ui+li

ξki

0di

⎤⎦ : ξ1 + ξ2 + · · · + ξki = 0

⎫⎬⎭ , 1 ≤ i ≤ m,

Vi(0) =

⎧⎨⎩
⎡⎣ 0ui

ηli
0ki+di

⎤⎦ : η1 + η2 + · · · + ηli = 0

⎫⎬⎭ , 1 ≤ i ≤ m − 1,

Vm(0) =
{[

ηlm
0km+dm

]}
,

where

ξk =

⎡⎢⎢⎢⎣
ξ1

ξ2

...
ξk

⎤⎥⎥⎥⎦ , ηl =

⎡⎢⎢⎢⎣
η1

η2

...
ηl

⎤⎥⎥⎥⎦ , 1j =

⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦ , 0j =

⎡⎢⎢⎢⎣
0
0
...
0

⎤⎥⎥⎥⎦ ,

and

ui =
m∑

j=i+1

(lj + kj), di =
i−1∑
j=1

(lj + kj).

Since AG acts on Vi(−1) as the scalar operator with −1, it possesses the eigen-
value −1 with multiplicity at least

m∑
i=1

dimVi(−1) =
m∑

i=1

(ki − 1) =
m∑

i=1

ki − m
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if k1 ≥ 2 (i.e., s1 = 1), and

m∑
i=2

dimVi(−1) =
m∑

i=2

(ki − 1) =
m∑

i=2

ki − (m − 1)

if k1 = 0 (i.e., s1 = 0). In any case, the multiplicity is at least Cn(−1), defined
in (2.2). Similarly, acting on Vi(0) as a scalar operator with 0, AG possesses the
eigenvalues 0 with multiplicity at least Cn(0).

Let W be the orthogonal complement to
⊕m

i=1 (Vi(−1) ⊕ Vi(0)). The matrix
representation of AG on W with respect to the basis

vi =

⎡⎣0ui+li

1ki

0di

⎤⎦ , 1 ≤ i ≤ m,

and

wi =

⎡⎣ 0ui

1li

0ki+di

⎤⎦ , 1 ≤ i ≤ m − 1,

is given by (2.4) or by (2.5) according as k1 ≥ 2 or k1 = 0. Then, one may verify
easily that the eigenvalues of the matrices (2.4) and (2.5) are different from −1
and 0.

Remark 2.2. After a simple calculation, we see that the eigenvalues λ1, . . . , λJ in
(2.3) are obtained from the characteristic equations

M(λ) = 0,

where

M(λ) = det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

km − 1 − λ lm−1 km−1 lm−2 . . . l1 k1

km −λ 0 0 . . . 0 0
km 0 km−1 − 1 − λ lm−2 . . . l1 k1

km 0 km−1 −λ . . . 0 0
...

...
...

...
. . .

...
...

km 0 km−1 0 . . . −λ 0
km 0 km−1 0 . . . 0 k1 − 1 − λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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if k1 ≥ 2 (i.e., s1 = 1) and

M(λ) = det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

km − 1 − λ lm−1 km−1 lm−2 . . . k2 l1
km −λ 0 0 . . . 0 0
km 0 km−1 − 1 − λ lm−2 . . . k2 l1
km 0 km−1 −λ . . . 0 0
...

...
...

...
. . .

...
...

km 0 km−1 0 . . . k2 − 1 − λ l1
km 0 km−1 0 . . . k2 −λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
if k1 = 0 (i.e., s1 = 0). Simple calculation shows that

M(−1) =

{
k1 · · · km · l1 · · · lm−1, if k1 ≥ 2 (i.e., s1 = 1),
k2 · · · km · (l1 − 1) · l2 · · · lm−1, otherwise,

and

M(0) =

{
(k1 − 1) · k2 · · ·km · l1 · · · lm−1, if k1 ≥ 2 (i.e., s1 = 1),
k2 · · ·km · l1 · · · lm−1, otherwise,

from which we see also that the {λj} contain neither −1 nor 0.

3. Spectra of Threshold Graphs with Self-Loops

The idea of a creation sequence in Section 2 can be applied to the threshold
network model that allows self-loops. With each G ∈ G̃n(X, θ) we associate a
creation sequence S̃G = {s̃1, s̃2, . . . , s̃n} as follows: if X(1) + X(n) > θ, we have

θ < X(1) + X(n) ≤ X(2) + X(n) ≤ · · · ≤ X(n−1) + X(n) ≤ X(n) + X(n),

which implies that the vertex corresponding to X(n) is connected with the n− 1
other vertices and has a self-loop. Otherwise,

θ ≥ X(1) + X(n) ≥ · · · ≥ X(1) + X(3) ≥ X(1) + X(2) ≥ X(1) + X(1),

which means that the vertex corresponding to X(1) is isolated and has no self-
loops.

We set s̃n = 1 or s̃n = 0 depending on whether the former case or the latter
occurs. Then, according to the case, we remove the random variable X(n) or
X(1), and we employ a similar procedure to define s̃n−1, . . . , s̃2. Finally, letting
X(∗) be the last remaining random variable, set s̃1 = 1 if X∗ > θ/2 and s̃1 = 0
otherwise. In this case G is called a threshold graph with self-loops associated



�

�

“imvol6” — 2010/9/22 — 13:10 — page 180 — #8
�

�

�

�

�

�

180 Internet Mathematics

with a creation sequence S̃ = {s̃1, s̃2, . . . , s̃n}. We note that if s̃j = 1, the
corresponding vertex has a self-loop, and otherwise no self-loop.

Given a creation sequence S̃ = {s̃1, s̃2, . . . , s̃n}, we define kj and lj as in (2.1).
It may happen that k1 = 0 and lm = 0, but k2, . . . , km, l1, . . . , lm−1 ≥ 1 and
m ≥ 1. The adjacency matrix ÃG of G is of the form⎡⎢⎢⎢⎢⎢⎢⎢⎣

0lm,lm 0lm,km 0lm,lm−1 0lm,km−1 0lm,lm−2 . . . 0lm,l1 0lm,k1
0km,lm 1km,km 1km,lm−1 1km,km−1 1lm,lm−2 . . . 1km,l1 1km,k1

0lm−1,lm 1lm−1,km 0lm−1,lm−1 0lm−1,km−1 0lm−1,lm−2 . . . 0lm−1,l1 0lm−1,k1
0km−1,lm 1km−1,km 0km−1,lm−1 1km−1,km−1 1km−1,lm−2 . . . 1km−1,l1 1km−1,k1
0lm−2,lm 1lm−2,lm 0lm−2,lm−1 1lm−2,km−1 0lm−2,lm−2 . . . 0lm−2,l1 0lm−2,k1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0l1,lm 1l1,km 0l1,lm−1 1l1,km−1 0l1,lm−2 . . . 0l1,l1 0l1,k1
0k1,lm 1k1,km 0k1,lm−1 1k1,km−1 0k1,lm−2 . . . 0k1,l1 1k1,k1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.1)
Repeating a similar argument as in Theorem 2.1, we obtain the following result.

Theorem 3.1. Let G be a threshold graph with self-loops associated with a creation
sequence S̃ = {s̃1, s̃2, . . . , s̃n} and its adjacency matrix given as in (3.1). Set

C̃n(0) = n − 2(m − 1) − I{1}(s̃1). (3.2)

Then the spectral distribution of G is given by

μ̃n(G) =
C̃n(0)

n
δ0 +

1
n

J∑
j=1

δλj , J = 2(m − 1) + I{1}(s̃1), (3.3)

where {λj} exhaust the eigenvalues of⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

km lm−1 km−1 lm−2 . . . l1 k1

km 0 0 0 . . . 0 0
km 0 km−1 lm−2 . . . l1 k1

km 0 km−1 0 . . . 0 0
...

...
...

...
. . .

...
...

km 0 km−1 0 . . . 0 0
km 0 km−1 0 . . . 0 k1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for s̃1 = 1 (i.e., k1 ≥ 1), or⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

km lm−1 km−1 lm−2 . . . k2 l1
km 0 0 0 . . . 0 0
km 0 km−1 lm−2 . . . k2 l1
km 0 km−1 0 . . . 0 0
...

...
...

...
. . .

...
...

km 0 km−1 0 . . . k2 l1
km 0 km−1 0 . . . k2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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for s̃1 = 0 (i.e., k1 = 0). Moreover, any λj in (3.3) differs from 0, i.e., C̃n(0) is
the multiplicity of 0.

Remark 3.2. The eigenvalues λ1, . . . , λJ in (3.3) are obtained from the characteristic
equations

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ 0 . . . 0 0 0 . . . 0 km

λ −λ . . . 0 0 0 . . . km−1 0
...

. . . . . .
...

...
... . . .

...
...

0 0
. . . −λ 0 k2 . . . 0 0

0 0 . . . λ k1 − λ 0 . . . 0 0
0 0 . . . l1 λ −λ . . . 0 0
...

...
...

...
...

. . . . . .
...

...

0 lm−2 . . . 0 0 0
. . . −λ 0

lm−1 0 . . . 0 0 0 . . . λ −λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

for s1 = 1 (i.e., k1 ≥ 1), and

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ 0 . . . 0 0 0 0 . . . 0 km

λ −λ . . . 0 0 0 0 . . . km−1 0

0 λ
. . . 0 0 0 0 . . . 0 0

...
...

. . . . . .
...

...
... . . .

...
...

0 0 . . . λ −λ k2 0 . . . 0 0
0 0 . . . 0 l1 + λ −λ 0 . . . 0 0
0 0 . . . l2 0 λ −λ . . . 0 0
...

...
...

...
...

...
. . . . . .

...
...

0 lm−2 . . . 0 0 0 0
. . . −λ 0

lm−1 0 . . . 0 0 0 0 . . . λ −λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0

for s1 = 0 (i.e., k1 = 0).

4. Limit Theorems

In this section we discuss the asymptotic behavior of the spectral distributions
obtained in the previous sections.

We first consider the case in which the distribution of X is discrete and given by

�(X = i) = pi, i = 0, 1, . . . ,

∞∑
i=0

pi = 1.
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Let m ≥ 1 be a fixed integer. Take a particular threshold θ = 2m − 1 and
assume that pi > 0 for i = 0, 1, . . . , 2m − 1. It follows from the strong law of
large numbers that

li = �{j : Xj = m − i}, i = 1, . . . , m,

ki = �{j : Xj = m − 1 + i}, i = 1, . . . , m − 1,

km = �{j : Xj ≥ 2m − 1},
li = ki = 0, i ≥ m + 1,

for large n almost surely. Moreover, denoting by F the distribution function of
X , we have

lim
n→∞

1
n

m∑
i=1

li = F (m − 1) a.s. lim
n→∞

1
n

m∑
i=1

ki = 1 − F (m − 1) a.s.

With these observation we easily obtain the following theorem.

Theorem 4.1. With notation and assumptions as above, the spectral distributions of
Gn(X, 2m − 1) satisfy

lim
n→∞μn(G) = (1 − F (m − 1)) · δ−1 + F (m − 1) · δ0 a.s.

Similarly, the spectral distributions of G̃n(X, 2m − 1) satisfy

lim
n→∞ μ̃n(G) = δ0 a.s.

Remark 4.2. Similar results hold when the distribution of X is discrete and F

has only a finite number of jumps in (−∞, θ/2] or (θ/2,∞). But no simple
description is known for the general case.

Next we consider the case in which the distribution of X is continuous. As
is stated implicitly in [Bose and Sen 07], if the distribution of X is continuous
and symmetric around 0, then the distribution of zero and one entries in the
creation sequence S̃ of each graph generated by G̃n(X, 0) is the same as the
distribution of a sequence of i.i.d. Bernoulli random variables {Ỹi}i=1,2,...,n with
success probability 1/2, that is,

�(Ỹi = 0) = �(Ỹi = 1) = 1/2, for i = 1, 2, . . . , n.

In this case, we can take Ỹi = I[0,∞)(Xi) by the first argument of the proof of
[Bose and Sen 07, Theorem 1].
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This means that S̃ = {s̃1, s̃2, . . . , s̃n} d= {Ỹ1, Ỹ2, . . . , Ỹn}. Recall that the cre-
ation sequence S of each graph generated by Gn(X, 0) is always satisfied with
s1 = s2. Then we observe that S = {s1 = s2, s3, . . . , sn} d= {Y2, Y2, Y3, . . . , Yn},
where similarly, {Yi}i=2,3,...,n is the sequence of i.i.d. Bernoulli random variables
with success probability 1/2.

Taking the above consideration into account, we obtain the asymptotic be-
havior of coefficients of point measures on −1 and 0 appearing in µn(G) and
µ̃n(G).

Theorem 4.3. Assume that the distribution of X is continuous and symmetric
around 0. Define Cn(−1), Cn(0), and C̃n(0) as in (2.2) and (3.2). Then we
have

(1) limn→∞ Cn(−1)/n = limn→∞ Cn(0)/n = 1/4 a.s.

(2)
√

n (Cn(−1)/n − 1/4) ⇒ N(0, 1/4) and
√

n (Cn(0)/n − 1/4) ⇒ N(0, 1/4) as
n → ∞.

(3) limn→∞ C̃n(0)/n = 1/2 a.s.

(4)
√

n(C̃n(0)/n − 1/2) ⇒ N(0, 1/4) as n → ∞.

Proof. Note the following relations:

Cn(−1) =
m∑

i=1

ki − (m − 1) − I{1}(s1)

d=

(
Y2 +

n∑
i=2

Yi

)
−

n−1∑
i=2

(1 − Yi)Yi+1 − Y2 = Y2 +
n−1∑
i=2

YiYi+1,

Cn(0) =
m∑

i=1

li − (m − 1)

d=

{
(1 − Y2) +

n∑
i=2

(1 − Yi)

}
−

n−1∑
i=2

(1 − Yi)Yi+1

= 2 − Y2 − Yn +
n−1∑
i=2

(1 − Yi)(1 − Yi+1),

C̃n(0) = n − 2(m − 1) − I{1}(s̃1)

d= n − 2
n−1∑
i=1

(1 − Ỹi)Ỹi+1 − Ỹ1 = 1 − Ỹn+
n−1∑
i=1

(1 − Ỹi + Ỹi+1)(1 + Ỹi − Ỹi+1).
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We then easily check that

�[Cn(−1)] = �[Cn(0)] − 1
2

=
n

4

and
�[C̃n(0)] =

n

2
.

Applying a similar argument as in [Bose and Sen 07, Theorem 1], we have the
assertion of the theorem.

When the distribution of X is continuous and symmetric around θ/2, we can
obtain similar results for Gn(X, θ) and G̃n(X, θ) by a straightforward modifica-
tion. Research covering a more general situation is now in progress.

5. Binary Threshold Model

In this section we give a simple example. The threshold network model defined
by Bernoulli trials X1, X2, . . . , Xn with success probability p, i.e., 0 < P (Xi =
1) = p < 1, and a threshold 0 ≤ θ < 1 is called the binary threshold model and
is denoted by Gn(p). For G ∈ Gn(p) the partition of the vertex set V is given by

V = V (1) ∪ V (0), V (1) = {i ; Xi = 1}, V (0) = {i ; Xi = 0}.

Theorem 5.1. For G ∈ Gn(p) we set |V (1)| = k and |V (0)| = l. Then the spectral
distribution of G is given by

μk,l =
k − 1

n
δ−1 +

l − 1
n

δ0 +
1
n

δλ+ +
1
n

δλ− ,

where

λ± =
k − 1 ±√(k − 1)2 + 4kl

2
. (5.1)

Proof. We have only to apply Theorem 2.1 with l1 = l, l2 = k1 = 0, k2 = k, and
m = 2. In this case, (2.5) becomes[

k − 1 l
k 0

]
,

the eigenvalues of which are λ± in (5.1).
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Corollary 5.2. Let μn(G) be the spectral distribution of G ∈ Gn(p). Then we have

lim
n→∞μn(G) = p · δ−1 + (1 − p) · δ0 a.s.

Proof. The result follows from the strong law of large numbers; see also Theo-
rem 4.1.

As for the the mean spectral distribution, we have the following theorem.

Theorem 5.3. The mean spectral distribution of the binary threshold model Gn(p) is
given by

μn =
(

p − 1
n

)
δ−1 +

(
1 − p − 1

n

)
δ0

+
1
n

n∑
k=0

(
n

k

)
pk(1 − p)n−k

(
δλ−(k) + δλ+(k)

)
, (5.2)

where

λ±(k) =
k − 1 ±√(k − 1)2 + 4k(n − k)

2
, k = 0, 1, . . . , n.

Proof. Since

P (|V (1)| = k, |V (0)| = l) =
(

n

k

)
pk(1 − p)l, k + l = n,

the mean spectral distribution is given by

μ =
n∑

k=0

(
n

k

)
pk(1 − p)lμk,l.

Then (5.2) follows from Theorem 5.1 by direct computation.

Corollary 5.4. Let μn be the mean spectral distribution of the binary threshold model
Gn(p). Then we have

lim
n→∞μn = p · δ−1 + (1 − p) · δ0.
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