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A Local Graph Partitioning
Algorithm Using Heat Kernel
Pagerank
Fan Chung

Abstract. We give an improved local partitioning algorithm using heat kernel page-
rank, a modified version of PageRank. For a subset S with Cheeger ratio (or con-
ductance) h, we show that at least a quarter of the vertices in S can serve as seeds
for heat kernel pagerank that lead to local cuts with Cheeger ratio at most O(

√
h),

improving the previous bound by a factor of
√
log s, where s denotes the volume

of S.

1. Introduction

With the emergence of massive information networks, many previous graph al-

gorithms are no longer feasible for various applications. A basic setup for a

generic algorithm usually includes a graph as a part of its input. This, how-

ever, is no longer possible for dealing with massive graphs with prohibitively

large size. Instead, the (host) graph, such as the Web graph or various social

networks, is usually meticulously crawled, organized, and stored in some appro-

priate database. The local algorithms that we study here involve only “local

access” of the database of the host graph. For example, selecting a neighbor of

a specified vertex is considered to be a type of local access. Of course, it is de-

sirable to minimize the number of local accesses needed, preferably independent

of n, the number of vertices in the host graph (which may as well be regarded

as “infinity”). In this paper, we consider a local algorithm that improves the

performance bound of previous local partitioning algorithms.
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Graph partitioning problems have long been studied and used for a wide range

of applications, typically through divide-and-conquer approaches. Since the ex-

act solution for graph partitioning is known to be NP-complete [Garey and John-

son 79], various approximation algorithms have been utilized. One of the best

known partition algorithms is the spectral algorithm. The vertices are ordered

using an eigenvector, and only cuts that are initial segments in such an ordering

are considered. The advantage of such a “one-sweep” algorithm is to reduce the

number of cuts under consideration from an exponential number in n to a linear

number. Still, there is a performance guarantee within a quadratic order by us-

ing a relation between eigenvalues and the Cheeger constant, called the Cheeger

inequality. However, for a large graph (say with a hundred million vertices), the

task of computing an eigenvector is often too costly and not competitive.

A local partitioning algorithm finds a partition that separates a subset of

nodes of specified size near specified seeds. In addition, the running time of a

local algorithm is required to be proportional to the size of the separated part but

independent of the total size of the graph. A local partitioning algorithm using

random walks was first given in [Spielman and Teng 04]. An analysis of their

algorithm is based on a mixing result of Lovász and Simonovits in their work

on approximating the volume of a convex body. The same mixing result was

also proved earlier independently in [Mihail 89]. In a previous paper [Andersen

et al. 06], a local partitioning algorithm was given using PageRank, a concept

first introduced in [Brin and Page 98] that has been widely used for Web search

algorithms. The notion of PageRank that can be carried out for any graph is

basically an efficient way of organizing random walks in a graph. As seen in the

detailed definition given later, PageRank can be expressed as a geometric sum of

random walks starting from a seed (or an initial probability distribution), with

its speed of propagation controlled by a jumping constant. The usual question

in random walks is to determine how many steps are required to get close to

a stationary distribution. In the use of PageRank, the problem is reduced to

specifying the range for the jumping constant to achieve the desired mixing.

The advantage of using PageRank as in [Andersen et al. 06] is to reduce the

computational complexity by a factor of logn.

In this paper, we consider a modified version of PageRank called heat kernel

pagerank. Like PageRank, heat kernel pagerank has two parameters: a seed and

a heat constant or temperature. Heat kernel pagerank can be expressed as an

exponential sum of random walks from the seed, scaled by the temperature. In

addition, heat kernel pagerank satisfies a heat equation that dictates the rate of

diffusion. We will examine several useful properties of heat kernel pagerank. In

particular, for a given subset of vertices, we consider eigenvalues on the induced

subgraph on S satisfying a Dirichlet boundary condition (details to be given
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in the next section). We will show that for a subset S with Cheeger ratio h,

there are many vertices in S (whose volume is at least a quarter of the volume

of S) such that the one-sweep algorithm using heat kernel pagerank with such

vertices as seeds will find local cuts with Cheeger ratio O(
√
h). This improves the

previous bound of O(
√
h log s) in a similar theorem using PageRank [Andersen

et al. 06, Andersen et al. 07]. Here s denotes the volume of S, and a local cut

has volume at most s.

2. Preliminaries

In a graph G, the transition probability matrix W of a typical random walk on

a graph G = (V,E) is a matrix with columns and rows indexed by V and is

defined by

W (u, v) =

{
1/du if {u, v} ∈ E,

0 otherwise,

where the degree of v, denoted by dv, is the number of vertices to which v is

adjacent. We can write W = D−1A, where A denotes the adjacency matrix

of G and D is the diagonal degree matrix. A random walk on a graph G has

a stationary distribution π if G is connected and nonbipartite. The stationary

distribution π, if it exists, satisfies π(u) = du/
∑

v dv.

The version of PageRank we consider here is also called personalized PageRank

(see [Haveliwala 03, Jeh and Widom 03]), which generalizes the version first

introduced by Brin and Page. PageRank has two parameters: a preference vector

f (i.e., the probabilistic distribution of the seed(s)) and a jumping constant α.

Here, the function f : V → � is taken to be a row vector so that W can act on f

from the right by matrix multiplication. PageRank prα,f with scale parameter

α and preference vector f satisfies the following recurrence relation:

prα,f = αf + (1− α)prα,fW. (2.1)

An equivalent definition for PageRank is the following:

prα,f = α
∞∑
k=0

(1− α)kfW k. (2.2)

For example, if we have one starting seed denoted by vertex u, then f can

be written as the (0, 1)-indicator function χu of u. Another example is to take

f to be the constant function with value 1/n at every vertex as in the original

definition of PageRank in [Brin and Page 98].
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Heat kernel pagerank also has two parameters, with (temperature) t ≥ 0 and

a preference vector f defined as follows:

ρt,f = e−t
∞∑
k=0

tk

k!
fW k. (2.3)

We see that (2.3) is just an exponential sum, while (2.2) is a geometric sum.

For many combinatorial problems, exponential generating functions play a use-

ful role. Heat kernel pagerank as defined in (2.3) satisfies the following heat

equation:

∂

∂t
ρt,f = −ρt,f(I −W ). (2.4)

Let us define L = I −W . Then the definition of heat kernel pagerank in (2.3)

can be rewritten as follows:

ρt,f = fHt,

where Ht is defined by

Ht = e−t
∞∑
k=0

tk

k!
W k = e−t(I−W ) = e−tL =

∞∑
k=0

(−t)k
k!

Lk.

From the above definition, we have the following facts for ρt,f , which will be

useful later.

Lemma 2.1. For a graph G, its heat kernel pagerank ρ satisfies the following:

(i) ρ0,f = f .

(ii) ρt,π = π.

(iii) ρt,f1
∗ = f1∗ = 1 if f satisfies

∑
v f(v) = 1, where 1 denotes the all-1’s

function (as a row vector) and 1∗ denotes the transpose of 1.

(iv) WHt = HtW .

(v) DHt = H∗
t D and Ht = Ht/2Ht/2 = Ht/2D

−1H∗
t/2D.

Proof. Since H0 = I, (i) follows. Statements (ii) and (iii) can be easily checked,

while (iv) follows from the fact that Ht is a polynomial of W . Finally, (v) is a

consequence of the fact that W = D−1A.
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3. Dirichlet Eigenvalues and the Restricted Heat Kernel

For a subset S of V (G), there are two types of boundary of S: the vertex boundary

δ(S) and the edge boundary ∂(S). The vertex boundary δ(S) is defined as follows:

δ(S) = {u ∈ V (G) \ S : u ∼ v for some v ∈ S}.
For a single vertex v, the degree of v, denoted by dv, is equal to |δ(v)| (which is

short for |δ({v})|.
The closure of S, denoted by S∗, is the union of S and δS. For a function

f : S∗ → �, we say that f satisfies the Dirichlet boundary condition if f(u) = 0

for all u ∈ δ(S). We use the notation f ∈ D∗
S to denote that f satisfies the

Dirichlet boundary condition and we require that f �= 0.

For f ∈ D∗
S , we define a Dirichlet Rayleigh quotient

RS(f) =

∑
x∼y(f(x) − f(y))2∑

x∈S f2(x)dx
,

where the sum is to be taken over all unordered pairs of vertices x, y ∈ S∗ such

that s ∼ y.

The Dirichlet eigenvalue of an induced subgraph on S of a graph G can be

defined as follows:

λS = inf
f∈D∗

S

RS(f) = inf
f∈D∗

S

〈f, (DS −AS)f〉
〈f,DSf〉 = inf

g∈D∗
S

〈g,LSg〉
〈g, g〉 ,

where XS denotes the submatrix of a matrix X with rows and columns restricted

to those indexed by vertices in S, and the Laplacians L and LS are defined by

L = D−1/2(D − A)D−1/2 and LS = D
−1/2
S (DS − AS)D

−1/2
S , respectively. Here

we call f the combinatorial Dirichlet eigenfunction if RS(f) = λS . The Dirichlet

eigenfunctions are the eigenfunctions of the matrix LS . (A detailed proof of

these statements can be found in [Chung 97].)

The Dirichlet eigenvalues of S are the eigenvalues of LS , denoted by

λS,1 ≤ λS,2 ≤ · · · ≤ λS,s,

where s = |S|. The smallest Dirichlet eigenvalue λS,1 is also denoted by λS . If

the induced subgraph on S is connected, then the eigenvector of LS associated

with λS is all positive (using the Perron–Frobenius theorem [Perron 33] on I −
LS). The reader is referred to [Chung 97] for various properties of Dirichlet

eigenvalues.

For a subset S of vertices in G, the edge separator (or the edge boundary)

whose removal separates S consists of all edges leaving S. Namely,

∂S = {{u, v} ∈ E : u ∈ S and v �∈ S}.
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How good is the edge separator? The answer depends on both the size of the

edge separator and the volume of S, which is denoted by vol(S) and is equal to∑
u∈S du. The volume of a graph G, denoted by vol(G), is

∑
u du.

The Cheeger ratio of S, denoted by hS , is defined by

hS =
|∂S|

min{vol(S), vol(S̄)} ,

where S̄ = V \ S denotes the complement of S. The Cheeger constant of a

graph G is hG = minS⊆V hS . The Cheeger constant of a graph G is often called

the conductance of G. For a given subset S, we define the local Cheeger ratio,

denoted by h∗
S , as follows:

h∗
S = inf

T⊆S
hT .

Note that in general, hS is not necessarily equal to h∗
S .

The Dirichlet eigenvalue λS and the local Cheeger ratio h∗
S are related by the

following local Cheeger inequality:

h∗
S ≥ λS ≥ (h∗

S)
2

2
.

A proof can be found in [Chung 07a].

In [Chung and Oden 00], the weighted Rayleigh quotient is defined as

Rφ(f) = sup
c

∑
x∼y(f(x)− f(y))2φ(x)φ(y)∑

x∈S(f(x)− c)2φ2(x)dx
, (3.1)

where φ is the combinatorial Dirichlet eigenfunction that achieves λS . Then we

can define

λφ = inf
f �=0

Rφ(f).

Here we state several useful facts concerning λS and λφ (see [Chung and

Oden 00]).

Lemma 3.1. For an induced subgraph S of a graph G, the Dirichlet eigenvalues of

S satisfy

λS,2 − λS = λφ ≥ λS .

Theorem 3.2. For an induced subgraph S of G, the combinatorial Dirichlet eigen-

function φ that achieves λS satisfies(∑
x∈S

φ(x)dx

)2

≥ 1

2
vol(S)

∑
x∈S

φ2(x)dx.
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Proof. We note that

λS,2 = inf
f

∑
x∼y(f(x)− f(y))2∑

x∈S f(x)2dx
,

where f ranges over all functions satisfying
∑

x∈S f(x)φ(x) = 0. Now we use

the fact that

λS =

∑
x∼y(φ(x) − φ(y))2∑

x∈S φ(x)2dx
.

We then have

λS,2 ≤
∑

x∼y(φ(x) − φ(y))2∑
x∈S(φ(x) − c)2dx

=
λS

∑
x∈S φ2(x)dx∑

x∈S φ2(x)dx − c2vol(S)
,

where

c =

∑
x∈S φ(x)dx

vol(S)
.

This implies

(∑
x∈S φ(x)dx

)2
vol(S)

∑
x∈S φ2(x)dx

≥ λS,2 − λS

λS,2
=

λφ

λφ + λS
≥ 1

2

using Lemma 3.1.

4. A Lower Bound for Restricted Heat Kernel Pagerank

For a given set S, we consider the distribution fS with the vertex u chosen with

probability fS(u) = du/vol(S) if u ∈ S, and 0 otherwise. Note that fS can be

written as 1
vol(S)χSD, where χS is the indicator function for S. For any function

g : V → �, we define g(S) =
∑

v∈S g(v).

In this section, we wish to establish a lower bound for the expected value of

heat kernel pagerank ρt,u = ρt,χu over u in S. We note that

�(ρt,u) =
∑
u∈S

du
vol(S)

ρt,u = fSHt(S).

We consider the restricted heat kernel H ′
t, defined below, for a fixed subset

S. Then the definition of the heat kernel pagerank in (2.3) can be rewritten as

follows:

ρ′t,f = fH ′
t,
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where H ′
t is defined by

H ′
t = e−t

∞∑
k=0

tk

k!
W k

S = e−t(IS−WS) = e−tLS =

∞∑
k=0

(−t)k
k!

Lk
S.

Also, H ′
t satisfies the following heat equation:

∂

∂t
H ′

t = −LSH
′
t. (4.1)

From the above definition, we immediately have the following result.

Lemma 4.1.

H ′
t(x, y) ≤ Ht(x, y)

for all vertices x and y. In particular, for a nonnegative function f : V → �,

we have

fH ′
t(v) ≤ fHt(v)

for every vertex v in G.

Therefore, it suffices to establish the desired lower bound for the expected

value of restricted heat kernel pagerank.

Following the notation in Section 3, we consider the Dirichlet eigenvalues λS,i

of S and their associated Dirichlet combinatorial eigenfunction φi with R(φi) =

λS,i, for i = 1, . . . , |S|. Clearly, φiD
1/2
S are orthogonal eigenfunctions of LS and

form a basis for functions defined on S. Here we assume that
∑

u∈S φi(u)
2du = 1.

To simplify the notation, in this proof we write λ′
i = λS,i and λ′

1 = λS .

We express f =
√
vol(S)fS in terms of φi as follows:

fD
−1/2
S =

∑
i

aiφiD
1/2
S ,

where

ai =
∑
u∈S

φi(u)du√
vol(S)

.

Since ‖fD−1/2
S ‖ = ‖fD−1/2

S ‖2 = 1, we have∑
i

a2i = 1.

From the above definitions we have

fSH
′
t(S) = ‖fH′

t/2‖2,
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where H′
t = D

1/2
S H ′

tD
−1/2
S . From Theorem 3.2, we know that

a21 =

(∑
u∈S φ1(u)du

)2
vol(S)

≥ 1

2
≥ 1−

∑
j �=1

a2j .

Since

fSH
′
t(S) =

∑
i

a2i e
−λ′

it,

we have

fSH
′
t(S) ≥ a21e

−λSt ≥ 1

2
e−λSt.

We have proved the following theorem.

Theorem 4.2. For a subset S, the Dirichlet heat kernel H ′
t satisfies

fSH
′
t(S) ≥

1

2
e−λSt.

As an immediate consequence of Theorem 3.2, Lemmas 3.1 and 4.1, and The-

orem 4.2, we have the following corollary.

Corollary 4.3. In a graph G, for a subset S of vertices, heat kernel pagerank ρt,fS
satisfies

�(ρt,u(S)) = ρt,fS (S) ≥
1

2
e−λSt ≥ 1

2
e−h∗

St,

where u is chosen according to fS.

5. A Local Lower Bound for Heat Kernel Pagerank

Corollary 4.3 states that the expected value of ρt,u is at least e−h(S)t. Thus,

there exists a vertex u in S such that ρt,u(S) is at least e−h(S)t. However, in

order to have an efficient local partitioning algorithm, we need to show that there

are many vertices v satisfying

ρt,v(S) ≥ cρt,fS (S)

for some absolute constant c. To do so, we will prove the following theorem.

Theorem 5.1. In a graph G with a given subset S of vertices, the subset T = {u ∈
S : ρt,u(S) ≥ 1

4e
−tλS} satisfies

vol(T ) ≥ 1

4
vol(S)

if t ≥ 1/λS.
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From Lemma 4.1, Theorem 5.1 follows directly from Theorem 5.2.

Theorem 5.2. In a graph G with a given subset S of vertices, the subset T = {u ∈
S : ρ′t,u(S) ≥ 1

4e
−tλS} satisfies

vol(T ) ≥ 1

4
vol(S)

if t ≥ 1/λS.

To prove Theorem 5.2, we first prove the following lemma using second-

moment methods.

Lemma 5.3. If t ≥ 1/λS, then∑
u∈S

du
vol(S)

(
ρ′t,u(S)− ρ′t,fS (S)

)2 ≤ 5

4
ρ′t,fS (S)

2.

Proof. We note that∑
u∈S

du
vol(S)

(
ρ′t,u(S)− ρ′t,fS (S)

)2
=
∑
u∈S

du
vol(S)

ρ′t,u(S)
2 − (ρ′t,fS (S))

2

= fSH
′
2t(S)− (fSH

′
t(S))

2.

It suffices to show that

fSH
′
2t(S) ≤

9

4
(fSH

′
t(S))

2.

We consider the Dirichlet eigenvalues λS,i of S and their associated Dirichlet

combinatorial eigenfunctions φi with R(φi) = λS,i = λ′
i, for i = 1, . . . , |S|. Here

φiD
1/2
S are orthonormal eigenfunctions of LS with

∑
u∈S φi(u)

2du = 1.

We can write f = χSDSvol(S)
−1/2 = fS

√
vol(S) by

fD
−1/2
S =

∑
i

aiφiD
1/2
S .

We have ∑
i

a2i = 1,

since ‖fD−1/2
S ‖2 = 1. From Theorem 3.2, we know that

a21 ≥ 1/2 ≥ 1−
∑
j �=1

a2j .
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Also, we have

fSH
′
2t(S) = ‖fH′

t‖2 =
∑
i

a2i e
−2λ′

it,

where H′
t = D

1/2
S H ′

tD
−1/2
S .

Therefore we have, for t ≥ 1/λ′
1,

fSH
′
2t(S) =

∑
i

a2i e
−2λ′

it

≤ a21e
−2λ′

1t + (1− a21)e
−2λ′

2t

= a21e
−2λ′

1t + (1− a21)e
−4λ′

1t

≤ 9

8
a21e

−2λ′
1t,

since λ′
2 ≥ 2λ′

1 using Lemma 3.1. Therefore we have

fSH
′
2t(S) ≤

9

8
a21e

−2λSt ≤ 9

4
a41e

−2λSt ≤ 9

4

(∑
i

a2i e
−λ′

it

)2

,

as desired.

Now we are ready to prove Theorem 5.2, which then implies Theorem 5.1.

Proof of Theorem 5.2. Suppose vol(T ) ≤ vol(S)/4. We wish to show that this leads

to a contradiction. Let T ′ = S \ T . We consider

∑
u∈S

du
vol(S)

(
ρ′t,u(S)− ρ′t,fS (S)

)2

=
∑
u∈T

du
vol(S)

(
ρ′t,u(S)− ρ′t,fS (S)

)2
+
∑
u∈T ′

du
vol(S)

(
ρ′t,u(S)− ρ′t,fS (S)

)2

≥
(∑

u∈T
du

vol(S) (ρ
′
t,u(S)− ρ′t,fS (S))

)2
vol(T )/vol(S)

+

(∑
u∈T ′

du

vol(S) (ρ
′
t,u(S)− ρ′t,fS (S))

)2
vol(T ′)/vol(S)

≥
(∑

u∈T ′

du
vol(S)

(ρ′t,u(S)− ρ′t,fS (S))

)2(
1

vol(T )/vol(S)
+

1

vol(T ′)/vol(S)

)
,

since ∑
u∈S

du
vol(S)

(ρ′t,u − ρ′t,fS ) = 0.
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Therefore we have∑
u∈S

du
vol(S)

(
ρ′t,u(S)− ρ′t,fS (S)

)2

≥
(
vol(T ′)
vol(S)

(
3

4

)
ρ′t,fS (S)

)2(
1

vol(T )/vol(S)
+

1

vol(T ′)/vol(S)

)

≥
(
4

(
3

4

)4

+

(
3

4

)3
)
ρ′t,fS (S)

2 ≥ 27

16
ρ′t,fS (S)

2 >
5

4
ρ′t,fS (S)

2,

which is a contradiction to Lemma 5.3. Theorem 5.2 is proved.

6. An Upper Bound for Heat Kernel Pagerank

For a function f : V → �, we can order vertices according to their f values.

The ordered list is then called a sweep. The segment Si consists of the first i

vertices (by breaking ties arbitrarily). We define an s-local Cheeger ratio of a

sweep f , denoted by hf,s, to be the minimum Cheeger ratio of the segment Si

with 0 ≤ vol(Si) ≤ 2s. If no such segment exists, then we set hf,s to be 0. We

will establish the following upper bound for heat kernel pagerank in terms of

s-local Cheeger ratios. The proof is similar to that in [Chung 07b], but simpler.

Theorem 6.1. In a graph G with a subset S with volume s ≤ vol(G)/4, for any

vertex u in G, we have

ρt,u(S)− π(S) ≤
√

s

du
e−tκ2

t,u,s/4,

where κt,u,s denotes the minimum s-local Cheeger ratio over a sweep of ρt,u.

Proof. For a function f V → �, we define f(u, v) = f(u)/du if v is adjacent to u

and 0 otherwise. For an integer x, 0 ≤ x ≤ vol(G)/2, we define

f(x) = max
T⊆V×V,|T |=x

∑
(u,v)∈T

f(u, v).

We can extend f to all real x = k + r with 0 ≤ r < 1 by defining

f(x) = (1 − r)f(k) + rf(k + 1).

If x = vol(Si), where Si consists of vertices with the i highest values of f(u)/du,

then it follows from the definition that f(x) =
∑

u∈Si
f(u). Also, f(x) is con-

cave in x.
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We consider the lazy walk W = (I +W )/2. Then

fW(S) =
1

2

(
f(S) +

∑
u∼v∈S

f(u, v)

)

=
1

2

( ∑
u or v∈S

f(u, v) +
∑

u and v∈S

f(u, v)

)

≤ 1

2
(f(vol(S) + |∂S|) + f(vol(S)− |∂S|))

=
1

2
(f(vol(S)(1 + hS)) + f(vol(S)(1− hS))) .

This can be straightforwardly extended to real x with 0 ≤ x ≤ vol(G)/2. In

particular, we focus on x satisfying 0 ≤ x ≤ 2s ≤ vol(G)/2 and we choose

ft = ρt,u − π. Then

ftW(x) ≤ 1

2
(ft(x(1 + κt,u,s)) + ft(x(1 − κt,u,s))) .

We now consider for x ∈ [0, 2s],

∂

∂t
ft(x) = −ρt,u(I −W )(x)

= −2ρt,u(I −W)(x)

= −2ft(x) + 2ftW(x) (6.1)

≤ −2ft(x) + ft(x(1 + κt,u,s)) + ft(x(1− κt,u,s))

≤ 0

by the concavity of ft. Suppose gt(x) is a solution of the equation in (6.1)

satisfying f0(x) ≤ g0(x), ft(0) = gt(0), and
∂
∂tft(x)|t=0 ≤ ∂

∂tgt(x)|t=0. Then

we have ft(x) ≥ gt(x). It is easy to check that gt(x) ≤ e−tκ2
t,u,s/4

√
x/du using

−2 +√1 + x+
√
1− x ≤ −x2/4. Thus,

ρt,u(S)− π(S) ≤ ρt,u(s)− π(s) ≤
√

s

du
e−tκ2

t,u,s/4,

as desired.

7. A Local Cheeger Inequality and a Local Partitioning Algorithm

Let hs denote the minimum Cheeger ratio hS with 0 ≤ vol(S) ≤ 2s. Also let

κt,2s denote the minimum of κt,u,2s over all u. Combining Theorem 5.1 and
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Theorem 6.1, we have that the set of u satisfying

1

2
e−t h∗

S ≤ 1

2
e−tλS ≤ ρt,fS (s)− π(s) ≤ √se−tκ2

t,u,2s/4

has volume at least vol(S)/4, provided t ≥ 1/h2
S ≥ 1/λS .

As an immediate consequence, we have the following local Cheeger inequality.

Theorem 7.1. For a subset S of a graph G with vol(S) = s ≤ vol(G)/4 and t ≥
log s/(h∗

S)
2, with probability at least 1/4 a vertex u in S satisfies

h∗
S ≥ λS ≥

κ2
t,u

4
− 2 log s

t
,

where the Cheeger ratio κt,u is determined by heat kernel pagerank with seed u.

Corollary 7.2. For s ≤ vol(G)/4, t ≥ 4 log s/(h∗
S)

2, and a set S of volume s, the

Cheeger ratio κt,u, determined by heat kernel pagerank with a random seed u in

S satisfies

h∗
S ≥ λS ≥

κ2
t,u

8

with probability at least 1/4.

The above local Cheeger inequalities are closely associated with local partition

algorithms. A local partition algorithm has inputs including a vertex as the seed,

the volume s of the target set, and a target value φ for the Cheeger ratio of the

target set. The local Cheeger inequality in Theorem 6.1 suggests the following

local partition algorithm. In order to find the set achieving the minimum s-local

Cheeger ratio, one can simply consider a sweep of heat kernel pagerank with

further restrictions to the cuts with smaller parts of volume between 0 and 2s.

Theorem 7.1 implies the following.

Theorem 7.3. In a graph G, for a set S with volume s ≤ vol(G)/4 and Cheeger ratio

hS ≤ φ2, there is a subset S′ ⊆ S with vol(S′) ≥ vol(S)/4 such that for any

u ∈ S′, the sweep using heat kernel pagerank ρt,u, with t = 2φ−2 log s, will find

a set T with s-local Cheeger ratio at most 2φ.

We note that the performance bound for the Cheeger ratio improves the earlier

result in [Andersen et al. 06] by a factor of log s. In fact, the inequality in

Theorem 7.1 suggests a whole range of tradeoffs. If we choose t to be t = 2φ−2

instead, then the guaranteed Cheeger ratio as in the above statement will be

2φ log s, and we obtain the same approximation results as in [Andersen et al. 06].
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We remark that the computational complexity of the above partitioning al-

gorithm is the same as that of computing heat kernel pagerank. However, the

algorithmic design for heat kernel pagerank has not been as extensively studied

as that of PageRank. More research is needed in this direction.

References

[Andersen et al. 06] R. Andersen, F. Chung, and K. Lang. “Local Graph Partitioning
Using PageRank Vectors.” In Proceedings of the 47th Annual IEEE Symposium on
Founation of Computer Science (FOCS’2006), pp. 475–486. Washington, DC: IEEE
Computer Society, 2006.

[Andersen et al. 07] R. Andersen, F. Chung, and K. Lang. “Detecting Sharp Drops
in PageRank and a Simplified Local Partitioning Algorithm.” In Theory and Ap-
plications of Models of Computation: 4th International Conference, TAMC 2007,
Shanghai, China, May 22–25, 2007, Proceedings, Lecture Notes in Computer Sci-
ence 4484, pp. 1–12. Berlin: Springer, 2007.

[Brin and Page 98] S. Brin and L. Page. “The Anatomy of a Large-Scale Hypertextual
Web Search Engine.” Computer Networks and ISDN Systems 30:1–7 (1998), 107–117.

[Cheeger 70] J. Cheeger. “A Lower Bound for the Smallest Eigenvalue of the Lapla-
cian.” In Problems in Analysis, edited by R. C. Gunning, pp. 195–199. Princeton:
Princeton University Press, 1970.

[Chung 97] F. Chung. Spectral Graph Theory, CBMS Regional Conference Series in
Mathematics 92. Providence: American Mathematical Society, 1997.

[Chung 07a] F. Chung. “Random Walks and Local Cuts in Graphs.” LAA 423 (2007),
22–32.

[Chung 07b] F. Chung. “The Heat Kernel as the PageRank of a Graph.” PNAS 105:50
(2007), 19735–19740.

[Chung and Lu 06] F. Chung and L. Lu. Complex Graphs and Networks, CBMS Re-
gional Conference Series in Mathematics 107. Providence: American Mathematical
Society, 2006.

[Chung and Oden 00] F. Chung and K. Oden. “Weighted Graph Laplacians and
Isoperimetric Inequalities.” Pacific Journal of Mathematics 192 (2000), 257–273.

[Chung and Yau 99] F. Chung and S.-T. Yau. “Coverings, Heat Kernels and Spanning
Trees.” Electronic Journal of Combinatorics 6 (1999), #R12.

[Coppersmith and Winograd 90] D. Coppersmith and S. Winograd. “Matrix Multipli-
cation via Arithmetic Progressions.” J. Symbolic Comput. 9 (1990), 251–280.

[Garey and Johnson 79] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman, 1979.

[Haveliwala 03] T. H. Haveliwala. “Topic-Sensitive PageRank: A Context-Sensitive
Ranking Algorithm for Web Search.” IEEE Trans. Knowl. Data Eng. 15:4 (2003),
784–796.



330 Internet Mathematics

[Jeh and Widom 03] G. Jeh and J. Widom. “Scaling Personalized Web Search.” In
Proceedings of the 12th International Conference on World Wide Web, pp. 271–279.
New York: ACM, 2003.

[Jerrum and Sinclair 89] M. Jerrum and A. J. Sinclair. “Approximating the Perma-
nent.” SIAM J. Computing 18 (1989), 1149–1178.

[Kannan et al. 04] R. Kannan, S. Vempala, and A. Vetta. “On Clusterings: Good, Bad
and Spectral.” JACM 51 (2004), 497–515.

[Lovász and Simonovits 90] L. Lovász and M. Simonovits. “The Mixing Rate of
Markov Chains, an Isoperimetric Inequality, and Computing the Volume.” In Pro-
ceedings of the 31st Annual Symposium on Foundations of Computer Science, pp.
346–354. Washington, DC: IEEE Computer Society, 1990.

[Lovász and Simonovits 93] L. Lovász and M. Simonovits. Random Walks in a Convex
Body and an Improved Volume Algorithm.” Random Structures and Algorithms 4
(1993), 359–412.

[Mihail 89] M. Mihail. “Conductance and Convergence of Markov Chains: A Combi-
natorial Treatment of Expanders.” FOCS (1989), 526–531.

[Perron 33] O. Perron. Theorie der algebraischen Gleichungen, II (zweite Auflage).
Berlin: de Gruyter, 1933.

[Schoen and Yau 94] R. M. Schoen and S. T. Yau. Differential Geometry. Cambridge,
MA: International Press, 1994.

[Spielman and Teng 04] D. Spielman and S.-H. Teng. “Nearly-Linear Time Algorithms
for Graph Partitioning, Graph Sparsification, and Solving Linear Systems.” In Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 81–90.
New York: ACM, 2004.

Fan Chung, University of California, San Diego, Department of Mathematics, 9500
Gilman Drive, La Jolla, CA 92093-0112 (fan@math.ucsd.edu)

Received June 30, 2009; accepted June 3, 2010.


