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Degree Distribution and Number
of Edges between Nodes of Given

Degrees in the Buckley—Osthus
Model of a Random Web Graph

Evgeniy A. Grechnikov

Abstract.  In this paper, we study some important statistics of the random graph H((lfl)g
in the Buckley-Osthus model, where ¢ is the number of nodes, kt is the number of
edges (so that kK € N), and a > 0 is the so-called initial attractiveness of a node. This
model is a modification of the well-known Bollobds—Riordan model. First, we find a
new asymptotic formula for the expectation of the number R(d,t) of nodes of a given
degree d in a graph in this model. Such a formula is known for ¢ € N and d < ¢'/100(e+1),
Both restrictions are unsatisfactory from theoretical and practical points of view. We
completely remove them. Then we calculate the covariances between any two quantities
R(dy,t) and R(dy,t), and using the second-moment method we show that R(d,t) is
tightly concentrated around its mean for all possible values of d and ¢. Furthermore, we
study a more complicated statistic of the web graph: X (d;,ds,t) is the total number of
edges between nodes whose degrees are equal to d; and ds respectively. We also find an
asymptotic formula for the expectation of X (d;,ds,t) and prove a tight concentration
result. Again, we do not impose any substantial restrictions on the values of d;, ds,
and t.
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[. Introduction

The real world has many interesting structures that can be thought of as graphs.
A typical example is the World Wide Web: one can consider web pages to be
nodes of a graph and hyperlinks to be edges. One of the productive methods for
studying these graphs involves investigation of a suitable random graph model.

The first models of random graphs were constructed and investigated long ago.
Classical models and results are systematized, for example, in [Bollobds 01] and
[Janson et al. 00]. However, they are not suitable for approximation of dynami-
cally changing and nonuniform networks. In particular, the degree sequences of
the graphs in these models are very far from those observed in reality.

Recently, other models of random graphs were constructed to more closely
match the growth of real networks. One of the first descriptions of such a model
can be found in the article [Barabdsi and Albert 99], in which the authors intro-
duced the “preferential attachment” rule. Models following this rule assign the
probability of a new edge to a node according to the current degree of that node,
so more “popular” nodes are more attractive for new edges.

However, the article [Barabési and Albert 99] did not contain a precise model,
leaving some parameters unspecified. Variations of these parameters can sig-
nificantly change properties of graphs that arise, as shown in [Bollobds and
Riordan 03], so one needs something more explicit for theoretical investigations.
An explicit model was proposed in [Bollobds et al. 01] based on the preferential
attachment rule. In the same article, the authors rigorously proved a theorem
concerning the degree sequence of a graph in this model. Namely, they showed
that the number of nodes with degree d in their model decreases proportionally
to d=3. The same quantity in real networks decreases proportionally to d~7 with
different ~ for different networks, following the so-called power law.

The Bollobas—Riordan model has only one parameter, a natural number rep-
resenting the ratio of the number of edges to the number of nodes. Thus, on the
one hand, the Bollobds—Riordan model certainly matches some real networks by
explaining the power law. But on the other hand, the number of parameters in
this model is small and does not allow one to obtain the power law with an
exponent that is not equal to —3.

In the Bollobas—Riordan model, the probability that a node is a target for a
new edge is proportional to the degree of that node. In [Dorogovtsev et al. 00]
and [Drinea et al. 01], two groups of researchers independently proposed adding
to the model one more parameter—an “initial attractiveness” of a node, which
is a positive constant not depending on the degree. Equivalently, the probability
in the proposed model is a linear function of the degree. However, in the papers
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[Dorogovtsev et al. 00] and [Drinea et al. 01], we find only some heuristic argu-
ments.

In [Buckley and Osthus 04], the authors gave an explicit construction of the
above-described model and rigorously proved a theorem concerning the degree
sequence of a graph in this model when all the parameters are natural numbers.

Among many articles in this area, we also quote [Jordan 06]. The model inves-
tigated in that article differs from the Buckley—Osthus model, but the difference
is small, so the results are comparable. The article deals with the case in which
parameters are not necessarily natural numbers. However, the proven theorem
works only for fixed degree d as the number of nodes tends to infinity; Bollobas
et al. as well as Buckley and Osthus allowed d to grow as some small power of
the number of nodes.

There are many other random graph models intended to approximate real
networks. We refer the reader to [Bollobds and Riordan 03] and [Durrett 07] for
surveys of such models and corresponding results.

We study the Buckley—Osthus model of a random graph. Our first goal is to
give a significant improvement of the above-mentioned theorem from [Buckley
and Osthus 04] using a completely different method. We find an asymptotic
formula for the expectation of the number of nodes with degree d without any
upper bound on d and with an estimate of the error term. We also prove a tight
concentration result.

Since the Bollobds—Riordan model is a special case of the Buckley—Osthus
model, our results are also applicable to it. So again, we get a substantial im-
provement of the main theorem from [Bollobés et al. 01].

Our second goal is to study the following quantity. We fix two numbers d;
and ds. We consider a node with degree d; and a node with degree dy. Then
we calculate the number of edges between these nodes. When there are several
choices for nodes of given degrees, we calculate the mean value. Since the number
of nodes with a fixed degree is known to have tight concentration around its
expectation, it is sufficient to examine the total number of edges linking a node
with degree d; and a node with degree ds. Here we also obtain an asymptotic
formula for the expectation and prove a tight concentration result.

2. The Model and Formulation of Results

The Buckley-Osthus model has two parameters, a natural number k and a pos-
itive real number a. The number k is the ratio of the number of edges to the
number of nodes. We assume that a and k are constants, so by default all other
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constants may depend on them. The Bollobas-Riordan model is a special case
of this model with a = 1.

The model is defined in two stages. At the first stage, a probability space
H((Zq is constructed. The elements of Héq are undirected graphs with nodes
represented by numbers 1,...,t and with ¢ edges. The space H ((111) contains only

one graph with one node and one loop. Every graph in H, ,Sti is obtained from a

graph in H((lffn by adding a new node t and a new edge between ¢ and a node
v € {l,...,t}, so that

deg, ,(s) —1+a

1)¢ 1 ) 1§5St_15
Pr(y=s) = (a:— )t =
_® —¢
@+t -1 b

where deg, ; denotes the degree of a node in the graph from Hy; U At the
second stage, a final probability space H éf,)i is constructed from H éH{) as follows.

We take any graph from H (Et]f) It has kt nodes and kt edges. We identify the
nodes 1,...,k; k+1,...,2k; ..., obtaining ¢t new nodes, and we keep all the
edges, obtaining multiple edges and even multiple loops.

(t)

We study the number of nodes of degree d in H, ;. as a function of d and t.

We denote this random quantity by R(d,t) and the value of its expectation by
r(d,t) = ER(d,t).
If d < k, then clearly R(d,t) =0, so it suffices to study the case d > k. We

start by considering r(d, t).

Theorem 2.1.  Let d > k. The expected value of R(d,t) is
B(d—k+ka,a+2) 1
d,t) = t p - .
r(d?) B(ka,a + 1) +Oup <d>
The asymptotic behavior of the coefficient as d grows is
B(d -k +ka,a+2) I'(a+2) I‘(ka—}—a—i—l)ddw

—2—a __
Blka,a+1) Bhaat D VT 0

A similar result was obtained in [Buckley and Osthus 04] (with some factorials
instead of gamma and beta functions). However, for that result, it was essential
that @ € N and d < ¢'/199(¢+1) " Another result, which can be compared with that
of Theorem 2.1, is proved in [Jordan 06]. It concerns a slightly different model,
but nevertheless, it is rather close to our investigations. In this result, a can be
any positive real number (and so analogous gamma and beta functions appear
in its statement). However, its proof essentially uses the assumption that d is
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just a constant. In our Theorem 2.1, we do not have any restrictions on d and a,
and we use a completely different method to prove it.

In fact, Theorem 2.1 gives an entire picture of what happens to the quan-
tity r(d,t). If d = o(tﬁ), then Theorem 2.1 yields the main term of r(d,t). If
d= Q(tﬁ), then 7(d,t) tends to zero as t — oo, which means that with high
probability there are no nodes of degree d in a graph in the model.

Now we want to study in detail the quantity R(d,t).

Theorem 2.2.  Let dy > k and ds > k. The covariance between R(d;,t) and R(dy,t)
8

cov(R(dy,t), R(da,t)) = Oay ((d7** +dy> ") t+dyMdy ") .

Substituting d; = ds = d in Theorem 2.2 and using Chebyshev’s inequality, we
obtain the following result.

Corollary 2.3. If d =d(t) > k and 9(t) — 00 ast — oo, then

R(d,t) — B(dB(i;aki’ ‘f)+ 2)15‘ < (\/d*“*Qt + d’l) b(1) (2.1)

with probability tending to 1 as t — oo.

Let us discuss the meaning of Corollary 2.3.

When d ~ Ct7+7 with some constant C, both r(d,t) and Vd—"2t +d ! are
O(1). For smaller values of d (i.e., d= o(tﬁ)), inequality (2.1) implies the
equivalence (with probability tending to 1 as d,t — oc0)

(a+ 1) (ka+a+1)

d—Qfa t.
I'(ka)

R(d,t) ~

For larger values of d (i.e., T = o(d)), inequality (2.1) means that R(d,t) =
o(1). Since R(d,t) is an integer by definition, we have R(d,t) =0 (again with
probability tending to 1 as d,t — o). Thus, we have an almost entire picture of
what happens to R(d,t).

We also study the total number of edges linking a node with degree d; and
a node with degree dy. We denote this random quantity by X (d;,ds,t). When
di = do, we count every edge twice, but do not count loops.

Theorem 2.4.  Let dy > k and dy > k. There exists a function cx (dy,ds) such that

EX(di,ds,t) = cx(di,d2)t + Oq 1 (1)
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and
I'(dy — k+ ka)T'(d2 — k + ka)['(dy + do — 2k + 2ka + 3)
di —k+ka+2)'(dy — k+ ka+2)T'(dy + dy — 2k + 2ka+a+2)
I'(ka+a+1)
I'(ka)

x <1+9(d1,d2)

cx (di,dy) = I

X ka(a + 1)

(di —k+ka+1)(dy —k+ka+1)
(dy +dy — 2k + 2ka + 1)(dy +dy — 2k + 2ka +2) )’

where

I(ka+ 1)I'(2ka + a + 3)

—4 .
+ I'(2ka + 2)I'(ka + a + 2)

< <
1+ ka <6(d,dy) <a

As both di and dy grow, the asymptotic behavior of cx is

T'lka+a+1) (di +ds)'
CX(d1»d2) :ka(a+1) ( F(ka) )( - d2d22)
1%2

1 1 dids
14 0ap [+ + 4+ -
X( o (d1 ds (d1+d2)2>)

Note that the last formula in Theorem 2.4 does not give asymptotic behavior if
dy and dy grow so that dy/d; tends to a finite nonzero limit. The precise bounds
show that the term (d; + do)' =% /d3d3 still gives the correct order of growth for
cx, but the coefficient can differ from

T(ka+a+1)
['(ka)

ka(a+1)
And in fact, the coefficient differs.
Theorem 2.5. Let di,ds >k, ¢ > 0. Then
P ([X(dhdg,t) — EX(dy, da, )| > c(dy + dg)\/ﬁ) < 2exp (—i) .

In particular, if c(t) — 0o as t — oo, then |X — EX| < c(t)(dy + do)Vkt with
probability tending to 1.

From Theorems 2.4 and 2.5, we immediately obtain the following assertion.

Corollary 2.6. If (dy + do)*d3d} = o(ﬁ), then with probability tending to 1 as
dl ) d? ) t— oo,

X(dl,dg,t) ~ Cx (dl,dQ)t.
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The mean value of the number of edges between one node with degree d; and
another node with degree dy is X (dy,dq,t)/R(dy,t)R(dz,t). Since the quantities
R(d,t) and X (dy,d2,t) are tightly concentrated around their expectations, the
main term of the ratio is

I'(ka+1) dids(dy + do)'
(a+1DI'(ka+a+1) t '

Again, the constant factor can differ if d; and dy grow so that dy/d; tends to a
finite nonzero limit, but the order is correct even in this case.

3. Proof of Theorem 2.1

For a property P, we define

1, P holds,
[P] = .
0, otherwise.

First of all, we reformulate the model without reference to H, (ti The proba-

a
bility space H ((11,2 obviously consists of one graph with one node and k loops. The
space H g;l) can be obtained from H(ELL,)C by adding to any graph from H(Et,)C a
new node ¢ + 1 and k edges in the following k steps. At the ith step, we add one
edge between the new node and one of the existing nodes ~. If v # ¢ + 1, then
it corresponds to a group of nodes 7v;,...,7 in Héf’f’“_l). The sum of degrees
of v1,...,7v equals the degree of v in the graph before the ith step. We denote

this degree by deg, ;. So

_ deg;i(s) + k(a—1)

Pr(y = s) — 1<s<t.
== o1 S0
If v =t + 1, the corresponding group in H, ékf 70 has only ¢ — 1 nodes. Hence,
deg, ;(t+1)+ (i —1)(a—1)+a
pry 4 1) BN G- D@ D 4o

(a+ D)(kt+i)—1

We want to express any value r(d, t) in terms of some values with smaller ¢. Let
us consider the transition from H(Efz to ngf,jl) Let r(d,t,7) denote the average
number of nodes of degree d, not 'includinyg the last node t 4+ 1 before the ith
step, and r(d, t,7 + 1), the similar number after the ith step. Let v be a head of
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the edge added in the ith step. Then

r(d,t,i+1) ZPr deg; ;1 1(s) = d) (3.1)
= Z(Pr(degt’iﬂ(s) =d,y=s)+Pr(deg, ;.1(s) = d,y # 5))

= 3 (Pr(deg, () = d— 1,9 = 5) + Pr(deg, ,(s) = d, 7 £ 5))

< o (d=1) +k(a—1)
_;(Pr<degt*i( )=d 1)(a+ 1)(kt+1i)—1

d+k(a—1)
Pr(d
+ Pr(deg (s < (a+1) kt—i—z)—1>)
(d—=1)+k(a—1)

(a+1)(kt+1i)—1
' d+k(a—1)
+7(d,t,1) (1— (a+1)(kt+i)—1>.

=r(d—1,t,1)

By definition,
r(d,t) =r(d,t,1), r(d,t+1)=r(d,t,k+1)+Pr(deg, . ,(t+1)=d). (3.2)

The function r(d,t) is completely determined by equations (3.1), (3.2) and the
starting condition

r(d,1) = [d = 2k]. (3.3)
Equation (3.2) includes the function Pr(deg, ;. (¢t + 1) = d). Obviously,
Pr(deg; ;1 (t+1)=d) =0, d<kord>2k. (3.4)

The minimal value deg, ;. (t + 1) = k is obtained when none of the k edges is
a loop. In this case, deg, ;(t +1) =4 — 1 for all 4, so

k

Pr(deg, iy (t+1) =k) =[] (1 - (aH)(ZH) — 1) =140 (1) .

i=1

(Note that the constant in O( ) depends on a and k.)
Because Zzlik Pr(deg, ;. = d) = 1 and Pr(deg; ,,; = d) > 0, we get

Pr(deg, 1 (t+1) =d) =0 <1) , k<d<2k

Since d is bounded in the last equality, its right-hand side can be equivalently
written as O (1/d*t).
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Let
B(dkark:a,aJrQ)7 ik,
c(d) = B(ka,a +1) (3.5)
0, d<k.
If d > k, then
cd—1) B(d—1—-k+ka,a+2)
c(d)  B(d—k+ka,a+2)
I'(d—1—-k+ka)/T(d+1—k+ka+a)
I'd—-k+ka)/T(d—k+ka+a+2)
d+1-k+ka+t+a
- d—1-k+ka
Also
B(ka,a + 2

c(k) =

) T(a+2)/T(ka+a+2)  a+1
B(ka,a+1) T(a+1)/T(ka+a+1) ka+a+1
),

In particular, ¢(d — 1) > ¢(d), so ¢(d) < ¢(k) < 1 for all d > k.

For the rest of the proof, we will assume that d > k. Note that of course this
does not imply d — 1 > k.

As d grows, the asymptotic behavior of ¢(d) is

I'(a+2) I'(d — k+ ka)
B(ka,a+1)T(d — k + ka+ a + 2)
I'(a+2)

:lnm—i-(d—k—i—ka)(ln(d—k—&—ka)—1)

Inc¢(d) = In

—(d—k+ka+a+2)(ln(d—k+ka+a+2)—1)+O<1)

d
IHMJr(korka)(lndJr_k;_kal)

B(ka,a+ 1)

~(d—k+kata+?2) <1nd+k+k‘zl+a+21> +0 <;>
B I'(a+2) 1
—lnB(ka,a—l—l) (a+2)lnd+0<d>,

and
_ F((I+2) —2—a l
@) = 5aat D" (1+O(d>). (3.6)
Let

7(d,t,i) = r(d,t,i) — c(d) <f + % N k(a1+1)> '



266 Internet Mathematics

It is easy to see that the theorem is equivalent to 7(d,t,7) = O(1). Using (3.1),
we obtain

. L(d=1)+k(a—1) d+k(a—1)
r(d—l,t,z)( )R+ 1—|—r(dtz)< _(a—i—l)(kt—i—i)—l) (3.7)

+
r(d,t,i+1) — (t—!—
(d—=1)+k(a—1) d+k(a—1)

X<C(d Vet D+ +C(d)<1_(a+1)(kt+i)—1)>>

. ) 1
:T(d,t,Z—Fl)— t+k_k(a—|—1))c(d)
A—-[d=k)d+1-k+ka+a)+(a+1)(kt+i)—1—(d+k(a—1))
(@t 1)(kt +1) -1
(a+1)(kt+i+1)—1—-[d=kQ1+ka+a)
k(a+1)

l1+ka+a ) [d = k]
——— 1 .
Fat D) F(d,t,i+1) + A

) 1
)
)

D

X

=r(d,t,i+ 1) —c(d)

=7 (d,t,i+ 1) + [d = K]e(k)

Let C' = C(a, k) be a sufficiently large constant that will be determined later.
We claim that

_ ) ) [d = K] C min{1, ka} -t
i)+ (= 1) = ‘ S (1 B 1)(d+ka)> (38)

foralli=1,...,k+ 1 and for all natural numbers d > k£ and ¢. Note that this
implies 7(d,t,7) = O (1/d) and Theorem 2.1.

Equations (3.1), (3.2), (3.3), (3.4) imply that r(d,¢,4) = 0ifd > kt +i — 1+ k.
In this case, using (3.6), we obtain

~ . { 1 —2—a —1—a
soif d > kt 41— 1+ k, (3.8) holds for all sufficiently large values of C.

Now assume d < kt 4+ ¢ — 1 + k. We will prove (3.8) by induction on ¢ and, for
fixed t, on i. The basis of inductiont =1,...,1+ [1/ka] andany i =1,...,k + 1
obviously holds for all sufficiently large values of C'.

Now let t > 2+ |1/ka] and let (3.8) hold for ¢ — 1. Using (3.2), we obtain

’F(d,t, 1):F(d7t_1ak+1)+Pr(degt 1k+1(t) )
=i(d,t—Lk+1)+[d=k+O0 (57)-
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Therefore,

_ c min{1, ka} F 1
I7(d,t, )] < d+ka (1 C(a+2)(t+1)(d+ ka)) +0 <d2t>
C  Cmin{l ka}/(a+2) 0 (1)
~ d+ka (t+1)(d+ ka)? d*t )’

Thus the induction step on t is proved for all sufficiently large values of C.

Finally, let ¢ > 2+ [1/ka] > 14 1/ka, i > 1, and let (3.8) hold for i — 1. We
temporarily set T = (a + 1)(kt +4 — 1) — 1. Note that T depends on ¢ and i, but
not on d. From (3.7) we obtain

H(d,t, ) + (i — 1)[d: ]
= (i—2)[d:k] trd—1,ti— iz k=
= . d+k(a—1)
i (dti— 1) (1 _ T)

d—

1= k}) (d—1)+Fk(a—1)
k T

) (-

= <f(d—1,t,i 1)+ (i —2)

—i—(f(d,t,i—l)—i— i—2)
+k<d<k+ ]O(t>'

The remainder term [k < d < k+ 1]O (1/t) can be written as O (1/d*t). The
assumptions d < kt +i— 1+ k and ¢t > 1 4+ 1/ka imply that

L= (a+f)J(rkf(fi_—l)1)—1 =
If d > k, then
C_ ([d-D+ka-1) C <1_d+k(a_1)>
d—1+ka T d+ka T
deka(1—;(—m«d—1>+k<a—1>>+d+k<a_1))>

)

_|_
C . k < C . kmin{1, ka}
d+ ka T(d—1+ka)) ~ d+ka T(d+ka) )
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If d = k, then
C 1_d+k(a—1) _C 1_ka(k+ka)
d+ka T  d+ka T(d+ ka)
C 1— kmin{1, ka}
T d+ka T(d+ ka) )

In both cases,

f(d,ui)—i—(i—l)[d:k]‘

k

G ) () o)

Note that

(3.9)

kmin{1, ka}
((a+1)(kt+i—1)—1)(d+ ka)
_ (1 B kmin{1, ka} ) B kmin{1, ka} (1 Lo (1>)
(a+2)(kt + k)(d + ka) (a+1)(a+2)kt(d+ ka) t))’
where the left-hand side is strictly less than the first term on the right-hand side,
so that the second term on the right-hand side is positive. Now (3.9) implies (3.8)

for all sufficiently large values of C.
Theorem 2.1 is proved.

4. Proof of Theorem 2.2

By definition and linearity of expectation,

COV(R(dl,t),R(d27t)) (41)
=F (R(dl,t)R(d27 t)) - T(dl,t)r(dg, t)
t
=F Z [degsl = dl,degSQ = dg] — ’I“(dl,t)’l“(dQ,t)
81,82:1
= Z Pr(degs) = di,deg sy = ds) + [di = da]r(dy,t) — r(dy, t)r(da, t).
S$1#£82
We will estimate the sum
t

’I“Q(d1,d2,t) = Z Pr(deg51 = d1,deg$2 = dg)
81,52:1

51752
as we did for the function r(d,t) in the proof of Theorem 2.1.
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As with r(d,t), we define a function r9(dy,ds,t,4) as the value of ro(d;,ds,t)

before the ith step in the transition from H((lt,)g to H lgt,:l). The recurrent equation

is deduced similarly to (3.1). For fixed s; and sq, there are three nonintersecting
cases: v = 81, 7 = 8o, and v & {s1, s2 }. In the first case, we get

Pr(degt‘i—o—l(sl) =dy,degy;y1(s2) = da,y = 81)
= Pr(degt,i(sl) =dy —1,deg, ;1(s2) =d2, 7 = 51)

= Pr(degm(sl) =dy —1,deg, ;,(s2) = dg)%.

The second case is the same with d; and dy interchanged. In the third case, we

get

Pr(degt,i+l (s1)
= Pr(deg; ; (s

775317’Y¢52)

dy,y # 51,7 # 52)
di +k(a—1)+dy + k(a—1)
(a+1)(kt +i)— 1 )

d degt i+1(82)

deg, z+1(

1) = 2) =
:Pr(deg“( 1) =di,deg; ;1 (s2) = )(

so the final formula is
(d1 — 1) + k(a — 1)

dy,do,t,i+1) =ro(dy —1,ds,t,i 4.2
TQ( 1,42, 7’L+ ) 7"2(1 3 2”2)(a+1)(kt+z)71 ( )
((do—1) +k(a—1)
dy,dy — 1,1
troldide = Lt T =1
. d1+d2+2k(a—1)
dy,dy,t 1-—
Frodr, ds, ’Z)( (a+ 1) (kt+1i)—1
By definition,
] (dlud27 t) =T2 (d1>d2a t7 1)7 (43)
T'Q(dlvd?»t + 1) = T2(dl,d2at7k + 1)
t
+ ZPT<degt,k+1(5) = di,degy 41 (t+1) = d2)
s=1
t
+ ZPT(degt1k+1(S) = dy, degy 1 (t+1) = dl)v
s=1
and the starting condition is
TQ(dl,dQ, 1) =0.
Equation (4.3) includes a function
t

ro(dy,dy,t,i) = > Pr(deg, ;(s) = dy,deg, ;(t) = dy) (4.4)

s=1
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(and the same function with swapped arguments), so we will first estimate r.
Again, we write a recurrent equation. For fixed s, there are three nonintersecting
cases: Y =5, 7y =t+1, v ¢ {s,t +1}. If deg; ;;(s) = d1, then deg, ,;(s) equals
di — 1 in the first case and d; in the other two cases. If deg, ;. (t+ 1) = do,
then deg, ;(t + 1) = da — 2 in the second case and dy — 1 in the other two cases.
Calculating probabilities, we obtain

Té(dl,d27t7i+1)

(dy — 1)+ k(a—1)

(a+1)(kt +1) —1

(dy—2)+(—1)(a—1)+a

(a+1)(kt+1) —

d; +k(a—1)+(d2—1)+(i—1)(a—1)+a>
(a+1)(kt+14)—1 '

= ’I"é(dl - 1’d2 - 17t72>

+rh(di, dy — 2,t,1)

—H“é(dl,dg — 1,ﬁ,i) (1 —
Before the first step, the node ¢ has degree 0, so
h(dy,dy,t,1) = ZPr deg, 1 (s) = di)[d2 = 0] = [dy = O]r(dy,1).

We continue to use the notation (3.5). Obviously, r4(dy,ds,t,i) = 0 when dy >
2(i—1) or dy > 2(kt +14). If dy < 2(kt+ i) and dy < 2(i — 1), then

AR o) = 0 = 0
and
DL o) = o).
Now it is easy to see that
rh(dy,dy,t,i) = [dy = i — 1]c(dy)t + O(dh). (4.5)

Since 14(dy,ds,t,%) = 0 when dy > 2k, the remainder term in (4.5) is zero when
ds > 2k and can be written as O (1/d1d(2"+1).

Since r(dy,t) =0 when dy > kt + k, ry(dy,ds,t,4) =0 when d; +dy > kt +
k+2(i — 1). In particular, ry(di, ds, t, k + 1) +15(ds, di,t, k + 1) = 0 when d; +
dy > kt + 2k. By (42) and (43), Tg(dl,dg,t,i) =0 when dy +dy > kt 4+ 2k +
(i—1).

For the rest of the proof, we will assume that d; > k and d; > k. Note that of
course this does not imply dy — 1>k and dy — 1 > k.
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Let

7o (dy,da, t,1)

We temporarily set T = kt +¢ — 1/(a + 1). We express 72 in terms of 7 and use
(4.2). In the expression, there are terms with 75 with various arguments. Now
we transform the terms without 7 from the right-hand side of (4.2):

iT;—l(c(dl _1)0(052)(d1 1) +k(a—1) (dy — 1)+ k(a—1)

+ C(dl)C(dQ — 1)

(a+1)T (a+1)T
+c(di)e(d) <1 _ At CEZ:?’;;? - 1)) )
- ZT}—:%(dl)c(d?)((l_ d = % +1(a—f1—i)—zlfa+a
B 511
= %T_,:lc(dl)c(dz)ﬁ(%aﬂ) + (a+ DT — [dy = k](1 + ka + a)
—[ds Zk](l—l—kza-i-a))
= T2 elan) — [y = TERAR) g, g T Del)

The first term equals the term without 75 on the left-hand side, so

(dy — 1)+ k(a—1)
(a+ )kt +i)— 1
(do— 1)+ k(a—1)
(a+ )kt +i)—1

dy + dy +2k(a — 1)
(a+1)(kt+i)—1>
(kt+i= o+ 1) eld)

kQ

(kt+i— o +1) e(d)

K] . .

To(dy,do,t,i + 1) =79 (dy — 1,ds, t,19)

+7ZQ (dladQ - 17t7l)

+72(dy, da, t,17) (1 —

—[d = K]
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Relations (4.3) and (4.5) imply

Let

’Fg(dl,dQ,t, 1) = fQ(dl,dQ,t —1,k+ 1) + [dg = k‘}c(dl)t + [d1 = k]c(dg)t
10 ( Ly )
dtll+1d2 dld(21+1 .

T(d, — k + ka)
€1 (dllad/Z) =

(dy + k(a—1)I'(d} —k+ka+a+1)
0,

d/

1 Z k7d/2 Z kv
By definition, for dy > k,

dy <kordy <k.

Cl(dl—l,dg) - dl—k+ka—|—a

dy + Ek(a—1)

Cl(dl,dg) _dl—k—I—ka—l'
For dy > k,
Cl(dl,dg—l)_ dg—Fk(CL—l)
ci(di,dy)  dy—1+k(a—1)
Similar to (3.6), we have
dyt 1
=—F71 — .
=i 0(2)
Moreover,
Cl(d1,d2) . B(ka,a—k 1) F(dl — k+l<:a)F(d1 — /<:+ka+a+2)
c(dy) — T(a+2) (dy+k(a—1)T(di —k+ka+a+1)I(d —k+ ka)
_ B(ka,a+1)dy —k+ka+a+1
- I'(a+2)

Let C' = C(a, k) be a sufficiently large constant that will be determined later.
We claim that

ra(dy, da, t,7) + ——([d2 = kle(di) + [di = kle(d2))t
§ C(Cl(dl,dg) +Cl(d2,d1)) <k’t+

a—i—%z_
a+1
di < ds.

foralli=1,...,k+ 1 and for all natural numbers d; > k,ds > k,t. Since both
sides of (4.6) are symmetric in d; and dg, it is sufficient to consider the case

(4.6)
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Ifdi +dy > kt+2k+(Z* 1), then T‘Q(dl,dg,t,i) =0 and

|772(d17d2,t7i)| . C(dl)c(d2) (t+ % - k(a1+1)) (t+ % - k(a1+1))

c1(dr,da)t c1(dr,da)t

. dg—Fk(a—l) . t
_O<m—k+kmhﬁﬁd@ﬁ)_0<m@”)'

Since

dy + dsy

dy > 5

k
> Z
Stk

the right-hand side is bounded. Obviously, [ds = k] = 0, and

[mzmd@ﬁzo<%a)

is bounded too. Thus (4.6) holds when d; + do > kt + 2k + (i — 1) for all suffi-
ciently large values of C.

Let dy +dy < kt + 2k + (¢ — 1). We will prove (4.6) by induction on ¢, and for
fixed ¢, on i. The basis of inductiont = 1,...,2+ [1/ka] andany i =1,..., k+1
obviously holds for all sufficiently large values of C.

Let t > 3+ |1/ka] and let (4.6) hold for t — 1. We continue to use the restric-
tion d; < dsy. Thus,

|’F?(d17d27ta1)| =

fg(dl,dQ,t -1, k+ 1) + [dQ = k‘]c(dl)t + [dl = k‘]C(dg)t
1

1
ro(-t
(d(fﬂd?)‘

< Claa(dind) + (i) (ke - 1)+ 24 1)

1
+0 | —— ).
(d‘fﬂcb)

Since ¢ (dy,ds) = O (1/d{"'dy), the right-hand side is less than

Cley(dy, d dp ) (b4 22
(01( 1,d2) 4 c1(da, 1)) + a1

for all sufficiently large values of C'. This completes the induction on t.
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Let t > 3+ |[1/ka] > 2+ 1/ka, i > 1, and let (4.6) hold for ¢ — 1. Then

To(dy,do,t,1) + %([d? = kle(dy) + [di = kle(dq))t

(dy —1) +k(a—1)
(a+1)(kt+i—-1)—-1

(dy = 1)+ k(a—1)
(a+1)(kt+i—-1)—1

dy +dy +2k(a — 1)

(a+l)(kt+i—l)—1>
(kt+z‘—1—ai—1+1)c(d2)

- f?(dl - 17d27t7i_ 1)

+7’;2(d17d2 - 17t7i_ 1)

+f2(d17d23t57;_ 1) <1 -

[dl = k] k2
(kt—H’— 1- alﬁﬂ) c(dy)

—[d2 = k] k2
4t ; ! ([dy = K]e(dy) + [di = Kle(da))t

= (FQ(d1_17d27t7i_1)+ L
(di—1) + k(a - 1)

“arDkt+i—1) -1
+ (fz(dl,dzl,t,i -1)+ g([dzfl = kle(dy) + [di = k}C(d21))t>

k

(b))t k1)
(a+1)(kt+i—1)—1
- . 17— 2
+<T2(d1,d2,t,l—1)+ A
( _ d1+d2+2k(a—1)
(a+1)(kt+i—1)—1

+[dy < k+1]0(c(dr)).

(lds = Kle(dy 1) + [dy —1 = k1c<d2>>t)

([da = Kkle(dy) + [dy = k]c(dg))t)

) + [di < k+1]0(c(dy))

The assumptions dy + ds < kt + 2k + (i — 1) and t > 2 + 1/ka imply that

{— d1+d2+2/.€(a—1) > 0.
(a+1)(kt+i—-1)—1




Grechnikov: Degree Distribution and Number of Edges between Nodes in the Buckley—Osthus Model 275

By the induction hypothesis,

7 —

/FZ(dlad27tvz’) +

a+ 3
< 2(;i—1
_C(kt+a+1(z ))

(i —1) +k(a—1)
@t Dktti—1) -1

(do — 1)+ k(a—1)
(@t Dkt +i—1) -1

+(e1(di,da) + c1(da, dr)) (1 - (jl—;;é:ff(_al—)l_)l) )

+ldy < k+1]0(c(ds)) + [da < k+1]0(e(dy)).

X ((cl(dl —1,d2) + c1(da, dy — 1))

+(Cl(d1,d2 - 1) +Cl(d2 — 1,d1))

Since

Cl(dl — 1,d2) (d1 — 1) + k(a — 1) Cl(dl,dg — 1) (dg — 1) + k:(a — 1)
Cl(dl,dg) (a+1)(kt+z—1)—1 Cl(dl,dg) (a—i—l)(kt—i—z—l)—l
d1 +d2 +2k(a— 1)

e Dk i1 -1
RAE
HO - e =K ST =T T DT
=1+ (a+1)(ktj—i—1)—1’
we have
Fo(dy, dos t,1) + 2 ([dy = Kle(dy) + [dy = k]c(dg))t’ (47)

a

x (” (a+1)(kt—|—z’—1)—1)
+ [di < k+1]0(c(dz)) + [d2 < k+1]O(c(dy))-

< C(Cl(dl,dQ) +Cl(d2,d1)) (kt+ aii(l — 1))
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Since

(’“”Zil) - (k”Zi(il)) <1+(a+1)(l€tj—i—1)—1>

a+% a+% . a
a+1 ( T Y G nmr oy -
1
C(a+1)(kt+i—1)—1

1 a+i
Z i— 1) — 2
x<<a+2>(kt+z ) P

1 kt a+3
= . —+—=2(-2)
(a+1)(kt+i—-1)—1\2 a+1
is always positive and tends to a nonzero constant limit as ¢ grows, it is bounded
from below by a positive constant. Therefore, for all sufficiently large values of

C, the inequality (4.7) implies the inductive step by i, and so (4.6) holds.
As a consequence of (4.6), we obtain

4 t
ro(dy,ds,t, 1) = O + .
TQ( 1 2 Z) <d(1L+1d2 d1d¢21+1>

a+3
— akt — 2(i—1
a aa+1(z ))

The proven bound, the representation (4.1), and Theorem 2.1 give the follow-
ing bound:

cov(R(dy,t), R(ds,t))
t t 1
=0 + +O0(d;>7t) + O(dy >t +O( )
(d(iwrld? d1d121+1> ( 1 ) ( 2 ) dldg

If d; < dy, the maximum among the first three terms on the right-hand side is
O(d;*7t); otherwise, the maximum is O(d;?~“t). This proves Theorem 2.2.

5. Proof of Theorem 2.4

We will use the notation N(s1,s2) for the number of edges between nodes sy
and so. As usual, N; ;(s1, s2) is the value of N(s1, s2) in the graph before the ith
step.

First, we define a function

t t

fldi,da,t,1) = By (Z Z [deg s = di,deg sy = dZ]N(51»32)>- (5.1)
s1=1 s9=1

S92 #5]
It is easy to see that EX(dy,ds,t) = f(d1,ds,t,1).
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Recurrent equations on f are deduced as was done in the previous sections.
The sum (5.1) does not include the last node, so N(sy, s2) does not change when
a new edge is added. Thus, the ith step acts on f as in the case of 15 (compare
with (4.2)):

(dl — 1) +k(a— 1)

Fldrsdy, i 1) = fldr = Lot d) (s (5.2)
-yt
+ f(dy,da, t, ) (1 - Ui;i%(;f_’i(g__ll))
Second, we define a function
t
g(dy,da,t, 1) :Em([deg (t+1) =ds] Zdegs-dl t+1,s)). (5.3)
s=1

Obviously,

f(dl7d27t+ 171) = f(d17d25t7k+1> +g(d17d27tak+ 1) +g(d27dlat7k+1>7
(5.4)
and since N(t+ 1,s) = 0 before any edges from the node ¢t + 1 are added, we
have

g(d17d27t71> =0. (55)

We now consider one summand of the sum (5.3) and the ith step. Let the
new edge link nodes be ¢ + 1 and . We have three nonintersecting cases: v = s,
y=t+1,v¢{s,t+1}. Note that

[y =s.deg; ;11 (t+ 1) = do,deg; ;.1 s = di]Npip1(s)
== s,degm(t +1) =dy — 1,deg; ; s = di — 1](Nyi(s) + 1),

[y=t+1, degt,i+1(t +1) = dy, deg; ;41 8= di]Ntiv1(s)
=[y=t+1,deg,;(t+1) =dy —2,deg, ;s = di| Ny ;(s),

[v & {s,t+1},deg, ;11 (t +1) = dz,deg, ;41 5 = di] N it1(s)
=[y ¢ {st+1},deg, ;(t+1) =dy —1,deg, ;s = di| Ny i(s).
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Taking the expectation and using the definition (4.4), we obtain
g(di,da,t,i+1) (5.6)
(dy —1)+k(a—1)
(a+1)(kt+1i)—1

= (g(dl - 17d2 - 1at7l) +T’2(d1 - ladQ - l,t,Z))

(dy—2)+(i—1)(a—1)+a

(a+1)(kt+4)—1
(di =D +kla=1)+(d—-1)+(i—1)(a—1)+a
(a+1)(kt +1)— 1 '
Third, we derive a bound on g. Obviously, g(d;,ds, t,7) = 0 when dy > 2(i — 1)
or d; > Q(k’t —|—Z) If d; < 2(kt + Z) and dy < 2(Z — 1), then
d1 + dg dl + d2

t t

Recall that we have proved the bound (4.5) on 7. It is easy to see now that

+g(d17d2 _2vt77’)

+9g(di,dz — Lt,i)( -

20(d ) =0(@d“t™) =0(t™") and Ot =00,

g(dy,dy, t,i+ 1) = i[dy = i]e(d; — 1) (dy (Z)Lk)(k“ V.o (1) . (BT

Finally, we are ready to study f. For the rest of the proof, we will assume that
dy > k and dy > k.

We set
I'(a+ 2) I'(ka+a+1)
A= ——— 7 = 1) 7
Blhaaty) TV " T
Dy =d; — k+ ka, and Dy = dy — k + ka for brevity. By definition,
['(Dy)
di)=A—"—"-"2——.
) = A D T ar D)
Let cx (di,ds2) be defined recurrently as follows:
Cx (k7 k) =0,
(D1 — D)(ex(dy — 1, k) + ¢(dy — 1))
di, k) = di >k
cx (dy, k) Dyt katatl ) 1> R,
. (Dz — 1)(CX (k,dz — 1) + C(dg — 1))
CX(kadQ)_ Dg—i—ka—i—a—i—l ) d2>k7
(D1 — Dex (di = 1,dy) + (D2 — )ex (di,dp — 1)
di,ds) = , dy,dy > k.
cx (dy,dy) Di+Dy+tatl 1,d2
Let

F(Dl)F(Dg)F(Dl + Dy + 3)

c2(dy,dy) = [(D; +2)T(Dy +2)T(Dy + Dy +a +2)’
es(dy, dy) = L(D)L(Dy)0(Dy + Dy +1)
ST DDy + DDy + DDy + Dy +a+2)
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Obviously, these functions are symmetric. If d; > k, then

ca(dy —1,dy) (D1 +1)(D1 + Dy +a+1)

co(dy,dy) — (Dr—1)(Dy+ Dy +2)
Cg(d1 — l,dg) . Dl(Dl + Dy +a+ 1)
c3(dy, dy) (D1 = 1)(Dy + Dy) -~

Thus, for dy,ds > k,
(Dl — 1)62 (d1 - 1, dg) + (DQ — 1)62 (dl,dg — 1)

di,dy) = ,
c2(ch, da) Di+Ds+a+1
es(dy, d) = (D1 —1)ez(dy — 1,da) + (Dg — 1)c3(dy, dy — 1)
S Dy +Dy+a+1
and
e(dy) _ I(Dy +2)T'(ka+2)I'(Dy + ka + a + 2)

Akacy(di, k) kal'(Dy + a+ 2)T'(ka)T'(D;y + ka + 3)
N ka+1 F(Dl +2)F(D1 +ka+a+2)
Dy +ka+2T(Dy +a+2)[(D) +ka+2)

Let (), = a(a+1) -+ (e +mn —1) be the Pochhammer symbol. Let

0 e

2 F (o, 375 2) Z 1;

for v # 0,—1,—2,... be the hypergeometric function. According to [Abramowitz
and Stegun 64, 15.1.1], if vy — o — 8 > 0 and |z| < 1, this series converges abso-
lutely. We quote the following formula from [Abramowitz and Stegun 64, 15.1.20]:

P(Y)(y —a—f)

2 Fi (o, B33 1) = T(y—a)(y—B)

Thus

['(D; +2)T'(Dy + ka+a+2)

Dy +a+2)T(Dy + ka + 2) oI (a,ka; Dy + ka+a+2;1)

S ka)n
Z D1 +ka+a+2)nn'

Since all terms of the last series are positive and the first term is 1, it follows
that
C(dl) > ka+1
Aka@(dl,k) - .D1 +ka+2
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Moreover,

(D +2)I(Dy + ka+a+2
I'(Di+a + 2)F(D1 + ka+ 2

ka) 1
-1 71+1( n+
+Z Dl—&—ka—l—a—l—?)nﬂ(n—i—l)

~— | —

g a’k i (a+1),(ka+1),
Dy+kata+2~= (Di+ka+ta+t3)(n+1)!
< 1+a2—k2F1(a+1 ka+ 1;2ka+a+ 3;1)
- Dy +ka+a+2 ’ ' ’
a’k ['(ka+1)T'(2ka + a + 3)

Dy +ka+1T(2ka +2)l'(ka+a+2)’

<1+

and also

e(dy) < ka+1 (1 kaB )
AkaCQ(dl,k) ~ Dy +ka+2 Dy +ka+1
_ D(ka+1)I'(2ka +a + 3)
" T(2ka+2)T(ka+a+2)

In Theorem 2.4, we have three assertions. The first one says that
EX(dl, dg, t) =cCx (dl,dg)t + Oa7]§;(1).

The second one gives a bound for cx . The third one gives an asymptotic formula
for ¢x. Now we shall show that our function cx admits the bound from the
second assertion. This bound is equivalent to

Aka (Cg(dl,d2> — <4 — 1+2ka) C3 (dl,dg)) (58)
S Cx (dl,dg) S Aka(CQ(dl,dg) + BCg(dhdz)).

To prove (5.8), we use induction on d; + dy. If dy = dy = k, the right-hand side
of the inequality is obvious, and its left-hand side follows from

cr(k,k) _ (2ka+2)(2ka+1)  4dka+2 =~ 2
cs(k, k) (ka+1)(ka+1)  ka+1 ka+1

If dy > k and dy > k, all the parts of (5.8) satisfy the same recurrent equation,
so (5.8) follows from the induction hypothesis. Due to symmetry, it remains to
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prove (5.8) for dy = k, d > k. We have

ka
ka (CQ(dl,k’) — 21++4ka cg(dl,k)) _, (D1 +1)(2 + 4ka)

kacy(dy, k) (D1 + ka+2)(Dy +ka+1)
(Dl — ka)(D1 — ka + 1)
(Dy +ka+1)(Dy +ka+2)

In particular,

2 + 4ka
1+ ka

ka (C2 (di, k) — 03(d1,k)> >0

for d; > k. Then

cx (dy, k)
Aka (CQ (dl s k) — 2114]‘36: C3 (dl 5 k))

(D1 + ka + 1)(D1 + 1)(D1 +ka+a+ 1) CX(dl,k)
(Dl — ka)(D1 —ka + 1)(D1 — 1) Aka@ (dl — 17143)

(Dl + ka + 1)(D1 + 1) Cx(dl — 1,k) +C(d1 — 1)

(D; — k:a)(D1 — ka + 1) Ak:a@(dl - 17]6)

(D1 + ka + 1)(D1 + 1) (Dl —1- k:a)(D1 — k:a) ka+1
~ (D1 —ka)(D; —ka+1) ((Dl + ka)(Dy + ka+1) Dy +ka+1)
_ Di+1 (Di—1—ka ka+1
Dy —ka+1 ( Dy +ka +D1 —ka)‘

Furthermore,

Dl—l—ka+ka+1 _Dl—ka—i—l
D1+ka leka D1+1
ka+1  (ka+1)D; — Kk*a® 4+ 2ka + 1

Dy —ka (Dy + 1)(Dy + ka)
1 D1+ka+1
> (ka + 1 -
> (ka+ )(Dl—k:a (D1+1)(D1+ka)>
Dy +ka+2
:(ka+1)ka 1+ a+ .

(D1 =+ 1)(D1 =+ k;a)(D1 — k;a)

This proves the left-hand side of inequality (5.8).
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Now,

Cx (dhk)
Aka(CQ (dl R k‘) + Bcs (dl R k‘))
—(1+B (Dy +1)(ka +1) >1 (Dy +1)(Dy +ka+a+1)
N (Dy + ka +1)(D; + ka +2) (D1 —1)(Dy + ka +2)
% Cx (dl, k)
Ak‘aCQ (dl - 1, k‘)
< (D1 + ka + 1)(D1 +1)
- (D1 + ka + 1)(D1 + ka + 2) + B(D1 + 1)(ka + 1)

x(1+B Dy (ka+1) n ka+1 <+ kaB ))
(D1 4+ ka)(Dy +ka+1) Dy +ka+1 Dy +ka
Furthermore,
<1+B Dy (ka+1) ka+1 ( kaB ))
(D1+ka)(D1—|—ka—|—1) Dy +ka+1 Di + ka
Dy + ka+2 ka+1
_( D; +1 * D1—|—/<Ja+1)
( ka+1 ka—l—l)
= — < 0.
Dy +ka+1 Dy +1

This proves the right-hand side of inequality (5.8).
The third assertion of Theorem 2.4 (i.e., the asymptotic formula for cx (dy, d2))
is derived from (5.8) in the same way as a similar formula was derived from (3.6).
It remains to prove the first assertion. We will use the bound

(dy + dg)l‘“) _

C)((d17d2) = O (
di d3

Let

F(dvsdastd) = F(dy, ot 1) — ex (di, ds) (t+ - k(al+1)> .

Let C = C(a, k) be a sufficiently large constant that will be determined later.
We claim that

‘f(dl,dg,t,z’) (5.9)

(D2 — 1)C(d2 — 1) (D1 — 1)C(d1 — 1)) ‘
(a+1)k (a+1)k

SC(“MMV

+(—1) ([d1=k] + [dy = K]
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Since 14 (dy,d2,t,i) =0 when d; +dy > kt + k4 2(i — 1), (5.5) and (5.6) imply
that g(dy,ds,t,4) = 0 when dy + dy > kt + k + 2(i — 1). Consequently, (5.2) and
(5.4) imply that f(dy,ds,t,i) =0 when dy +dy > kt + 2k + (i — 1).

If dy +dy > kt + 2k + (i — 1), then

] N i 1\ ((dy+dy)>
f(dlaant’Z)* CX(dlde) <t+k k(a+1))0< d%d% ’

so (5.9) holds for all sufficiently large values of C.

Now assume d; + dy < kt + 2k + (¢ — 1). We will prove (5.9) by induction on
t and, for fixed ¢, on i. The basis of induction ¢t =1,...,24 [1/ka] and any
i=1,...,k+ 1 obviously holds for all sufficiently large values of C.

Now let t > 3+ |1/ka] and let (5.9) hold for ¢ — 1. Since (5.9) is trivial for
dy = dy = k and symmetric, we may assume that d; > k. From (5.4) and (5.7),
we obtain

. ~ Dy -1 1
Flah, oot )| = |t = 14 1) 4 4l = Ketar - 1) 25 +0 (1)

(a+ 1)k t
o gtzn) o)

The right-hand side is less than C' for all sufficiently large values of C'.
Finally, let

1
ka

1

Pl L > ]-7
ka !

EERPAEER

and let (5.9) hold for ¢ — 1. We reuse the notation T'= (a+ 1)(kt+¢—1) — 1
and again assume d; > k. From (5.2) we obtain

Dy —1

_ D _
Fldy —1,dy,ti — 1) == 4 [dy > k| f(dy,dy — 1,t,i — 1)

- D D
+f(d1,d2,t7i—1)< L 2)

:f<d1,d2,tz>+cx<d1’d2><<a+1>k k>
1

_W(CX(dl — 1,d2)<D1 — 1) + [dQ > k‘]Cx(dl,dQ — 1)(D2 — 1)

+ex (di, do)(T — (D1 + D2)))

= f(dy,dy, t,0) + [dy = K]e(d, _1)(D+7_1)1k
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The assumptions d; + dy < kt + 2k + (¢ — 1) and t > 2 + 1/ka imply that

17D1+D2 d1+d2+2k(a—1)

= > 0.
T (a+1)(kt+i—-1)—1 "~

Since (Dy —2)e(dy —2) = [dy > k + 1](D1 + a)e(dy — 1), we have

(i~ 2)[dy = 4 21— 2eldr =2) D1 —1

(a+ 1)k T
. (Dl—l)C(dl—l) D1+D2
—2)de =k 1227
HE =2l = M=, T
. (D1 — 1)C(d1 — 1) D1 +a D1 + DQ
= (i — = 1—
(i —2)[dy = K] @+ 1)k [dy > k+ 1] T + T
. (D1 — 1e(dy — 1) 1
=(i—2)|dy =k 0] .
(=2l =M= T3
If ds > k, then
D1_1+D2_1+1_M:1_3§1_1.
T T T T T
Ifdg:k:,then
D1—1+1_M:1_ka+1§1_l.
T T T T

Thus

‘f<d1,d2,t,z') + (- Dl = 12" Ufﬂ - ‘

<C<1‘<a+z>2<t+1>)”(1‘m+1>lk<t+n>+o<1)'

For all sufficiently large values of C', the right-hand side is less than

C<1‘<a+z>2<t+1)>“’

so the induction on 7 is complete.
Theorem 2.4 follows from the proven bound (5.9).

6. Proof of Theorem 2.5

We use the Azuma—Hoeffding inequality.
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Theorem 6.1. [Azuma 67, Hoeffding 63] Let (X)7_, be a martingale with | X1 —
Xs| <0 fors=0,...,n—1 and x > 0. Then

22
P(|X, — Xo| 2 z) < 2exp (—252”> :

We fix dy,ds,t and set X = X(dy,ds,t). Let G be a random graph in Héfi, it
has kt edges, sorted by the creation time. Let G*) be a graph with s first edges.
Let X, =F (X | G<5)), s=0,...,kt. In this sequence, Xy = FX, X;; = X. By
definition of the probabilistic space, the sequence X, is a martingale. We will
estimate possible differences between adjacent elements of the sequence.

We fix an arbitrary s from 0 to kt — 1. Let v be the head of the last edge in
GU*1 | so v is a random quantity depending on G. By definition,

X, :ZPr(U:’y)E(X | G(‘S),v:'y),
.

X, = E (X | G6) = (G(””)) ,
where the sum is over all nodes of G. Hence it is clear that
min F (X | GV oy = 'y) < X,,X,;1 <max E (X | GV y = ’y) ,
¥ R

| Xs — X511 < m&xE (X | GY) :,7) —min B (X | Gy :*y).
!

Let 7 € argmin E (X | G v = 7) and 7, € argmax E (X | G, v = 7). It is
sufficient to prove an upper bound for

E(X | G(S),v:'yg) —E(X | G(5>,v:'yl).

We consider the sum

t t
X = Z Z [ngSl = dl,ngSQ = dg}N(Sl,Sg). (61)

Replacing the condition v = ; by the condition v = 7, changes distributions
of degrees of «; and distributions of N(v;,*) = N(x,~;); distributions of other
values of N do not change. Thus distributions of all terms in the sum (6.1) except
those with {y1,v2} N {s1,s2} # @ are the same for v =y, and v = ;. Let

3 t
X' = Z Z [deg sy = dy,deg sy = da]N(s1, $2).

B
{s1,82}0{71,72}#2
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Then
E(X—X’ | G<5>,v:’yl> :E(X—X/ | G(S),v:'yz).

Obviously, X' > 0. We have

¢
X' <) [degs =dy,degyi = da]N(s1,m)

81:1

t
+ Z [deg s1 = di,degy = d2|N(s1,72)

s1=1

t
+ ) [degy = dy,deg sy = do]N (1, 52)

82:1
t

+ ) [degyy = dy, deg sy = da]N (72, 52)

82:1

t t
< [degm = do] Z N(s1,m) + [degys = dy] Z N(s1,72)

s1=1 s;1=1

t t
+degm =di] Y Nl(yi,2) + [degye = di] Y N(v2,52)

52:1 52:1
= [degy1 = da]dy + [degyo = do]ds + [deg 1 = di]d; + [degye = di]d;
< 2(di + da).

Thus,

0<E (X' |G o=m), E(X|GYv=1)<2d +d),
‘E(X’|G<S>,v:71>—E(X’|G(S)v:w)‘ 2ds + dy),
[ Xs — Xop1]| <2(di +da).

Consequently, the sequence (X;) satisfies the condition of Theorem 6.1 with
n =kt and § = 2(d; + dy). Substituting = = ¢(d; + dy)v/kt in Theorem 6.1, we
obtain Theorem 2.5.
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