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Social Networks Using
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Abstract. An (α, β)-community is a connected subgraph C with each vertex in C con-
nected to at least β vertices of C (self-loops counted) and each vertex outside of C
connected to at most α vertices of C (α < β). In this paper, we present a heuris-
tic algorithm that in practice successfully finds a fundamental community structure.
We also explore the structure of (α, β)-communities in various social networks. (α, β)-
communities are well clustered into a small number of disjoint groups, and there are no
isolated (α, β)-communities scattered between these groups. Two (α, β)-communities in
the same group have significant overlap, while those in different groups have extremely
small resemblance. A surprising core structure is discovered by taking the intersection of
each group of massively overlapping (α, β)-communities. Further, similar experiments
on random graphs demonstrate that the core structure found in many social networks
is due to their underlying social structure, rather than to high-degree vertices or a
particular degree distribution.

1. Introduction

Much of the early work on finding communities in social networks was fo-
cused on partitioning the corresponding graph into disjoint communities [Clauset
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et al. 05, Girvan and Newman 02, Leskovec et al. 08, Newman 04a, New-
man 04b, Newman 06a, Newman 06b, Newman and Girvan 04, Andersen
et al. 06]. Conductance was often taken as the measure of the quality of a com-
munity, and algorithms were sometimes restricted to dense graphs [Leskovec
et al. 08, Gaertler 05, Lang and Rao 04, Schaeffer 07]. However, to identify well-
defined communities in social networks, one needs to realize that an individual
may belong simultaneously to multiple communities and is likely to have more
connections to individuals outside of his/her community than inside. For exam-
ple, a person in the theoretical computer science community is likely to have
many connections to individuals outside of this community, who may be his/her
family and friends, be enrolled in his/her institution, or belong to his/her reli-
gious group. One approach to finding such overlapping communities is that of
[Mishra et al. 09], in which the concept of (α, β)-community was introduced and
algorithms were presented for finding an (α, β)-community in dense graphs, pro-
vided there exists a “champion” in the community. A champion of a community
is an individual with a bounded number of neighbors outside of the community.

We present a case study on the Twitter network to evaluate the community
structure found by many graph-partitioning methods, as shown in Figure 1.
The left figure gives a fundamental structure with four meaningful communities
(shown online in blue, red, green, and pink) extracted from their numerous fol-
lowers (yellow, or light colored, nodes). Some community members are enlarged
to highlight the details. Interestingly, the blue community consists of a group
of well-known entertainers, and the red community consists of a group of ac-
tive politicians. The right-hand figure shows the four communities obtained by
Newman’s modularity-based algorithm [Newman 06b]. By contrast, most of the
yellow nodes are grouped into one of the four communities, and the communities
are heavily blended with each other. Thus, this example reveals that traditional
community-detection methods fail to discover the desired community structure
in many cases.

In this paper, we give a definition of (α, β)-community slightly different from
that of [Mishra et al. 09]. Without fixing the values of α and β, our definition
highlights the contrast between internal and external connectivity. We develop a
heuristic algorithm based on (α, β)-community that in practice, efficiently finds
a fundamental community structure. Our algorithm is focused on the difference
β − α and is thus robust to the specific values of α and β. Further, we thoroughly
explore the structure of (α, β)-communities in various large social networks. In
a Twitter following network with 112 957 vertices and 481 591 edges, there are
6912 distinct (α, β)-communities of size 200 with 45 361 runs of the algorithm.
These (α, β)-communities are neatly categorized into a small number of mas-
sively overlapping clusters. Two (α, β)-communities in the same cluster have
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Figure 1. Case study on the Twitter network. Traditional community-detection
methods cannot extract the four meaningful communities from their numerous
followers (colored yellow). The blue community consists of entertainers, and the
red community consists of politicians (color figure available online).

significant overlap (>90%), while two (α, β)-communities in different clusters
have extremely small (<5%) resemblance. This leads to the notion of core, which
is the intersection of a group of massively overlapping (α, β)-communities.

Our definition provides an intuitive criterion as to whether to classify a sub-
graph as a community. The number of edges connecting each vertex in the com-
munity to vertices of the community should be strictly greater than the number
of edges connecting any vertex outside the community to vertices of the commu-
nity. Further, by taking the intersection of a number of massively overlapping
(α, β)-communities, the set of (α, β)-communities that differ by only a few ver-
tices is reduced to an underlying core. Thus, each (α, β)-community contains one
of the few cores and some peripheral vertices, and these peripheral vertices are
what gives rise to such a large number of (α, β)-communities.

We can extract the core structure by taking the intersection of a group of mas-
sively overlapping (α, β)-communities with multiple runs of the algorithm. The
number of cores decreases as k increases. For large k, the (α, β)-communities
are well clustered into a small number of disjoint cores, and there are no iso-
lated (α, β)-communities scattered between these cores. The cores obtained for a
small k either disappear or merge into the cores obtained for a larger k. Further,
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k 25 50 100 150 200 250 300 350 400 450 500

number of cores 221 94 19 9 4 4 4 3 3 3 3
average core size 23 45 73 112 151 216 276 332 364 402 440

Table 1. Cores in the Twitter graph.

the cores correspond to dense regions of the graph, and there are no bridges of
intermediate (α, β)-communities connecting one core to another. By contrast,
the cores found in various random graphs usually have significant overlap among
them, and the number of cores does not necessarily decrease as k increases. Ex-
tensive experiments demonstrate that the core structure found in various social
networks is indeed due to their underlying social structure, rather than due to
high-degree vertices or a particular degree distribution.

The number and average size of cores in the Twitter graph with respect to
the community size k are given in Table 1. As k increases, some cores disappear
due to their small neighborhood (Definition 5.1), while others merge into larger
ones due to their high closeness (Definition 5.2). We explore some interesting
questions in this paper, such as what causes many social networks to display the
core structure, why (α, β)-communities correspond to well-defined clusters, and
why there are no bridges of (α, β)-communities connecting one core to another.
A bridge is a sequence of intermediate (α, β)-communities that connect two cores
with substantial overlap between adjacent pairs.

The rest of this paper is organized as follows. We discuss related work in
Section 2, and introduce the definition of (α, β)-community in Section 3. Then we
prove the NP-hardness of finding an (α, β)-community and present the heuristic
(α, β)-Community algorithm in Section 4. In Section 5, we apply the algorithm
to various social and random graphs to demonstrate, explore, and analyze the
core structure found in many social networks. Finally, we conclude in Section 6
with comments on the problems considered and future work.

2. Related Work

A closely related concept to (α, β)-community is that of degree core [Alvarez-
Hamelin et al. 05a, Alvarez-Hamelin et al. 05b, Batagelj and Zaversnik 02, Healy
et al. 06]. Given degree d, a degree core of a graph G is a maximal connected
subgraph of G in which all vertices have degree at least d. Equivalently, it is one of
the connected components of the subgraph of G formed by repeatedly deleting
all vertices of degree less than d. Every d-core is a (d− 1, d + 1)-community,
but there are many (α, β)-communities that are not degree cores. The concept of
(α, β)-community can capture some structural properties of large social networks
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that other methods (such as degree core) cannot discover. Degree cores tend to
identify subsets of high-degree vertices as communities, while the concept of
(α, β)-community highlights more the contrast of intra- and interconnectivity.
This is a natural type of community that we are interested in. I don’t have to be
a star (or exceedingly popular or influential) to belong to some community, but
I should belong to this community if I have (many) more connections inside this
community than anybody outside this community does. We will further compare
these two methods in Section 5.1.

A substantial amount of work has been devoted to the task of identifying
and evaluating close-knit communities in large social networks, most of which is
based on the premise that it is a matter of common experience that communities
exist in these networks [Leskovec et al. 08]. A community was often considered
to be a subset of vertices that are densely connected internally but sparsely
connected to the rest of the network [Leskovec et al. 08, Newman 04a, New-
man 04b, Newman 06a, Andersen et al. 06]. For example, Newman constructed
the measures of betweenness and modularity to partition a social network into
disjoint communities [Newman 04b, Newman 06a]. A local graph-partitioning
algorithm based on personalized PageRank vectors is proposed in [Andersen
et al. 06]. An information-theoretic framework was also established to obtain
an optimal partition and to find communities at multiple levels [Rosvall and
Bergstrom 07, Papadimitriou et al. 08]. However, communities can overlap and
may also have dense external connections. In [Mishra et al. 09], the concept of
(α, β)-community was proposed, and algorithms were given to find such commu-
nities efficiently. A novel perspective for finding hierarchical community structure
by categorizing links instead of vertices was provided in [Ahn et al. 10].

Several community-detection methods were empirically evaluated and com-
pared in [Leskovec et al. 10]. Further, the community-detection problem has been
extended to handle query-dependent cases [Sozio and Gionis 10]. Many studies
combined link and content information for finding meaningful communities [Gao
et al. 10, Yang et al. 09a]. The dynamic behavior of communities was also exten-
sively explored in previous work [Tang et al. 08, Tantipathananandh and Berger-
Wolf 09, Lin et al. 09, Fond and Neville 10]. Other models have been proposed
to improve the accuracy of community detection in different scenarios [Zhang et
al. 09, Satuluri and Parthasarathy 09, Maiya and Berger-Wolf 10, Choudhury et
al. 10a]. New measures have also been proposed to better evaluate the quality
of community [Chen et al. 09, Chen et al. 10]. For example, in [Zhang et al. 09],
a novel community-detection algorithm was proposed that employs a dynamic
process by contradicting network topology and topology-based propinquity. A
novel method based on expander graphs to sample communities in networks was
utilized in [Maiya and Berger-Wolf 10]. In [Yang et al. 09b], the authors explored
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a dynamic stochastic block model for finding communities and their evolution in
dynamic social networks.

However, most existing work on community detection has not considered the
existence of core structure in many social networks. It has also been ignored that
many communities actually have a large number of external connections. In this
paper, we demonstrate and explore the core structure and propose a heuristic
algorithm to extract cores from large networks.

3. Preliminaries

The concept of (α, β)-community was proposed in [Mishra et al. 09] as a powerful
tool for graph clustering and community discovery. In [Mishra et al. 09], an (α, β)-
community refers to a cluster of vertices with each vertex in the cluster adjacent
to at least a β-fraction of the cluster and each vertex outside of the cluster
adjacent to at most an α-fraction of the cluster. Without loss of generality, we
adopt a slightly different definition in this paper.

Given a subset of vertices S ⊆ V , for any v �∈ S, α(v) is defined as the number
of edges between v and vertices of S. Similarly, for any w ∈ S, β(w) is defined
as the number of edges between w and vertices of S (self-loops counted). Then
we define α(S) = max{α(v) | v �∈ S} and β(S) = min{β(w) | w ∈ S}.

Definition 3.1. Given a graph G = (V,E) with self-loops, a subset of vertices C ⊆ V

is called an (α, β)-community if each vertex in C is connected to at least β

vertices of C (self-loops counted) and each vertex outside of C is connected to
at most α vertices of C (α < β). That is, α = α(C) < β = β(C).

Definition 3.1 is equivalent to that of [Mishra et al. 09], where C is an
(α(C)/|C|, β(C)/|C|)-cluster with α(C) < β(C). It acknowledges the importance
of self-loops: although a maximal clique should intuitively be a community, this
cannot be guaranteed without self-loops. An (α, β)-community in a graph G is
called proper if it corresponds to a nonempty proper subgraph of G.

A maximal clique is guaranteed to be an (α, β)-community, since by Definition
3.1, self-loops are counted. Thus, every graph that is not a clique must contain
an (α, β)-community (or a maximal clique) as a proper subgraph. Starting with
any vertex, either it is a proper (α, β)-community or there must be another
vertex connected to it. Then either two vertices connected by an edge form a
proper (α, β)-community, or there must be a third vertex connected to both.
Continue this argument until a proper (α, β)-community is found or all vertices
are included in a clique, contradicting the assumption that the graph is not a
clique. Thus, we have the following theorem.
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Theorem 3.2. A noncomplete graph must contain a proper (α, β)-community.

Given an integer k and a graph G with self-loops, define k-community as the
problem of finding an (α, β)-community of size k in G. Given an integer k and a
graph G, define k-clique as the problem of determining whether there exists a
clique of size k in G.

Theorem 3.3. The k-community problem is NP-hard.

Proof. We will show that if k-community is polynomial-time solvable, then so is
k-clique, which is a well-known NP-hard problem.

Let {k,G = (V,E)} be an input to the k-clique problem, where the goal
is to decide whether G contains a clique of size k. Without loss of generality,
assume that G is not a clique and k ≥ 3. Let n = |V | and for each � such that
k ≤ � ≤ n− 1, construct a graph H� = (V�, E�) as follows:

V� = V�,1 ∪ V�,2 , V�,1 = {xi | 1 ≤ i ≤ n + � + 1}, V�,2 = {yj | 1 ≤ j ≤ � + 1},
E� = {(xi1 , xi2 ) | 1 ≤ i1 < i2 ≤ n + � + 1} ∪ {(yj1 , yj2 ) | 1 ≤ j1 < j2 ≤ � + 1}

∪{(yj , xi) | 1 ≤ j ≤ � + 1, 1 ≤ i ≤ �− 1}.

Here H� contains two cliques of size n + � + 1 and � + 1, where each vertex of the
second clique is connected to a fixed subset of �− 1 vertices of the first clique.
Let G� = G∗ ∪H∗� , where G∗ and H∗� are obtained by adding self-loops to all the
vertices. Note that G∗ and H∗� are disjoint.

The graph G has a clique of size k if and only if it has a maximal clique of size
�, k ≤ � ≤ n− 1. Then we proceed to prove that G has a maximal clique of size �

if and only if Gm contains an (α, β)-community of size n + 2� + 1. Assume that G

contains a maximal clique on the subset V ′ ⊆ V with |V ′| = �. Let S = V ′ ∪ V�,1 ,
and clearly, β(S) = �. By the maximality of V ′, each vertex in V − V ′ is adjacent
to at most �− 1 vertices in V ′. Further, by the construction of H� , each vertex
in V�,2 is adjacent to �− 1 vertices in V�,1 . Thus, S is an (α, β)-community of
size n + 2� + 1, since α(S) = �− 1 < β(S).

Now assume that G� has an (α, β)-community S of size n + 2� + 1. Since the
subset S contains at least (n + 2� + 1)− (n + � + 1) = � vertices in V�,1 , there
exists at least one vertex v ∈ S ∩ V�,1 that is not connected to any vertex in V�,2 .
Suppose that S contains k vertices in V�,1 , � ≤ k ≤ n + � + 1, and thus β(S) ≤
β(v) = k. If k < |V�,1 |, there exists at least one vertex outside of S adjacent to
k vertices in S, leading to α(S) ≥ k ≥ β(S), which contradicts the definition of
(α, β)-community. Hence, V�,1 ⊆ S.
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Suppose that there exists some vertex yj ∈ S ∩ V�,2 , i.e., |S ∩ V�,2 | ≥ 1. Since
|S| − |V�,1 | = � < |V�,2 |, at least one vertex in V�,2 is outside of S. Note that
V�,2 is a clique, and each vertex in V�,2 is connected to �− 1 vertices in V�,1 .
Thus, β(S) ≤ (�− 1) + |S ∩ V�,2 | and α(S) ≥ (�− 1) + |S ∩ V�,2 |, which contra-
dicts the assumption that S is an (α, β)-community. Then |S ∩ V�,2 | = 0, and
the remaining � vertices of S are all from V . Recall that α(S) ≥ �− 1 and
that there are no edges between V and V�,1 . If S − V�,1 is not a clique, then
β(S) ≤ �− 1 ≤ α(S), again leading to a contradiction. Hence S − V�,1 is a clique
and β(S) = �. Also, S − V�,1 is a maximal clique of size �, since α(S) < β(S) = �.
Therefore, we have completed the proof by constructing a correspondence be-
tween the k-community problem and the k-clique problem.

4. Algorithm

In this section, we give a heuristic algorithm for finding an (α, β)-community of
size at least k in a graph G = (V,E). Starting with a random subset S ⊆ V of k

vertices, the algorithm proceeds as follows. If α(S) > β(S), swap a vertex in S

with the lowest β-value and a vertex outside of S with the highest α-value. Each
such swap increases the value of

∑
v∈S β(v) by

−(2β − 1) + (2α + 1) = 2(α− β) + 2

if the two vertices are not connected, and by

−(2β − 1) + (2α− 1) = 2(α− β)

if the two vertices are connected by an edge. Note that
∑

v �∈S α(v) may also
increase on each such swap. Since

∑
v∈S β(v) cannot increase infinitely, the

algorithm either returns an (α, β)-community S or reaches a state in which
α(S) = β(S).

Let A = {v ∈ V − S | α(v) = α(S)} and B = {w ∈ S | β(w) = β(S)} denote
the two subsets of vertices with the highest α-value and the lowest β-value. If
α(S) = β(S), the algorithm finds a pair of vertices a ∈ A and b ∈ B that are not
connected if such a pair exists, and swaps a and b. Since self-loops are counted,
the sum

∑
v∈S β(v) is increased by two, as illustrated in Figure 2. Then the

condition α(S) = β(S) no longer holds, and the algorithm continues to swap a
vertex in S with the lowest β-value and a vertex outside of S with the highest α-
value. Again, since

∑
v∈S β(v) cannot increase infinitely, the algorithm will find

either an (α, β)-community S or the case in which α(S) = β(S) and the sets A

and B form a biclique. In the latter situation, if a vertex v ∈ A is not connected
to any other vertex in A, adding v to S will increase β(S) by 1 but not increase
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Figure 2. The (α, β)-Community algorithm (color figure available online).

α(S), thus yielding an (α, β)-community. Similarly, removing a vertex w ∈ B that
is not connected to any other vertex in B will also produce an (α, β)-community.

Thus on termination, the algorithm returns either an (α, β)-community or a
subset S ⊆ V such that α(S) = β(S) and the sets A and B form a biclique.
Further, neither A nor B has an isolated vertex in the corresponding subgraphs
induced by the two sets. Then we simply add all the vertices in A to S and start
the algorithm over. Though we cannot guarantee to find an (α, β)-community
due to this latter case, in practice, when k is not too small (e.g., ≤ 20), we never
run into the biclique situation and thus always find an (α, β)-community.

A mathematical description of this (α, β)-Community algorithm is given as
Algorithm 1, and its subroutine called Swapping is given as Algorithm 2. Three
corollaries are also given to demonstrate the correctness and proper termina-
tion of the Swapping algorithm. Their proofs are straightforward and are thus
omitted from this paper.

Corollary 4.1. Each iteration of Swapping strictly increases
∑

v∈S β(v).

Corollary 4.2. Swapping always terminates. When it terminates, swapping any pair
of vertices in A and B will not increase

∑
v∈S β(v).

Corollary 4.3. Swapping returns a subset of vertices S with β(S) ≥ α(S).

5. Experimental Results

In this section, we conduct experiments on a number of social and random graphs
to demonstrate, explore, and analyze the core structure.
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Algorithm 1. ((α, β)-Community(G = (V, E), k))
1: S ← a random subset of k vertices
2: while β(S) ≤ α(S) do
3: S ← Swapping(G,S)
4: A← {v �∈ S | α(v) = α(S)}
5: B ← {v ∈ S | β(v) = β(S)}
6: if {(ai, bj ) �∈ E | ai ∈ A, bj ∈ B} �= ∅ then
7: pick such a pair of vertices (ai, bj )
8: S ← (S − {bj}) ∪ {ai}
9: else if {ai ∈ A | (ai, ak ) �∈ E,∀ak ∈ A, k �= i} �= ∅ then

10: pick such a vertex ai

11: S ← S ∪ {ai}
12: else if {bj ∈ B | (bj , bk ) �∈ E,∀bk ∈ B, k �= j} �= ∅ then
13: pick such a vertex bj

14: S ← S − {bj}
15: else
16: S ← S ∪A

17: end if
18: end while
19: return S

5.1. Twitter

The Twitter dataset [Choudhury et al. 10b] was crawled in 2009 from the online
social networking and microblogging service Twitter.com. The dataset contains
friendship links among a group of Twitter users. Each vertex represents a Twitter
user account, and each edge represents a “following” relation. For simplicity,
we consider this graph to be undirected, ignoring the direction of the edges

Algorithm 2. (Swapping(G = (V, E), S))
1: while β(S) < α(S) do
2: A← {v �∈ S | α(v) = α(S)}
3: B ← {v ∈ S | β(v) = β(S)}
4: pick a vertex a ∈ A and a vertex b ∈ B

5: S ← (S − {b}) ∪ {a}
6: end while
7: return S
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and combining multiple edges with the same endpoints. Further, we remove
the isolated and degree-one vertices from the graph to discard the insignificant
outliers. This results in a smaller graph of 112 957 vertices and 481 591 edges
with average degree 8.52.

Starting with random subsets of size k, the (α, β)-Community algorithm
is applied to the Twitter graph for finding (α, β)-communities. Theoretically,
this algorithm is not guaranteed to terminate within a reasonable amount of
running time; thus we specify an upper bound (e.g., 1000) on the number of
iterations. However, in practice, we rarely observe the case of not finding any
(α, β)-community within 1000 iterations of the algorithm.

In most cases, 500 runs of the algorithm return 500 (α, β)-communities. How-
ever, more than 45 000 runs of the algorithm return only 6912 distinct (α, β)-
communities for k = 200, which gives an estimate of the number of (α, β)-
communities in the Twitter graph. Surprisingly, these (α, β)-communities are all
clustered into a small number of disjoint groups. Two (α, β)-communities in the
same group share a resemblance higher than 0.9 and differ by only a few vertices,
while two (α, β)-communities in different groups share a resemblance lower than
0.06. Here, the pairwise resemblance (also called Jaccard index ) r(A,B) between
two sets A and B is defined as

r(A,B) =
|A ∩B|
|A ∪B| .

Thus, the (α, β)-communities form a “core” overlapping structure rather than a
“chain” overlapping structure, as shown in Figure 3. Further, the intersection of
the (α, β)-communities in each group has an over 75% resemblance with every
single (α, β)-community in that group. At k = 200, all 6912 (α, β)-communities
found in the Twitter graph cluster into four “cores.” The “cores” are disjoint from
each other and correspond to dense regions of the graph. In contrast to what we
would have expected, there are no isolated (α, β)-communities scattered between
these densely clustered “cores.”

For a group of massively overlapping (α, β)-communities, we define the core
to be the intersection of those (α, β)-communities. The number of cores can be
determined by computing the resemblance matrix of all the (α, β)-communities.
Then the (α, β)-communities can be categorized in a way that any two (α, β)-
communities in the same category are similar to each other. A pairwise resem-
blance is considered sufficiently large if it is greater than 0.6, while in practice,
we frequently observe resemblance greater than 0.9. Thus, the cores can be ob-
tained by taking the intersection of all the (α, β)-communities in each category.
The number of cores is simply the number of blocks along the diagonal of the
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Figure 3. The overlapping structure (color figure available online).

resemblance matrix. The number and average size of cores in the Twitter graph
with respect to the community size k are given in Table 1.

Observation. The number of cores decreases as the size k increases. This num-
ber becomes relatively small when k is large, and will eventually decrease to 1
as k further increases. Thus, (α, β)-communities are well clustered into a small
number of cores before gradually merging into one large core. For example, the
(α, β)-communities are clustered into nine cores for k = 150 and four cores for
k = 200, where the cores are disjoint in both cases. As k increases, the cores
obtained for a small k either disappear or merge into the cores obtained for
a larger k. A layered tree diagram is given to illustrate this phenomenon in
Figure 4(a).

Each level in the tree diagram contains the cores obtained for the correspond-
ing size k. For a pair of cores in adjacent levels, a directed arrow is added from
lower to upper level if they have significant overlap, that is, a substantial frac-
tion (e.g., 60%) of vertices in the lower-level core is contained in the upper-level
core. If this fraction of overlap is less than 1, a dotted arrow labeled with the
fraction is added to represent a partial merge. Otherwise, a solid arrow is added
to represent a full merge. As shown in Figure 4(a), the fraction of overlap is close
to 1 as we move up the tree. Thus, a lower-level core is (almost) entirely merged
into an upper-level core.

The definition of (α, β)-community allows a community to have more edges
connecting it to the rest of the graph than those connecting within itself. Empir-
ically, there are many more vertices outside of an (α, β)-community than inside,
and thus the number of cut edges is almost always greater than the number
of internal edges. This definition provides an intuitive criterion as to whether
to classify a subgraph as a community. The number of edges connecting each
vertex in the community to vertices of the community should be strictly greater
than the number connecting any vertex outside the community to vertices of the
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Figure 4. The tree diagrams for Twitter and Slashdot. (Each circle represents a
core obtained for a given k, in which the integer denotes its β value. Each dotted
arrow represents a partial merge with the fraction of overlap labeled, and each
solid arrow represents a full merge.) (color figure available online).

community. Further, by taking the intersection of a number of massively overlap-
ping (α, β)-communities, the set of (α, β)-communities that differ by only a few
vertices is reduced to an underlying core. Thus, each (α, β)-community contains
one of the few cores and some peripheral vertices, and these peripheral vertices
are what gives rise to such a large number of (α, β)-communities.

Analysis. One question is what causes the Twitter graph to display this core
structure, and further, why the graph shows only a small number of disjoint cores
for large k. As shown later, this is due to the fact that an underlying social struc-
ture, as opposed to randomness, exists in the Twitter network. To take a closer
look into this, we simplify the Twitter graph by removing low-degree vertices,
i.e., vertices of degree less than 19, thereby obtaining a smaller graph with 4144
vertices and 99 345 edges. The minimum β value for most (α, β)-communities is
19. Thus this process will discard the less-important low-degree vertices with-
out destroying the fundamental structure. The (α, β)-Community algorithm is
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applied to this simplified graph for k = 200, 250, 300, 350, 400, and we obtain
exactly two disjoint cores in each case. For any two adjacent levels in the corre-
sponding tree diagram, the two lower-level cores are completely contained in the
upper-level cores. One reason for such a small number of cores could be that the
vertices in the two cores are more “powerful” in pulling other vertices toward
them. If we remove the two cores from the graph and repeat the experiment for
k = 200, then (α, β)-communities are no longer clustered, and they form a large
number of scattered communities.

Another question is why there are exactly two cores in the simplified graph.
Define S1 and S2 as the two cores obtained for k = 200. Then S1 corresponds to
a fairly dense subgraph with 156 vertices and 3029 edges, in which the minimum
degree is 23 and the average degree is 38.8. The core S2 has 159 vertices and
2577 edges, in which the minimum degree is 19 and the average degree is 32.4.
Surprisingly, there are only 105 cross edges between S1 and S2 , while 110 (70%)
vertices of S1 and 100 (63%) vertices of S2 are not associated with any cross edge.
Thus, S1 and S2 correspond to two subsets of vertices that are densely connected
internally but sparsely connected with each other. As a result, they are returned
as the cores of two groups of massively overlapping (α, β)-communities.

Disappear and merge. We have observed that in the Twitter graph, a core
obtained for some k disappears from the tree diagram as k increases, and two
cores obtained for some k merge into a larger core as k increases. By examining
these interesting phenomena, we discover that the disappearance of a core is
possibly due to its small effective neighborhood, and the merging of two cores is
possibly due to their high closeness. Now we give the following definitions.

Definition 5.1. The neighborhood of a core S is defined as the subset of vertices that
are more closely connected to S than any other core.

The neighborhood of a core can be determined by an iterative process. Any
vertex with more connections to one core than any other must belong to the
neighborhood of that core. Thus, these vertices can be associated with some
core in the first iteration, and we call them tier-1 neighbors. Then, any vertex
with more connections to one core and its tier-1 neighbors should also belong
to the neighborhood of that core. Thus, these vertices can be associated with
some core in the second iteration, and we call them tier-2 neighbors. This process
can be recursively performed until no more vertices can be categorized into any
neighborhood.
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Definition 5.2. The closeness between two cores S1 and S2 is defined as their cross-
edge density, i.e.,

c(S1 , S2) =
|{(v, w) ∈ E | v ∈ S1 , w ∈ S2}|

|S1 | · |S2 | ,

where |S1 | and |S2 | denote the number of vertices in S1 and S2 . This is also an
alternative definition of the conductance of a cut.

If a core has a small neighborhood, then there are many low-degree vertices
in the neighborhood that do not contribute to the Swapping algorithm. Thus,
vertices in an adjacent neighborhood are likely to be swapped in, since they
may also have a large number of connections to the core and its neighborhood.
As the adjacent neighborhood becomes dominant in the algorithm, the vertices
in the starting subset are gradually replaced by the vertices in that adjacent
neighborhood. Then, the algorithm converges to the corresponding core, causing
the initial core to disappear. We observe that the adjacent neighborhood to which
the algorithm converges is usually much larger than the small neighborhood of
the initial core.

Further, we observe that two cores with neighborhoods of comparable size
combine to form a larger core as k increases. In such cases, these two cores are
very close to each other, and the strong interconnection between them becomes
dominant, so that they merge rather than disappear, even if they each have a
small neighborhood. Thus, two cores with high closeness value will merge to form
a larger core as k increases.

An example is given in Figure 5 to illustrate the disappearance and merging
of cores in the Twitter graph. We obtain eight cores for k = 150. Two cores have
fairly small neighborhoods, and thus disappear as k increases to 250. Three cores
have neighborhoods of comparable size and significantly high pairwise closeness,
and thus they merge to form a larger core as k increases to 250. Hence, we
obtain four cores for k = 250. Further, as k increases from 250 to 350, two cores
merge, and we obtain three cores. One core has a relatively small neighborhood
compared with the others. As k continues to increase to 500, this core eventually
disappears.

Bridge. A bridge between two cores S1 and Sm is a sequence of intermedi-
ate (α, β)-communities S2 , . . . , Sm−1 , where the pairwise resemblance is large
between adjacent subsets but small between the first and last subsets, e.g.,
r (S1 , Sm ) < 0.3 and r (Si, Si+1) > 0.6 for all i ∈ {1, 2, . . . ,m− 1}. The length
of the bridge is thus given by m− 1. Recall that for k = 200, (α, β)-communities
are all clustered into four disjoint cores, and no bridge is detected between any
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Figure 5. The disappearing and merging of cores in the Twitter graph. The
disappearing cores are colored red, with darker centers, and the merging cores
are colored blue (color figure available online).

two cores. However, the possible bias of our algorithm might prevent a bridge
from being found in the Twitter graph. The following experiments are designed
to determine whether there exists a bridge.

Select any two cores obtained for k = 200 and perform the following steps
repeatedly. Randomly pick r vertices from one core and 200− r vertices from
the other to form an initial subset of size 200, and apply the (α, β)-Community

algorithm to this subset. If every run returns an (α, β)-community substantially
overlapping with one core but disjoint from the other, then it suggests that there
does not exist any bridge between the two cores. With 100 runs of the algorithm,
99 return such an (α, β)-community, and only one returns an (α, β)-community
C that contains 95.54% of one core A and 26.22% of the other core B. However,
no other intermediate (α, β)-communities can be found between B and C using
the same approach, which demonstrates the absence of a bridge.

Another approach to finding a bridge is to search for (α, β)-communities that
fall between cores. Generate random subsets of size 200 and run the (α, β)-
Community algorithm repeatedly. After four disjoint cores have been obtained
with 500 runs of the algorithm, (α, β)-communities returned by another 45 361
runs are compared with the four cores to check whether there is any intermediate
(α, β)-community. This approach is also useful for estimating the total number
of (α, β)-communities of a given size. No intermediate (α, β)-communities are
found, however, and only 6912 distinct (α, β)-communities are obtained, which
indicates a relatively small number of (α, β)-communities of size 200 and/or a
possible bias of our algorithm that favors some communities over others.
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Figure 6. The degree core method (color figure available online).

Overall, these experiments have suggested that there is no bridge between
cores, that is, that there is no sequence of intermediate (α, β)-communities that
connect two cores with substantial overlap between adjacent pairs. The absence
of a bridge demonstrates the underlying social structure of the Twitter network
with (α, β)-communities neatly clustered into a few disjoint cores.

Degree core. We conduct experiments on the same Twitter dataset using the
degree core method. When d = 9, it returns one connected subgraph of 11 133
nodes and 184 146 edges. When d = 20, it returns one connected subgraph of
3835 nodes and 93 533 edges. When d = 30, it returns one connected subgraph
of 1127 nodes and 27 344 edges. The degree core method always identifies one
connected subgraph of high-degree vertices as a community, as shown in Figure 6.

This means that while degree cores tend to identify subsets of high-degree
vertices as communities, the concept of (α, β)-community highlights more the
contrast between inter- and intraconnectivity. Our analysis is robust to the spe-
cific values of α and β. In particular, we believe that the positive difference β − α,
rather than the absolute values of α and β, gives a strong intuitive indication of
community. The greater β − α is, the stronger indication it represents for a com-
munity. This concept gives a natural type of community that we are interested
in. I don’t have to be a star to belong to some community, but I should belong to
this community if I have (many) more connections inside this community than
anybody outside this community does.

5.2. Slashdot

Slashdot is a technology-related news website known for its professional
user community. The website features contemporary technology-oriented news
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submitted by users and evaluated by editors. Slashdot introduced the Slashdot
Zoo feature in 2002, allowing users to tag others as friends or foes. The social
network based on common interest shared by Slashdot users was obtained and
released in February 2009 in [Leskovec et al. 08].

The Slashdot graph has 82 168 vertices and 504 230 edges, with an average de-
gree of 12.3. Our heuristic algorithm discovers a core structure similar to that of
Twitter. As in the Twitter graph, the number of cores decreases as the commu-
nity size k increases and becomes relatively small for large k. The cores found in
the Slashdot graph are almost disjoint from each other, with few edges connect-
ing in between, and they correspond to dense regions of the graph. This suggests
that (α, β)-communities are well clustered into a small number of disjoint cores
for large k. For example, (α, β)-communities are clustered into three nearly dis-
joint cores for k = 100, where only 171 edges connect the two cores of size 93 and
100 with 2142 and 1105 internal edges, respectively. As k increases, the cores ob-
tained for a small value of k either disappear (due to their small neighborhood)
or merge into the cores obtained for a larger k (due to their high closeness). A
layered tree diagram is given in Figure 4(b) to illustrate this phenomenon in the
Slashdot graph.

5.3. Coauthor

The Coauthor dataset was crawled from the e-print arXiv that contains scientific
coauthorship between authors of the papers submitted to the hep-ph archive
[Leskovec et al. 07]. If author i coauthors a paper with author j, there is an
undirected edge between vertex i and vertex j in the corresponding graph. If a
paper has k authors, then there is a clique of size k in the graph. The dataset
contains papers published between January 1993 and April 2003 (124 months),
starting within a few months of the inception of arXiv, and thus it represents
essentially the complete history of the hep-ph archive.

The arXiv hep-ph Coauthor graph contains 12 006 vertices and 118 489 edges,
with an average degree of 19.7. Since there exists a clique of size 239 in this graph,
the (α, β)-Community algorithm returns this clique or a substantial part of it as
a core for k ≥ 200. After removing this clique, we obtain a similar core structure
to that of Twitter and Slashdot.

5.4. Citation

The Citation dataset was crawled from the e-print arXiv that contains 421 578
citation links among a collection of 34 546 papers in the hep-ph archive [Gehrke
et al. 03, Leskovec et al. 05]. If paper i cites paper j or vice versa, then there is
an undirected edge between vertex i and vertex j in the corresponding graph.
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This dataset was originally released in the KDD Cup 2003 [Gehrke et al. 03],
and it represents essentially the complete history of the hep-ph archive.

The Citation graph has 34 546 vertices and 420 877 edges, with an average
degree of 24.4. In this graph, we again discover a core structure similar to that
of Twitter, Slashdot, and Coauthor. The Citation graph contains more cores
than other social graphs for the same value of k. There are four disjoint cores for
k = 900, and as k continues to increase, the number of cores eventually decreases
to 1 as in the other social graphs.

5.5. Random Graphs

A similar set of experiments can be performed on random graphs to demonstrate
the existence of core structure in various social networks. A comparison of the
results confirms that the structure we have found in many social graphs is more
than just a random artifact.

First, we generate a random graph according to the G(n, p) model with
n = 112 957 and p = 8.52 (those of the Twitter graph). This graph contains
597 674 edges (self-loops counted), which are also similar to those of the Twit-
ter graph. However, conducting the same experiment on this graph reveals a
completely different structure from what we have seen in social graphs. The
(α, β)-Community algorithm is employed to find 500 (α, β)-communities of size
30 to 300. For each size, the 500 obtained (α, β)-communities have little over-
lap (less than 5% in most cases) and are scattered all over the graph where
no massively overlapping clusters can be found. We observe that α = 1 and
β = 2 for each (α, β)-community in this random graph, as opposed to those
as large as 20 in the Twitter graph. Thus, random subsets are extracted from
G(n, p) that are not even connected, implying the absence of an underlying social
structure.

An interesting question is whether high-degree vertices lead to the massively
overlapping clusters found in the Twitter graph. To answer this question, we
generate random d-regular graphs with 4144 vertices (that of the Twitter graph
with low-degree vertices removed) for a wide range of values of d. Recall that
the lowest β value is 19 for most (α, β)-communities in the Twitter graph, and
so removing vertices of degree less than 19 does not destroy the fundamental
structure of the graph. For each value of d, the algorithm still returns scattered
(α, β)-communities with little overlap among them. Thus, high-degree vertices
are not the primary reason for such a small number of cores in the Twitter graph.

Another question is whether a particular degree distribution of the Twitter
graph leads to the massively overlapping clusters. To answer this question, we
conducted similar experiments on randomly generated graphs with 4144 vertices
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and a given degree distribution (e.g., power-law). There are several ways to
generate random graphs with a given degree distribution, two of which give the
same distribution as that of the Twitter graph, while the third gives a power-law
distribution.

Uniform model. Given the degree distribution, we place edges by selecting ver-
tices uniformly at random. As a result, high-degree vertices are not as densely
connected as in the Twitter graph. This uniform model displays the same behav-
ior as the G(n, p) model for small (α, β)-communities. As the size k increases,
(α, β)-communities gradually overlap with each other. Cores can be extracted
from the graph, but they also have significant overlap among them.

Further, most high-degree vertices are contained in the cores as expected. For
example, consider the two cores obtained for k = 450. One core is of size 172,
containing 93% of the vertices of degree greater than 200 and 63% of those of
degree greater than 150. The other core is of size 351, containing 100% of the
vertices of degree greater than 200 and 84% of those of degree greater than 150.

Proportional model. Given the degree distribution, we place edges by select-
ing vertices with probability proportional to their degree. As a result, high-degree
vertices are densely connected, and for k ≥ 150, there is only one core returned by
the algorithm with 200 (α, β)-communities. Further, almost all high-degree ver-
tices are contained in that core. For example, the core is of size 125 for k = 200,
containing 94% of the vertices of degree greater than 200 and 73% of those of
degree greater than 150. The core corresponds to the dense region of the graph
due to the way the edges are placed, in which high-degree vertices are more likely
to be selected.

Preferential attachment model. We first create a clique of small size (e.g.,
5), then recursively add a new vertex and randomly pick some of the existing
vertices to be its neighbors with probability proportional to their degree. Thus,
the resulting graph displays a power-law degree distribution, in contrast to that
of the Twitter graph. For each size from 50 to 300, the (α, β)-Community

algorithm returns a small number of cores with substantial overlap among them.
In contrast to what we have observed in the Twitter graph, the number of cores
steadily increases with the size k. For example, we obtain 7 cores for k = 90 and
11 cores for k = 250.

According to these experiments, random graph models, unlike social graphs,
do not produce well-defined clusters. The cores found in random graphs usually
have significant overlap among them, and correspond to dense regions due to
the way the graph was generated. This demonstrates that the core structure
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displayed by various large social networks is indeed due to the existence of an
underlying social structure of those networks.

6. Conclusion and Future Work

In many social networks, (α, β)-communities of a given size k are well clustered
into a small number of disjoint cores, each of which is the intersection of a group of
massively overlapping (α, β)-communities. Two (α, β)-communities in the same
group share a significant overlap and differ by only a few vertices, while the
pairwise resemblance of two (α, β)-communities in different groups is extremely
small. The number of cores decreases as k increases and becomes relatively small
for large k. The cores obtained for a small k either disappear or merge into the
cores obtained for a larger k. Further, the cores correspond to dense regions
of the graph, and there are no isolated (α, β)-communities scattered between
the cores. There are no bridges of (α, β)-communities connecting one core to
another. We have explored various large social networks, all of which display the
core structure rather than the chain structure.

By constructing random graphs with a power-law degree distribution or the
same degree distribution as that of the social graphs, it is demonstrated that
neither high-degree vertices nor a particular degree distribution can lead to the
core structure displayed in many social networks. The cores found in random
graphs usually have significant overlap and are increasingly scattered across the
graph as the size k increases, which implies the absence of well-defined clusters
in random graphs and verifies the existence of core structure in various social
networks.

Our work opens several questions about the structure of large social networks.
It demonstrates the successful use of the (α, β)-Community algorithm on real-
world networks to discover their social structure. Further, our work suggests
an effective way to find overlapping communities and extract the underlying
core structure. We conjecture that in many social graphs, the vertices inside an
(α, β)-community but outside the corresponding core are actually located in the
overlapping regions of multiple communities. Other interesting questions include
whether different types of social networks display fundamentally different social
structures, how the core structure evolves over time, whether the cores represent
the stable backbones of the network, and whether the vertices that belong to
multiple communities constitute the unstable regions of the network.
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