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Capacity Scaling Laws for
Underwater Networks
Daniel E. Lucani, Muriel Médard, and Milica Stojanovic

Abstract. The underwater acoustic channel is characterized by a path loss that depends
not only on the transmission distance, but also on signal frequency. Signals transmit-
ted from one user to another over a distance l are subject to a power loss of l−α a(f )−l .
Although a terrestrial radio channel can be modeled similarly, the underwater acoustic
channel has different characteristics. The spreading factor α, related to the geometry
of propagation, has values in the range 1 ≤ α ≤ 2. The absorption coefficient a(f ) is
a rapidly increasing function of frequency: it is three orders of magnitude greater at
100 kHz than at a few hertz. Existing results for capacity of radio wireless networks
correspond to scenarios for which a(f ) = 1, or a constant greater than one, and α ≥ 2.
These results cannot be applied to underwater acoustic networks in which the attenu-
ation varies over the system bandwidth. We use a water-filling argument to assess the
minimal transmission power and optimal transmission band as functions of the link
distance and desired data rate, and study the capacity scaling laws under this model.
We show that the transport capacity increases at most at a rate n1−1/α e−W 0 (O (n−1 / α )) ,
where W0 represents the branch zero of the Lambert W function, for the cases in which
the transmission band is either fixed a priori or assigned in relation to the transmis-
sion distance. This means that the transport capacity increases much more slowly than
that of multihop routing in wireless scenarios, which is bounded by O(n1/2 ). Finally,
we show that scaling the frequency of the transmission band with the number of nodes
provides a means to exploit characteristics of the acoustic channel in order to overcome
the previous pessimistic results.
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1. Introduction

The seminal work [Gupta and Kumar 00] studied wireless networks, modeled as
a set of n nodes that exchange information, with the aim of determining what
amount of information the source nodes can send to the destination as the num-
ber n grows. The original results obtained for nodes deployed in a disk of unit
area motivated the study of capacity-scaling laws in different scenarios, rang-
ing from achievability results in random deployments using percolation theory
[Franceschetti et al. 07] and cooperation between nodes [Ozgur et al. 07] to the
impact of node mobility on the capacity of the network, e.g., [Grossglauser and
Tse 02]. A good overview of the different assumptions and scaling laws for radio
wireless networks is provided by [Vu et al. 08].

The underwater acoustic channel is characterized by a path loss that de-
pends not only on the transmission distance, but also on the signal fre-
quency [Stojanovic 07]. Signals transmitted over a distance l are subject to
a power loss of l−αa(f)−l . Although a terrestrial radio channel can be mod-
eled similarly, the underwater acoustic channel has important differences. The
spreading factor α, related to the geometry of propagation, has values in the
range 1 ≤ α ≤ 2, where α = 1 corresponds to cylindrical spreading and α = 2
to spherical spreading. Also, the absorption coefficient a(f) is a rapidly in-
creasing function of frequency, e.g., it is three orders of magnitude greater at
100 kHz than at a few hertz [Stojanovic 07]. Finally, the background noise
is not white, but has a power spectral density that is highly dependent on
frequency.

Existing capacity-scaling laws for wireless radio networks correspond to sce-
narios for which a(f) = 1, or a constant greater than one, and α ≥ 2, e.g., [Gupta
and Kumar 00, Franceschetti et al. 07]. These results cannot be directly applied
to underwater acoustic networks in which the attenuation varies over the system
bandwidth and α ≤ 2.

We study the scaling laws under a model that considers a water-filling argu-
ment to assess the minimal transmission power and optimal transmission band
as functions of the link distance and desired data rate [Lucani et al. 08b]. In
particular, we study the case of arbitrarily deployed networks in a disk of unit
area, and follow a similar procedure as in [Gupta and Kumar 00] to derive an
upper bound on the capacity. In this sense, we provide an extension of the work
in [Gupta and Kumar 00] under a more complicated power-loss model.

Seeking to characterize the fundamental capacity scaling of underwater acous-
tic networks in a dense network scenario, we show that the amount of information
that can be exchanged by each source–destination pair in an underwater acoustic
network goes to zero as the number of nodes n goes to infinity. This occurs at a
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rate at least

n−1/αe−W 0 (O(n−1 / α )),

where W0 represents the branch zero of the Lambert W function [Chapeau-
Blondeau and Monir 02].1 We illustrate that this throughput has two different
regions per source–destination pair. For small n, the throughput decreases very
slowly as n increases. For large n, it decreases almost as n−1/α . Thus, for large
enough n, the throughput decreases more rapidly in underwater networks than
in typical radio networks, because of the difference in the path-loss exponent α.
Finally, we show that scaling the frequency of the transmission band with the
number of nodes provides a means to exploit characteristics of the acoustic chan-
nel in order to overcome the previous pessimistic results. In particular, we study
the effect of scaling the transmission frequency with n on our upper bound and
provide a constructive lower bound that overcomes the limitations observed for
a fixed transmission band. Note that for a fixed transmission band, the trans-
port capacity of the network increases much more slowly than that of multihop
routing in wireless scenarios, i.e., much more slowly than O(n1/2).

The paper is organized as follows. In Section 2, we present the underwater
channel model. In Section 3, we analyze the scaling laws for the case of a net-
work transmitting in an arbitrarily chosen narrow band and propose constructive
schemes to support our findings. In Section 4, we study scaling laws for the low-
power/narrow-band case, with optimal bandwidth allocation using a water-filling
argument and also consider the case in which the nodes can transmit at high
power over a wide transmission band. Section 5 studies the effect of scaling the
transmission frequency with the number of nodes. Conclusions are summarized
in Section 6.

2. Underwater Channel Model

An underwater acoustic channel is characterized by an attenuation that depends
on the distance l and the signal frequency f as

A(l, f) =
(

l

lref

)α
a(f)l−lr e f , (2.1)

1 We use the following notation: (i) f (x) = O(g(x)) means that there exists a constant C
such that x → ∞ lim f (x)/g(x) = C , (ii) f (x) = o(g(x)) means that x → ∞ lim f (x)g(x) = 0,
and (iii) f (x) = Ω(g(x)) if g(x) = o(f (x)).
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Figure 1. Spreading geometries in underwater communications: (a) cylindrical,
α = 1; (b) spherical α = 2.

where lref is a reference distance (typically 1 m). Note that this model generalizes
the free-space model.

A common empirical model used for the absorption a(f) is Thorp’s formula,
which for f in kilohertz is given by [Stojanovic 07]

10 log a(f) = 0.11
f 2

1 + f 2 + 44
f 2

4100 + f 2 + 2.75 · 10−4f 2 + 0.003. (2.2)

This absorption a(f) is a strictly increasing function of f . Note that a(f) in
underwater channels is typically defined with respect to a specific reference dis-
tance la (usually 1 km). Thus, our a(f) can be thought of as a(f) = an (f)1/la ,
where an (f) is a normalized absorption parameter. We emphasize that a(f)l =
an (f)l/la , where l/la is clearly unit-free.

The spreading factor describes the geometry of propagation and is typically
1 ≤ α ≤ 2, e.g., α = 1 and α = 2 correspond to cylindrical and spherical spread-
ing, respectively. A cylindrical spreading, Figure 1(a), corresponds to cases in
which the transmission distance l is much larger than the depth of the ocean.
In this case, the ocean bottom and the interface between the ocean and the
air act as boundaries for the spreading of acoustic waves. This problem can be
modeled as a cylindrical wave guide. On the other hand, spherical spreading,
Figure 1(b), is considered when the transmission distance is smaller than the
depth of the ocean. This type of spreading provides a similar α to that of the
free-space approximation for radio wireless communications. For the case of near-
field transmissions, the value of α depends on the type of sound source. Two main
types have been identified, namely the monopole and dipole with associated α

of 2 and 4, respectively [Bass et al. 03].
The noise in an acoustic channel can be modeled through four basic sources:

turbulence, thermal noise, shipping, and waves. It has a power spectral density
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(psd) that depends on the frequency, the shipping activity s, and the wind speed
w in meters per second [Stojanovic 07].

The complete model for a colored Gaussian underwater link was presented
in [Lucani et al. 08b], where power was allocated through water-filling. In the
absence of multipath and channel fading, the relationship among capacity, trans-
mission power, and optimal transmission band of a point-to-point link is given
by [Lucani et al. 08b]

C =
∫
B (l,C )

log2

(
K(l, C)

A(l, f)N(f)

)
df, (2.3)

where N(f) is the psd of the noise, B(l, C) is the optimum band of operation,
andK(l, C) is a constant whose value is determined by the link distance l and the
desired capacity C. The transmission power associated with a particular choice
of (l, C) is given by

P (l, C) =
∫
B (l,C )

S(l, C, f) df (2.4)

where the psd of the signal is S(l, C, f) = K(l, C) −A(l, f)N(f), f ∈ B(l, C).
A distinguishing feature of the underwater acoustic channel is the dependence

of the optimal transmission band on the link distance [Lucani et al. 08b]. Fig-
ure 1 illustrates the optimal center frequency fc(l) as a function of distance.
The optimal center frequency is defined as the frequency at which A(l, f)N(f)
is minimal. This implies that if the transmission power for a link is low, the
transmission bandwidth will be low and around the optimal frequency. Thus,
the optimal transmission band in the spectrum changes dramatically with the
link distance. Figure 2 also illustrates that a node transmitting over a short
range will optimally be assigned a transmission band at high center frequency,
as in case (a), while a node transmitting over a longer distance will be assigned
a different transmission band at lower center frequency, as in case (b).

For the case in which the power available for transmission is low, the band-
width of the transmission band will also be small. When the bandwidth is low
enough, |B(l, C)| = Δf , such that the productA(l, f)N(f) does not change much
over that band, one can take a Taylor series approximation around the center
frequency fc(l). This allows us to determine the power P for which the trans-
mission band is narrow owing to our water-filling argument. Noting that the
first derivative of A(l, f)N(f) with respect to f is zero at fc ; the Taylor series
approximation has the form

A(l, f)N(f) ≈ A(l, fc)N(fc) + Υ
(f − fc)

2

2
(2.5)
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Figure 2. Relationship between transmission distance and center frequency in a
narrow-band system.

∀f ∈ (fmin , fmax), where Υ = ∂ 2

∂f 2 (A(l, f)N(f)) |f=fc . Substituting this expres-
sion (2.5) into expression (2.4), and using the fact that

K(l, C) = A(l, fmax)N(fmax) = A(l, fmin)N(fmin),

where fmax and fmin are the maximum and minimum frequencies of the trans-
mission band, we obtain

P (l, C) ≈ A(l, fmax)N(fmax)Δf −
∫ fm a x

fm in

(
A(l, fc)N(fc) + Υ

(f − fc)
2

2

)
df,

where Δf = fmax − fmin . Considering fmax − fc ≈ Δf/2 and fc − fmin ≈ Δf/2,
given our quadratic Taylor series approximation of A(l, f)N(f), the above ex-
pression reduces to

P =
Υ
12

Δf 3 . (2.6)

3. Fixed Narrow-Band Model

We study the physical model of interference to obtain an upper bound on the
transport capacity for transmission in an arbitrarily chosen narrow band in an
underwater channel. The narrow-band assumption allows us to consider the
attenuation as a constant over that band. Although we use similar assumptions
in terms of node deployment and connection setup to those in [Gupta and
Kumar 00], the steps to derive the upper bound change somewhat in order to
accommodate a more complex path-loss model with different characteristics,
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e.g., 1 ≤ α ≤ 2 and a(f) ≥ 1, instead of α ≥ 2 and a(f) = 1 considered in
[Gupta and Kumar 00] for radio channels. In fact, we show that the upper
bound is expressed in terms of one of the branches of the Lambert function,
which is an implicit function.

Remark 3.1. We limit our analysis to the far-field case, whereby receivers need to
be at r > λ/(2π) for monopole or dipole sources [Bass et al. 03]. Note that for
c = 1500 m/s and a typical transmission frequency f = 10 kHz, we have

r >
c

2fπ
≈ 0.024 m.

As an example, if we consider a grid topology deployed on an area of 1 km2,
this means that the node density needs to be larger than 1.7 · 109 nodes/km2 in
order for the path loss to be dominated by near-field effects. From a practical
perspective, nodes would have to be placed at distances in the order of a few
centimeters from each other, while other physical constraints of underwater sen-
sors, such as the dimensions of batteries, are typically larger than 0.024 m. Such
a large density of nodes is unlikely in real deployments, but makes scaling laws
meaningful as an analysis technique well before reaching transmission distances
dominated by near-field effects.

We assume that the nodes are arbitrarily deployed in a disk of unit area as in
[Gupta and Kumar 00], that each node has an intended destination node, and
that the requirement for successful reception at node j of a transmission from
node i is

Pi(f)/A(|Xi −Xj (i) |, f)
N(f) +

∑
k∈τ ,k 	=i Pk (f)/A(|Xk −Xj (i) |, f)

≥ β, (3.1)

where Xi is the position of node i, Xj (i) is the position of node j to which i

is transmitting, and τ is the set of all nodes transmitting simultaneously in the
same transmission subband and time slot. We assume that all subbands are in
the narrow band [Gupta and Kumar 00], so that the attenuation is dependent
only on the central frequency of the narrow band. The above expression can also
be written as

Pi(f)/A(|Xi −Xj (i) |, f)
N(f) +

∑
k∈τ Pk (f)/A(|Xk −Xj (i) |, f)

≥ β

β + 1
. (3.2)

The parameter f is maintained to emphasize the frequency dependence and
to allow us to use these results in the following sections, where we analyze more
complex settings. We consider that λ is the throughput (bits/sec = bps) of
each node, that the network transports λnT bits over T seconds, and that the
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average distance between source and destination of a bit is L̄. As in [Gupta
and Kumar 00], we define the transport capacity as λnL̄ bit-meters per second.
Finally, we define W = 
f log2(1 + β) to be the transmission rate, where 
f is
the bandwidth of the narrow band chosen for transmission.

The following theorem summarizes the main result for the fixed narrow-band
model.

Theorem 3.2. The transport capacity of an arbitrary underwater acoustic network
under the fixed narrow-band model is bounded as follows:

λnL̄ ≤ ΦWn(α−1)/α exp

(
−W0

(
Φ

2 ln a(f)
α

(
1
n

)1/α
))

, (3.3)

where

Φ =
21/α
√
π

(
β + 1
β

)1/α (
a(f)2/

√
π
)1/α

.

Proof. We define rA (l(h, b)) = l(h, b)αa(f)l(h,b) , where l(h, b) represents the dis-
tance between receiver and transmitter for the hth hop of bit b, and H is de-
fined as the number of hops performed in T seconds, which can be bounded by
H ≤WTn/2 [Gupta and Kumar 00].

Since |Xk −Xj (i) | ≤ 2/
√
π for a disk of unit area, and a(f) ≥ 1,∀f , the path

loss is

A(|Xk −Xj (i) |, f) ≤
(

2√
πlref

)α
a(f)2/

√
π−lr e f ≡ γα

lαrefa(f)lr e f
, (3.4)

where γα = (2/
√
π)α a(f)2/

√
π . Using a similar procedure to that in [Gupta and

Kumar 00], from (3.2), we have that

A(|Xi −Xj (i) |, f) ≤ β + 1
β

γα
lαrefa(f)lr e f

Pi(f)∑
k∈τ Pk (f)

. (3.5)

Let us sum over all transmitters i ∈ τ and use the definition of the path loss in
expression (2.1): ∑

i∈τ
|Xi −Xj (i) |αa(f)|Xi−Xj ( i ) | ≤ γα

β + 1
β

. (3.6)

Summing over all subbands and time slots and dividing both sides by H, we
obtain

1
H

λnT∑
b=1

h(b)∑
h=1

rA (h, b) ≤ γα
β + 1
β

WT

H
, (3.7)
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where h(b) represents the hth hop of a bit b. Since the function rA (l) = lαa(f)l

is increasing and convex for l ≥ 0, α ≥ 1, and a(f) ≥ 1, we have that

rA
(

1
H

λnT∑
b=1

h(b)∑
h=1

l(h, b)
)

≤ γα
β + 1
β

WT

H
. (3.8)

Let us define ψ = (ln a(f))αγα β+1
β

W T
H , and note that ψ ≥ 0. Noticing that

the left-hand side of the above inequality is a Lambert function of the form
Wα expW , which is an increasing function when W ≥ 0, is one of the key steps
in our proof that are different from the work in [Gupta and Kumar 00]. Hence,

ln a(f)
H

λnT∑
b=1

h(b)∑
h=1

l(h, b) ≤ ψ1/α exp
(
−W0

(
ψ1/α

α

))
, (3.9)

where W0(·) is the branch zero of the Lambert function, using the nomenclature
of [Chapeau-Blondeau and Monir 02]. This fact implies that

λnL̄ ≤ H

T ln a(f)
ψ1/α exp

(
−W0

(
ψ1/α

α

))
. (3.10)

Substituting for ψ in (3.10), we obtain

λnL̄ ≤ H(α−1)/α

T (α−1)/α

(
γα
β + 1
β

W

)1/α

exp
(
−W0

(
ψ1/α

α

))
. (3.11)

Since H(α−1)/α is an increasing function for α > 1, and constant for α = 1, it
follows that H(α−1)/α ≤ (W T n

2

)(α−1)/α . Another important step of our proof,
different from [Gupta and Kumar 00], is to note that W0(·) is an increasing
function. Hence, we have that

W0

(
ψ1/α

α

)
≥W0

(
2 ln a(f)a(f)2/α

√
π

α
√
π

(
β + 1
β

)1/α 21/α

n1/α

)
.

Substituting these inequalities into expression (3.11) concludes the proof.

Since the branch zero of the Lambert function satisfies W0(x) ≥ 0,∀x ≥ 0, the
exponential term exp

(−W0
(
O
(
n−1/α

)))
has values between 0 and 1. Note that

as n→ ∞, the exponential term in the scaling law goes to 1. This implies that the
exponential term influences the scaling for small n, while for large enough n, the
upper bound is O(n(α−1)/α ). However, the exponential term will be instrumental
for Section 6, where we consider a transmission frequency that scales with respect
to the network size.
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Remark 3.3. If we consider a(f) = 1, i.e., the same path-loss model as in [Gupta
and Kumar 00], and recall that W0(0) = 0, we have

λnL̄ ≤ 1√
π

(
2β + 2
β

)1/α

Wn(α−1)/α , (3.12)

which is the original result of [Gupta and Kumar 00]. We have thus proved that
the result in [Gupta and Kumar 00] is valid for α ≥ 1.

3.1. Numerical Results

Figures 3 and 4 illustrate the upper bound on λL̄ for different values of a(f)
ranging from 1 to 10 000, which are characteristic of an underwater environment
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Upper Bound

∝ n−1/ α

a(f) = 1,10,100,1000,10000

Figure 3. Upper bound on λL̄ for an arbitrarily chosen narrow band and different
values of a(f ): W = 1 bps, α = 1, β = 2, area = 1 km2 .
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Figure 4. Upper bound on λL̄ for an arbitrarily chosen narrow band and different
values of a(f ): W = 1 bps, α = 2, β = 2, area = 1 km2 .

at different frequencies with l in kilometers. For example, a(f) = 1000 corre-
sponds to a frequency of around 100 kHz. We have used α = 1 and α = 2 and
the parameters specified in Figures 3 and 4, respectively. We also plot dashed
lines proportional to n−1/α . As expected, as n becomes larger, the exponential
term of the upper bound becomes negligible, making the bound scale grow as
O(n−1/α ). However, for small values of n, the bound begins at a common point
for the different a(f) values and decays very slowly.

Figures 3 and 4 also illustrate that the value of a(f) determines the transition
between these two operating regions: the larger a(f) is, the greater n has to be
before transitioning. Of course, if we use a transmission band with high a(f), each
node will have to be able to transmit at higher power to reach its destination.
In the underwater channel, this also means that a higher center frequency is
required, because a(f) is an increasing function of f .

Figures 3 and 4 show that λL̄ remains almost constant for n ≤ 100 nodes,
a(f) > 100, and a disk area of 1 km2, which corresponds to densities of up to
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100 nodes per km2. The expected density of nodes in an underwater network is
usually much lower given the current applications for which they are deployed,
e.g., environmental measurements. Thus, the bound on λL̄ is almost constant
for this simple case. Similar results will apply in most practical scenarios with
appropriate modifications to account for specific deployments. Of course, actual
performance will depend on the protocols used in practice.

Remark 3.4. From Figures 3 and 4, it is clear that there are two main regions
of operation, the transition depending on a(f), n, and the area of deployment.
The schemes in Section 3.2 provide specific cases that follow this two-region
behavior. In a sense, the two regions constitute a power-limited region and an
interference-limited region. This dependence implies that the application of our
result to deployments in which we expand the deployment area requires a bit
more care than for the case of [Gupta and Kumar 00], because expanding the
area will influence the transition point among the two regions. However, it does
not compromise the impact of our results.

3.2. Constructive Scheme

Aiming to understand these fundamental limits, we propose a constructive
scheme to illustrate that (i) a transport capacity scales as o(

√
n) for under-

water channels when we rely on a fixed a(f), i.e., fixed transmission frequency,
and (ii) there exist topologies and schemes that follow the two-region scaling
observed in Section 3.1.

Scheme 3.5. Let us consider the following placement of nodes in a square
contained in a disk of area 1. We consider that transmitters and receivers
are located at the following (x, y) coordinates:

(j(4d) ± d, k(4d)) (3.13)

and

(j(4d), k(4d) ± d) , (3.14)

where the case of |j + k| odd corresponds to the transmitters, and |j + k|
even corresponds to the receivers. We consider that each transmitter sends
information to its closest receiver and assume that d ∝ min (d0, 1/ (4

√
n)).

Scheme 3.5 provides placements that are at a fixed distance d0 , while the place-
ment of the nodes does not exceed the boundaries of the region of deployment.
After that, the distance between nodes scale as O(1/

√
n). Lemma 3.6 provides

bounds on the interference, which are later used to prove other key results.
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Lemma 3.6. The interference I of a receiver in Scheme 3.5 for the case d =
O(1/

√
n) is bounded as

I ≤ C
√
n/8∑
l=1

(l + 1)P
(3dl)αa(f)3ld , (3.15)

where C is a constant, and

I ≥ C′
√
n/8∑
l=1

P

(5dl)αa(f)5ld , (3.16)

where C′ is a constant

Proof. We can bound the interference of Scheme 3.5 from above by considering
one of the receivers at |j + k| = 0, which has a signal coming from its closest
transmitter at distance 2d. The interference is lower than if we considered that
the interference from every transmitter in a neighborhood located at |j| = l and
|k| = l, with l > 0 and integer-valued, came from a transmission at a distance
4ld− d. This is further bounded if we consider that all nodes in a neighborhood
with |j| = l and |k| = l are transmitters, i.e., we will have 4l + 4 transmitters for
a given l. After some manipulations, we obtain the upper bound.

The lower bound follows by considering one of the receivers at |j + k| = 0,
which has a signal coming from its closest transmitter at distance 2d. The inter-
ference is higher than if we considered that the interference from every transmit-
ter in a neighborhood located at |j| = l and |k| = l, with l > 0 and integer-valued,
came from a transmission at a distance 5ld. This is further bounded if we con-
sider that all nodes in a neighborhood with |j| = l and |k| = l and l > 0 are not
transmitting, except for those placed in |j| = l and k = 0. Finally, we consider
that we will have three transmitters for a given l.

Theorem 3.7. The signal to interference plus noise ratio (SINR) for receivers in
Scheme 3.5 is bounded as

SINR ≥ 1

C∑√
n/8

l=1 (l1−α + l−α )a(f)−3ld+2d +N(f)a(f)2d(2d)α/P
,

SINR ≤ 1

C′∑√
n/8

l=1 l−αa(f)−5ld+2d +N(f)a(f)2d(2d)α/P
,

for constants C and C′.



254 Internet Mathematics

Proof. The proof follows from considering

SINR =
P/
(
(2d)αa(f)2d

)
I +N(f)

and using the bounds of Lemma 3.6.

Let us consider the case α = 1 as an example of the presence of two main
operation regions related to characteristics of the channel. The first region is
related to small values of n where the transport capacity increases at least as
fast as O(

√
n). For larger n, a transport capacity of O(

√
n) cannot be supported,

because the SINR strictly decreases as n increases.

Theorem 3.8. Scheme 3.5 for α = 1 supports a transport capacity of

λnL̄ = O(n) for n ≤ 1
4d2

0
,

λnL̄ = O(
√
n) for n ≤ 3 ln a(f)

ln(1/ε)
if

3 ln a(f)
ln(1/ε)

>
1

4d2
0
,

λnL̄ = o(
√
n) for n > max

(
1

4d2
0
,
3 ln a(f)
ln(1/ε)

)
,

for ε ∈ (0, 1).

Proof. The proof of the first two parts of the theorem follows from considering the
lower bound on the SINR from Theorem 3.7. The last part of the theorem follows
from considering the upper bound on the SINR. If we consider n ≤ 1/4d2

0 , then
d ∝ d0 , which means that L̄ = O(1). For this region, N(f)a(f)2d0 (2d0)α/P is a
constant;

∑√
n/8

l=1 l−αa(f)−3ld0 +2d0 is bounded above by
∑∞

l=1 l
−αa(f)−3ld0 +2d0 ,

which is a constant for α ≥ 1, and
∑√

n/8
l=1 l1−αa(f)−3ld0 +2d0 for α ≥ 1. Thus, a

minimum SINR value β can be maintained, and λnL̄ = O(1) for n ≤ 1/4d2
0 .

If
1

4d2
0
< n ≤ 3 ln a(f)

ln(1/ε)
,

then d = O(1/
√
n), which means that L̄ = O(1/

√
n). For this region and α = 1,

we have
√
n/8∑
l=1

l−1a(f)−3ld+2d = a(f)2d

√
n/8∑
l=1

l−1a(f)−3ld ≤ −a(f)2d ln
(
1 − a(f)−3d) .

Thus, for the defined region, we have − ln
(
1 − a(f)−3d

)
< − ln (1 − ε). Since

N(f)a(f)2d(2d)α/P decreases to zero as n increases with d = O(1/
√
n), it follows

that a given SINR value can be supported, and thus λnL̄ = O(1/
√
n).
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If

n > max
(

1
4d2

0
,
3 ln a(f)
ln(1/ε)

)
,

we use the upper bound on the SINR to prove that the SINR strictly de-
creases as n→ ∞. Through simple manipulations, we prove that since d =
O(1/

√
n), it follows that N(f)a(f)2d(2d)α/P → 0. We now focus on the term

a(f)2d∑√
n/8

l=1 l−1a(f)−5ld , where
√
n/8∑
l=1

l−1a(f)−5ld ≥ a(f)2da(f)−(5/8)
√
nd

√
n/8∑
l=1

l−1 .

Since for large n, we have d = O(1/
√
n), the term a(f)2da(f)−(5/8)

√
nd is a con-

stant and
∑√

n/8
l=1 l−1 is a divergent series. This implies that λnL̄ = O(

√
n) is not

sustainable, and thus λnL̄ = o(
√
n), concluding the proof.

4. Transmissions over a Wide Band

This section considers two cases in which a wide band is available: the case of
low power, whereby multiple narrow-band transmissions are performed, and the
case of high power, in which the wide band is used by all transmitters. We extend
the previous upper bounds for these scenarios.

4.1. Low-Power–Narrow-Band Case

As mentioned in the introduction, one of the characteristics of the underwater
acoustic channel is that the optimal transmission band using the water-filling
principle depends strongly on the distance of a link [Stojanovic 07]. In particular,
if the transmission power of a node is very low, then nodes will optimally trans-
mit in different bands corresponding to different transmission distances. This was
shown in (2.6), which provides a measure of the required transmission power un-
der Gaussian noise. Thus, interference will come only from nodes transmitting in
the same band. We derived an expression for the power under these assumptions
in Section 2. In order to assign disjoint transmission bands, we divide the total
transmission band of the system into nonoverlapping bands of width Δf . We use
fc(l) as the mapping between the transmission distance and the corresponding
transmission band for a low-power–narrow-band scenario. Thus, if a node trans-
mits to another node at a distance l, we assign the transmission band centered
at the frequency fc(l) as in Figure 2.
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The capacity analysis is similar to that in Section III if a(f) is replaced by
a(fm ) for each of the bands, where fm is the central frequency of transmission
band m. Note that this analysis is inherently different from that in [Gupta and
Kumar 00], which does not consider any frequency dependence of the path-loss
model. Let us assume that each node is capable of transmitting at 
W bps
in each band, where 
W = 
f log2(1 + β), and 
f is the bandwidth of each
nonoverlapping band.

The definition of H changes slightly when we allow multinode hopping for the
low-power–narrow-band case in order to incorporate the effect of the different
transmission bands. In this case,

H ≤ T |Γ|
Wn

2
=
TWn

2
,

where Γ is the set of subbands used by the network, and W = |Γ|
W . At this
point, we define γα (fm ) as γα for band m. We use the fact that a(fm ) ≥ amin ,
where amin = minm∈Γ a(fm ). In the underwater scenario, amin = a(fmin), be-
cause a(f) is an increasing function of f .

Theorem 4.1. The transport capacity for arbitrary underwater acoustic networks
under the low-power–narrow-band case is bounded by

λnL̄ ≤ ΦWn(α−1)/α exp

(
−W0

(
Φ

2 ln a(fmin)
α

(
1
n

)1/α
))

,

where

Φ =
21/α
√
π

(
β + 1
β

)1/α
(

1
|Γ|
∑
m∈Γ

a(fm )2/
√
π

)1/α

.

Proof. For each of the different bands, the analysis is as before up to (3.6). Summing
over all subbands and time slots, we obtain

∑
s∈S

∑
m∈Γ

∑
i∈τ

|Xi −Xj (i) |αa(fm )|Xi−Xj ( i ) | ≤ β + 1
β


WT
∑
m∈Γ

γα (fm ),

where S is the set of time slots. Defining rA (h, b, fmin) = l(h, b)αa(fmin)l(h,b) and
following similar steps to those leading to (3.7), we get

1
H

λnT∑
b=1

h(b)∑
h=1

rA (h, b, fmin) ≤ β + 1
β


WT

H

∑
m∈Γ

γα (fm ) .
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Defining

ψ = (ln a(fmin))α
β + 1
β


WT

H

∑
m∈Γ

γα (fm ),

we can use a similar procedure to that in the previous section to show that

λnL̄ ≤ H(α−1)/α

T (α−1)/α

(
β + 1
β

W
∑
m∈Γ

γα (fm )

)1/α

exp
(
−W0

(
ψ1/α

α

))
. (4.1)

Using the inequality H ≤ TWn/2, we obtain the upper bound on transport
capacity. This concludes the proof.

The scaling law is similar in structure to the one obtained in Section 3. How-
ever, the constant Φ depends on the average of a function of the absorption
coefficients at fm ∀m ∈ Γ, instead of a particular value. Again, if a(f) = 1∀f ,
the result reduces to that of [Gupta and Kumar 00].

Remark 4.2. (Direct transmissions.) If we constrain our system to perform direct trans-
missions only (single hop), using the fact that there is an assignment of frequency
bands in terms of the distance, we can consider that h(b) = 1∀b, i.e., only one
hop. Given the distance–band separation property mentioned in previous sec-
tions, the problem can be thought of as solving for several networks that lie on
top of each other, in different layers with no cross-layer interference. Member-
ship in the layers is based on the distance of the connection. In other words, each
transmission band m will have nm transmitters, where n =

∑
m∈Γ nm constitutes

the total number of nodes in the network, since each transmitter has only one
intended destination.

These facts cause a different capacity scaling for each of the transmission
bands, i.e., the scaling for each transmission band will have the form of (3.3)
with 
W instead of W and nm instead of n to obtain the scaling for band m.

4.2. High-Power–Wide-Band Case

In the high-power–wide-band scenario, nodes have enough power to transmit
in a wide band B, which implies that the absorption cannot be considered to
be constant over the band. The band B is again chosen using a water-filling
argument. We shall use two different SINR requirements. The first is meant
for OFDM-like (orthogonal frequency-division multiplexing) schemes, whereby
each transmission band may need a specific SINR to guarantee transmission. We
then specify the changes that arise in using a more standard SINR definition for
wide-band transmissions.
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Let us first consider the case of an SINR requirement that depends on the
frequency, that is,

Pi(f)/A(|Xi −Xj (i) |, f)
N(f) +

∑
k∈τ ,k 	=i Pk (f)/A(|Xk −Xj (i) |, f)

≥ β(f) . (4.2)

Remark 4.3. This SINR requirement is relevant for an idealized OFDM scheme over
the fixed transmission band B, where the system uses transmission channels of
infinitesimal width and no guard band between channels.

We define fmin = arg minf a(f), while H can be shown to have the bound
H ≤ TWn/2 using the definition of W ; see (4.3). We define W as the data rate
over the entire band, computed as

W =
∫
f∈B

log2(1 + β(f))df. (4.3)

If we assign a transmission rate to every subband df of dW = log2(1 + β(f))df ,
the analysis for each frequency is similar to that in Section 4. Letting 
f → 0,
renaming 
f as df , and replacing the sums by integrals, we have obtained the
following result.

Theorem 4.4. The transport capacity of an arbitrary underwater acoustic network
under the high-power–wide-band case under the SINR condition (4.2) is bounded
as follows:

λnL̄ ≤ ΘWn(α−1)/α exp

(
−W0

(
Θ

2 ln a(fmin)
α

(
1
n

)1/α
))

,

where

Θ =
21/α
√
π

⎛
⎝ 1
W

∫
B

(β(f) + 1) a(f)2/
√
π log2(1 + β(f))

β(f)
df

⎞
⎠

1/α

.

Proof. Using similar techniques to those in previous sections, we obtain

1
H

λnT∑
b=1

h(b)∑
h=1

WrA (h, b, fmin) ≤ T

H

∫
W

β(f) + 1
β(f)

γα (f)dW

=
T

H

∫
B

β(f) + 1
β(f)

γα (f) log2(1 + β(f))df.

Following the procedure of Section 4 concludes the proof.
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Remark 4.5. We now consider the alternative case of an SINR requirement for the
full transmission band, that is,∫

B Pi(f)/A(|Xi −Xj (i) |, f)df∫
B N(f) +

∑
k∈τ ,k 	=i Pk (f)/A(|Xk −Xj (i) |, f)df

≥ β .

The scaling result is straightforward from the proof of Theorem 3.2, where the
key step lies in using the inequality∫

B

Pi(f)
A(|Xi −Xj (i) |, f)

df ≤
∫
B Pi(f)df

A(|Xi −Xj (i) |, fmin)
.

The scaling is the same as for Theorem 3.2, with a(f) substituted by a(fmin).

5. Scaling Transmission Frequency with the Number of Nodes

We have observed that the transport capacity scales much more slowly than the
capacity of a simple multihop scheme in radio wireless, i.e., much more slowly
than O(n1/2). This section shows that scaling the transmission frequency with
the number of nodes provides a means to overcome this limitation. We first study
the structure of the upper bound and then show a simple scheme that achieves a
transport capacity of at least O(n1/2), regardless of the parameter α that limited
our previous results. We assume the case of a fixed narrow band for simplicity,
although this can be extended to more complex cases.

5.1. An Upper Bound to Transport Capacity

We show in the following that the transport capacity can have an upper bound
that scales as O(n1−ε) for an arbitrary ε > 0. We prove this by assuming that
such an upper bound is possible and showing the corresponding scaling of f
that satisfies it. We use the notation f(n) to emphasize the dependence on
the number of nodes in the network. We consider the scaling of the absorption
a(f(n)) with the number of nodes for simplicity. As explained in Section 2,
a(f) is an increasing function on f for the frequency range of interest, so there
is a one-to-one mapping between the values of a(f) and f . We exploit this
fact in order to derive our new transport capacity upper bound. This result is
summarized in the following theorem.

Theorem 5.1. The transport capacity λnL̄ of underwater acoustic networks with a
fixed narrow-band assumption and the transmission frequency f(n) scaling with
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the number of nodes is bounded by

O
(
n(α−1)/αa(f(n))2/

√
πα exp

(
−W0(n−1/αa(f(n))2/

√
πα )
))

if f(n) = o(
√

ln(n)),

O(n1−ε) if f(n) = O(
√

ln(n)), with ε > 0,

O(n) if f(n) = Ω(
√

ln(n)).

Proof. The first case is a straightforward operation considering the result in Theo-
rem 3.2. We shall focus first on proving the case f(n) = O(

√
ln(n)). Considering

expression (3.3), note that to ensure that the transport capacity will be bounded
by O(n1−ε), we require

a(f(n))2/
√
πα = n1/α−ε ,

without considering the effect of the exponential term. However, it is simple to
check that the limit of the exponential term when n→ ∞ is given by

lim
n→∞ exp

(−W0
(
C(α, ε, β)n−ε ln(n)

))
= 1,

where C(α, ε, β) is a constant that depends on α, ε, and β.
Considering expression (2.2), it straightforward to determine that the node-

dependent frequency f(n) scales on the number of nodes as

f(n) = O(
√

ln(n)).

We conclude that for f(n) = O(
√

ln(n)), the transport capacity is bounded as

λnL̄ ≤ D(α, ε, β,W )n1−ε exp
(−W0

(
C(α, ε, β)n−ε ln(n)

))
,

where D(α, ε, β,W ) is a constant that depends on α, ε, β, and W . For large n,
the bound becomes

λnL̄ ≤ D(α, ε, β,W )n1−ε .

We follow a similar technique to prove the remaining case.

This result is very important, not only because it relaxes our upper bound
on the transport capacity, but because it can be achieved with a scaling on the
frequency that is fairly slow, i.e., f(n) = O(

√
ln(n)). This makes our result useful

for a wide range of n while mapping it to relevant transmission frequencies that
are feasible in practice.
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5.2. Constructive Lower Bound

Let us now show a placement of nodes and assignment of traffic patterns that
overcomes the initial limitation on the transport capacity for any value of α,
achieving a scaling of O(n1/2). In the cases of a fixed transmission band, we
showed an upper bound that stated that for 1 ≤ α < 2, this was not possible.
The result is summarized in the following theorem.

Theorem 5.2. There is a placement of nodes and an assignment of traffic patterns
such that the transport capacity achieves λnL̄ = O(

√
n) for f(n) = O(n1/4) for

underwater acoustic networks.

Proof. Using Scheme 3.5 and the lower bound in Theorem 3.7, we will confirm
that we can provide an SINR level such that SINR ≥ β.

First, we observe that the term C′∑√
n/8

l=1 (l1−α + l−α )a(f(n))−3ld+2d is
bounded as long as a(f(n))−3d = o(1) or a(f(n))−3d = O(1). One instance that
satisfies this condition occurs if (1) we use the scaling of a(f) = O(e

√
n ), which is

associated with f(n) = O(n1/4), and (2) we also use the fact that d = O(1/
√
n).

This implies that as n→ ∞, a(f(n))−3d → e−c1 < 1, where c1 > 0.
Second, since the overall psd of the noise N(f) decays linearly on the log-

arithmic scale in the frequency region from 100 Hz to 100 kHz, which is the
operating regime used by the majority of acoustic systems and is approximately
given by logN(f) = a4 − a5 log f for some positive constants a4 and a5 > 0 in-
dependent of n [Stojanovic 07], we can assume the scaling of N(f) to be given
by N(f) = O (f−a5 ). This implies that the term N(f)a(f)2d(2d)α/P approaches
zero as n→ ∞ if we assume also a(f) = O(e

√
n ) and d = O(1/

√
n).

Thus, we will be able to satisfy any condition SINR ≥ β with sufficiently large
n. Finally, since the average distance L̄ between transmissions grows as O(n−1/2),
we conclude that the transport capacity for this placement scales as O(

√
n),

regardless of the value of α.

Remark 5.3. As shown in the proof of Theorem 5.2, the placement specified allows
for the SINR to be as large as required for sufficiently large n for the receivers to
successfully recover the data packets. This is unique with respect to the result of
[Gupta and Kumar 00] (i.e., a(f) = 1 and α ≥ 2), where the SINR is bounded
but converges to a specific value as n→ ∞. This implies that the lower bound
O(

√
n) for the transport capacity may not be tight and that other placements

may achieve a better scaling as predicted by Theorem 5.1. This will constitute
the focus of our future work.
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6. Conclusions

This work presents upper bounds on the transport capacity of underwater acous-
tic networks with nodes deployed arbitrarily in a unit-area disk. We study three
cases of interest: an arbitrarily chosen narrow transmission band, the case of
power-limited nodes that transmit in disjoint narrow bands, and the case of nodes
with high-power capabilities that use a wide transmission band. The choice of
transmission band in the last two cases depends on the transmission distance
and the physical characteristics of the channel and is made in accordance with
the water-filling principle. We also study the case in which the transmission fre-
quency scales with the number of nodes and provide upper and lower bounds for
this case.

We have shown that the amount of information that can be exchanged by each
source–destination pair in an underwater acoustic network goes to zero as the
number of nodes n goes to infinity, at least at a rate n−1/αe−W 0 (O (n−1 / α )) . This
rule is valid for the different scenarios in general, requiring only changes in the
scaling constants. The throughput per source–destination pair has two different
regions. For small n, the throughput decreases very slowly as n increases. For
large n, it decreases as n−1/α . Given that 1 ≤ α ≤ 2 in an underwater acoustic
channel, the available throughput for large n decays more rapidly than in typical
radio wireless networks. However, typical node densities in underwater networks
correspond to the small-n regime. In a narrow-band example with values of a(f)
characteristic of an underwater channel, we showed that the upper bound on the
throughput remains almost constant for densities up to 100 nodes per km2. Most
underwater networks have node densities in this range owing to the applications
for which they are deployed.

We have also shown that scaling the frequency with the number of nodes pro-
vides a means of overcoming the limitations in transport capacity for underwater
acoustic networks. This is especially interesting if the number of nodes becomes
large. We presented a scheme that could achieve a transport capacity scaling of
O(

√
n), which was not possible in the fixed-transmission-band cases for values

of α ∈ [1, 2), with α = 2 being the only exception.
Finally, we have identified some important characteristics of the underwater

acoustic channel useful for future studies. For example, we could allow coopera-
tion between nodes à la [Ozgur et al. 07], taking advantage of the distance–band
separation property of the underwater channel. Namely, instead of performing
time division between long and short transmissions, we could simply transmit
in different bands that do not interfere with one another. This is important be-
cause acoustic transmissions have long propagation delays due to the speed of
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sound underwater (≈ 1500 m/s), which reduces the usefulness of a time-division
scheme. Another interesting area is the study of different operational regions in
which we use different scaling functions for the frequency given the number of
nodes n.
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