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Some Properties of Random
Apollonian Networks
Alan Frieze and Charalampos E. Tsourakakis

Abstract. In this work, we analyze fundamental properties of random Apollonian net-
works [Zhang et al. 06, Zhou et al. 05], a popular random graph model that generates
planar graphs with power-law properties. Specifically, we analyze the degree distribu-
tion, the k largest degrees, the k largest eigenvalues, and the diameter, where k is a
constant.

1. Introduction

Due to the surge of interest in social networks, the Web graph, the Internet,
biological networks, and many other types of networks, a large amount of re-
search has focused in recent years on modeling real-world networks. Existing
well-known models include the preferential attachment model [Barabási and Al-
bert 99], Kronecker graphs [Leskovec and Faloutsos 07], the Cooper–Frieze model
[Cooper and Frieze 03], the Aiello–Chung–Lu model [Aiello et al. 01], protean
graphs [Pralat and Wormald 07], and the Fabrikant–Koutsoupias–Papadimitriou
model [Fabrikant et al. 02].

Color versions of one or more of the figures in the article can be found online at
www.tandfonline.com/uinm.
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Figure 1. Snapshots of a random Apollonian network (RAN) at (a) t = 1, (b) t =
2, (c) t = 3, (d) t = 100.

Despite the fact that the family of planar graphs is a particularly important
family [Klein 14] and that it models important real-world graphs such as road
networks, there exist few generators of real-world planar graphs.

In this work, we focus on random Apollonian networks (RANs), a popular
random graph model for generating planar graphs with power-law properties
[Zhou et al. 05]. Before we state our main results, we briefly describe the model.

An example of a RAN is shown in Figure 1. At time t = 1, the RAN is shown
in Figure 1(a). At each step t ≥ 2, a face F is chosen uniformly at random among
the faces of Gt . Let i, j, k be the vertices of F . We add a new vertex inside F and
connect it to i, j, k. Higher-dimensional RANs also exist that instead of triangles,
have k-simplexes k ≥ 3; see [Zhang et al. 06]. It is easy to see that the number
of vertices nt , edges mt , and faces Ft at time t ≥ 1 in a RAN Gt satisfy

nt = t + 3, mt = 3t + 3, Ft = 2t + 1.

Note that a RAN is a maximal planar graph, since for every planar graph, one
has mt ≤ 3nt − 6 ≤ 3t + 3.

Surprisingly, despite the popularity of the model, various important properties
have been analyzed experimentally and heuristically with insufficient rigor. In
this work, we prove the following theorems using existing techniques [Alon and
Spencer 08, Flaxman et al. 05, Mihail and Papadimitriou 02].

Theorem 1.1. (Degree sequence.) Let Zk (t) denote the number of vertices of degree k,
k ≥ 3, at time t. For every t ≥ 1 and k ≥ 3, there exists a constant bk depending
on k such that

|E [Zk (t)] − bk t| ≤ K, where K = 3.6.

Furthermore, for t sufficiently large and for all λ > 0,

Pr [|Zk (t) − E [Zk (t)] | ≥ λ] ≤ e−λ2 /72t .
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For previous weaker results on the degree sequence, see [Wu et al. 06, Zhou
et al. 05]. An immediate corollary that proves the strong concentration of Zk (t)
around its expectation is obtained from Theorem 1.1 and a union bound by
setting λ = 10

√
t log t. Specifically, we have the following corollary.

Corollary 1.2. For all possible degrees k,

Pr
[
|Zk (t) − E [Zk (t)] | ≥ 10

√
t log t

]
= o(1).

The next theorem provides insight into the asymptotic growth of the highest
degrees of RANs and is crucial in proving Theorem 1.4.

Theorem 1.3. (Highest degrees.) Let Δ1 ≥ Δ2 ≥ · · · ≥ Δk be the k highest degrees of the
RAN Gt at time t, where k is a fixed positive integer. Also, let f(t) be a function
such that f(t) → +∞ as t → +∞. Then with high probability (whp),1

t1/2

f(t)
≤ Δ1 ≤ t1/2f(t),

and for i = 2, . . . , k,

Δi−1 − Δi ≥ t1/2

f(t)
.

The increasing function f(t) cannot be removed; see [Flaxman et al. 05]. Us-
ing Theorem 1.3 and the technique of [Mihail and Papadimitriou 02], we show
how the top eigenvalues of the adjacency matrix representation of a RAN grow
asymptotically as t → +∞ whp.

Theorem 1.4. (Largest eigenvalues.) Let k be a fixed positive integer. Also, let λ1 ≥ λ2 ≥
· · · ≥ λk be the k largest eigenvalues of the adjacency matrix of Gt . Then whp,
λi = (1 ± o(1))

√
Δi.

Also, we establish the following refined upper bound for the asymptotic growth
of the diameter.

1 An event At holds with high probability if limt→+∞ Pr [At ] = 1.
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Theorem 1.5. (Diameter.) The diameter d(Gt) of Gt satisfies in probability d(Gt) ≤
ρ log t, where 1/ρ = η is the unique solution less than 1 of the equation η − 1 −
log η = log 3.

The outline of the paper is as follows: in Section 2, we briefly present re-
lated work and technical preliminaries needed for our analysis. We prove Theo-
rems 1.1, 1.3, 1.4, and 1.5 in Sections 3, 4, 5, and 6 respectively. For the reader’s
convenience, proofs of certain lemmas are omitted from the main part of our pa-
per and are included in an appendix, Section 8. Finally, in Section 7, we conclude
by suggesting a few open problems.

2. Related Work

Apollonius of Perga was a Greek geometer and astronomer known for his writings
on conic sections. He introduced the problem of sphere packing, whose classical
solution, the so-called Apollonian packing [Graham et al. 03], exhibits a power-
law behavior. Specifically, the circle size distribution follows a power law with
exponent around 1.3 [Boyd 82]. Apollonian Networks (ANs) were introduced
in [Andrade et al. 05] and independently in [Doye and Massen 05]. Random
Apollonian networks (RANs) were introduced in [Zhou et al. 05]. Their degree
sequence was analyzed inaccurately in that work (see comment in [Wu et al. 06]),
and subsequently using a methodology from physics in [Wu et al. 06].

Eigenvalues of RANs have been studied only experimentally [Andrade and
Miranda 05]. Concerning the diameters of RANs, they have been shown to grow
logarithmically [Zhou et al. 05] using heuristic arguments (see, for instance, [Zhou
et al. 05, equation (b.6)]).

RANs are planar 3-trees, a special case of random k-trees [Kloks 94], whose
degree distribution of was analyzed in [Cooper and Uehara 10] and [Gao 09].
In RANs—in contrast to random k-trees—the random k clique chosen at each
step has never previously been selected. For example, in a two-dimensional RAN,
each chosen face is subdivided into three new faces by connecting the incoming
vertex to the vertices of the boundary.

Due to their power-law properties, random k-trees have been proposed as a
model for complex networks; see, e.g., [Cooper and Uehara 10, Gao and Hob-
son 06] and references therein. Recently, a variant of k-trees, called ordered in-
creasing k-trees, has been proposed and analyzed in [Panholzer and Seitz 10].
Closely related to RANs but not the same are random Apollonian network struc-
tures, which have been analyzed in [Bodini et al. 07, Darrasse and Soria 07, Dar-
rasse et al. 10].
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In [Bollobás et al. 01], the authors proved rigorously the power-law distribution
of the Barabási–Albert model [Barabási and Albert 99]. Rigorous results for
eigenvalue-related properties of real-world graphs using various random graph
models have been proved in [Chung et al. 03, Flaxman et al. 05, Mihail and
Papadimitriou 02].

In Section 3, we invoke the following useful lemma.

Lemma 2.1. [Chung Graham and Lu 06, Lemma 3.1] Suppose that a sequence {at}
satisfies the recurrence

at+1 =
(

1 − bt

t + t1

)
at + ct

for t ≥ t0 . Furthermore, suppose limt→+∞ bt = b > 0 and limt→+∞ ct = c. Then
limt→+∞ at/t exists, and

lim
t→+∞

at

t
=

c

1 + b
.

In Section 3, we also use the Azuma–Hoeffding inequality [Azuma 67, Hoeff-
ding 63].

Lemma 2.2. (Azuma–Hoeffding inequality.) Let λ > 0. Also, let (Xt)n
t=0 be a martingale

with |Xt+1 − Xt | ≤ c for t = 0, . . . , n − 1.Then

Pr [|Xn − X0 | ≥ λ] ≤ exp
(
− λ2

2c2n

)
.

3. Proof of Theorem 1.1

We decompose our proof into a sequence of lemmas. For brevity, let Nk (t) =
E [Zk (t)], k ≥ 3. Also, let dv (t) be the degree of vertex v at time t, and let
1(dv (t) = k) be an indicator variable that equals 1 if dv (t) = k, and 0 otherwise.
Then for every k ≥ 3, we can express the expected number Nk (t) of vertices of
degree k as a sum of expectations of indicator variables:

Nk (t) =
∑

v

E [1(dv (t) = k)] . (3.1)

We distinguish two cases in the following.
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Case 1: k = 3. Observe that a vertex of degree 3 is created only by an insertion
of a new vertex. The expectation N3(t) satisfies the following recurrence:2

N3(t + 1) = N3(t) + 1 − 3N3(t)
2t + 1

. (3.2)

The basis for (3.2) is N3(1) = 4. We prove the following lemma, which shows
that limt→+∞ N3(t)/t = 2/5.

Lemma 3.1. For all t ≥ 1, N3(t) satisfies the following inequality:∣∣∣∣N3(t) − 2
5
t

∣∣∣∣ ≤ K, where K = 3.6. (3.3)

Proof. We use induction. Assume that N3(t) = 2t/5 + e3(t), where e3(t) stands for
the error term. We wish to prove that for all t, |e3(t)| ≤ K. The result trivially
holds for t = 1. We also see that for t = 1, inequality (3.3) is tight. Assume that
the result holds for some t. We show that it holds for t + 1:

N3(t + 1) = N3(t) + 1 − 3N3(t)
2t + 1

=⇒ e3(t + 1) = e3(t) +
3
5
− 6t + 15e3(t)

10t + 5
= e3(t)

(
1 − 3

2t + 1

)
+

3
5(2t + 1)

=⇒ |e3(t + 1)| ≤ K

(
1 − 3

2t + 1

)
+

3
5(2t + 1)

≤ K.

Therefore, inductively, (3.3) holds for all t ≥ 1.

Case 2: k ≥ 4. For k ≥ 4, the following holds:

E [1(dv (t + 1) = k)]

= E [1(dv (t) = k)]
(

1 − k

2t + 1

)
+ E [1(dv (t) = k − 1)]

k − 1
2t + 1

.

Therefore, we can rewrite (3.1) for k ≥ 4 as follows:

Nk (t + 1) = Nk (t)
(

1 − k

2t + 1

)
+ Nk−1(t)

k − 1
2t + 1

. (3.4)

2 The three initial vertices participate in one face fewer than their degree. However, this
slight abuse leaves our main results unchanged and simplifies the exposition.
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Lemma 3.2. For k ≥ 3, the limit limt→+∞ Nk (t)/t exists. Specifically, let bk =
limt→+∞ Nk (t)/t. Then

b3 =
2
5
, b4 =

1
5
, b5 =

4
35

,

and for k ≥ 6,

bk =
24

k(k + 1)(k + 2)
.

Furthermore, for all k ≥ 3,

|Nk (t) − bk t| ≤ K, where K = 3.6. (3.5)

Proof. We use induction on k. For k = 3, the base case, the result holds by
Lemma 3.1 and specifically b3 = 2/5. Assume that the result holds for some
k ≥ 3. We show that it holds for k + 1, too. Rewrite (3.4) as

Nk (t + 1) =
(

1 − bt

t + t1

)
Nk (t) + ct ,

where

bt =
k

2
, t1 =

1
2
, ct = Nk−1(t)

k − 1
2t + 1

.

Clearly, limt→+∞ bt = k/2 > 0 and

lim
t→+∞ ct = lim

t→+∞ bk−1t
k − 1
2t + 1

= bk−1
k − 1

2
.

Hence by Lemma 2.1,

lim
t→+∞

Nk (t)
t

=
(k − 1)bk−1/2

1 + k/2
= bk−1

k − 1
k + 2

.

Since b3 = 2/5, we obtain that b4 = 1/5, b5 = 4/35, and for every k ≥ 6,

bk =
24

k(k + 1)(k + 2)
.

This shows that the degree sequence of RANs follows a power-law distribution
with exponent 3.

Now we prove (3.5). The case k = 3 was proved in Lemma 3.1. Let ek (t) =
Nk (t) − bk t. Assume that the result holds for some k ≥ 3, i.e., |ek (t)| ≤ K, where
K = 3.6. We show that it holds for k + 1, too. Substituting in (3.4) and using
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the fact that bk−1(k − 1) = bk (k + 2), we obtain

ek (t + 1) = ek (t) +
k − 1
2t + 1

ek−1(t) − k

2t + 1
ek (t)

=⇒ |ek (t + 1)| ≤
∣∣∣∣
(

1 − k

2t + 1

)
ek (t)

∣∣∣∣+
∣∣∣∣ k − 1
2t + 1

ek−1(t)
∣∣∣∣ ≤ K

(
1 − 1

2t + 1

)
≤ K.

Hence by induction, (3.5) holds for all k ≥ 3.

Finally, the following lemma provides the concentration of Zk (t) around its
expected value for k ≥ 3. This lemma applies Lemma 2.2 and completes the
proof of Theorem 1.1.

Lemma 3.3. Let λ > 0. For k ≥ 3,

Pr [|Zk (t) − E [Zk (t)] | ≥ λ] ≤ e−λ2 /72t .

Proof. Let (Ω,F , P ) be the probability space induced by the construction of
a RAN after t insertions. Fix k, where k ≥ 3, and let (Xi)i∈{0,1,...,t} be the
martingale sequence defined by Xi = E [Zk (t)|Fi ], where F0 = {∅,Ω} and Fi

is the σ-algebra generated by the RAN process after i steps. Observe that
X0 = E [Zk (t)|{∅,Ω}] = Nk (t), Xt = Zk (t). We show that |Xi+1 − Xi | ≤ 6 for
i = 0, . . . , t − 1.

Let Pj = (Y1 , . . . , Yj−1 , Yj ), P ′
j = (Y1 , . . . , Yj−1 , Y

′
j ) be two sequences of face

choices differing only at time j. Also, let P̄ , P̄ ′ continue from Pj , P
′
j until t. We

call the faces Yj , Y
′
j special with respect to P̄ , P̄ ′. We define a measure-preserving

map P̄ 
→ P̄ ′ in the following way: for every choice of a nonspecial face in process
P̄ at time l, we make the same face choice in P̄ ′ at time l. For every choice of a
face inside the special face Yj in process P̄ , we make an isomorphic (with respect
to, e.g., clockwise order and depth) choice of a face inside the special face Y ′

j in
process P̄ ′. Since the number of vertices of degree k can change by at most 6, i.e.,
the (at most) six vertices involved in the two faces Yj , Y

′
j , the following holds:

|E [Zk (t)|P ] − E [Zk (t)|P ′] | ≤ 6.

Furthermore, this holds for every Pj , P
′
j . We deduce that Xi−1 is a weighted

mean of values, whose pairwise differences are all at most 6.
Thus, the mean Xi−1 is at a distance of at most 6 from each of these values.

Hence for every one-step refinement, we have |Xi+1 − Xi | ≤ 6 ∀i ∈ {0, . . . , t − 1}.
Applying the Azuma–Hoeffding inequality as stated in Lemma 2.2, we obtain

Pr [|Zk (t) − E [Zk (t)] | ≥ λ] ≤ 2e−λ2 /72t .
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4. Proof of Theorem 1.3

We decompose the proof of Theorem 1.3 into several lemmas. Specifically,
the proof follows directly from Lemmas 4.2, 4.4–4.7. We partition the ver-
tices into three sets: those added before t0 , between t0 and t1 , and after t1 ,
where t0 = log log log (f(t)) and t1 = log log (f(t)). Recall that f(t) is a func-
tion such that limt→+∞ f(t) = +∞. We define a supernode to be a collection of
vertices, and the degree of the supernode to be the sum of the degrees of its
vertices.

Lemma 4.1. Let dt(s) denote the degree of vertex s at time t, and let a(k) = a(a +
1) · · · (a + k − 1) denote the rising factorial function. Then for every positive
integer k,

E
[
dt(s)(k)

]
≤ (k + 2)!

2

(
2t

s

)k/2

.

Proof. As we mentioned in the proof of Theorem 1.1, the three initial vertices 1, 2, 3
have one face fewer than their degree, whereas all other vertices have degree equal
to the number of faces surrounding them. In this proof, we treat both cases, but
we omit this distinction in all other proofs.

Case 1: s ≥ 4. Note that ds(s) = 3. By conditioning successively, we obtain

E
[
dt (s)(k)

]
= E

[
E
[
dt (s)(k) |dt−1 (s)

]]
= E

[
(dt−1 (s))(k)

(
1 − dt−1 (s)

2t − 1

)
+ (dt−1 (s) + 1)(k) dt−1 (s)

2t − 1

]
= E

[
(dt−1 (s))(k)

(
1 − dt−1 (s)

2t − 1

)
+ (dt−1 (s))(k) dt−1 (s) + k

dt−1 (s)
dt−1 (s)
2t − 1

]

= E
[
(dt−1 (s))(k)

](
1 +

k

2t − 1

)
= · · · = 3(k)

t∏
t ′=s+1

(
1 +

k

2t′ − 1

)

≤ 3(k) exp
( t∑

t ′=s+1

k

2t′ − 1

)
≤ 3(k) exp

(
k

∫ t

s

dx

2x − 1

)

≤ (k + 2)!
2

exp
(

k

2
log

t − 1/2
s − 1/2

)
≤ (k + 2)!

2

(
2t

s

)k/2

.
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Case 2: s ∈ {1, 2, 3}. Note that initially, the degree of any such vertex is 2. For
k ≥ 0, we have

E
[
dt (s)(k)

]
= E

[
E
[
dt (s)(k) |dt−1 (s)

]]
= E

[
(dt−1 (s))(k)

(
1 − dt−1 (s) − 1

2t − 1

)
+ (dt−1 (s) + 1)(k) dt−1 (s) − 1

2t − 1

]
= E

[
(dt−1 (s))(k)

(
1 +

k

2t − 1

)
− (dt−1 (s))(k) k

(2t − 1) dt−1 (s)

]

≤ E
[
(dt−1 (s))(k)

](
1 +

k

2t − 1

)
≤ · · · ≤ (k + 2)!

2

(
2t

s

)k/2

.

Lemma 4.2. The degree Xt of the supernode Vt0 of vertices added before time t0 is
at least t

1/4
0

√
t whp.

Proof. We consider a modified process Y coupled with the RAN process. Fig-
ure 2 illustrates this coupling. Specifically, let Yt be the modified degree of the
supernode in the modified process Y, which is defined as follows: for any type
of insertion in the original RAN process (note that there exist three types of
insertions with respect to how the degree Xt of the supernode (black circle) is
affected; see also Figure 2), Yt increases by 1. We also define Xt0 = Yt0 . Note
that Xt ≥ Yt for all t ≥ t0 . Let

d0 = Xt0 = Yt0 = 6t0 + 6 and p∗r = p∗ = Pr [Yt = d0 + r|Yt0 = d0 ].

The following technical claim is proved in Section 8.

Figure 2. Coupling used in Lemma 4.2.
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Claim 4.3. We have

p∗ ≤
(

d0 + r − 1
d0 − 1

)(2t0 + 3
2t + 1

)d0 /2
e3/2+t0 −d0 /2+2r/3

√
t .

Let A1 denote the event that the supernode consisting of the first t0 vertices
has degree Yt in the modified process Y less than t

1/4
0

√
t. Note that since{

Xt ≤ t
1/4
0

√
t
}
⊆
{

Yt ≤ t
1/4
0

√
t
}

,

it suffices to prove that Pr
[
Yt ≤ t

1/4
0

√
t
]

= o(1). Using Claim 4.3, we obtain

Pr [A1 ] ≤
t
1 / 4
0

√
t−(6t0 +6)∑
r=0

(
r + 6t0 + 5

6t0 + 5

)(
2t0 + 3
2t + 1

)3t0 +3

e−3/2−2t0 +2t
1 / 4
0 /3

≤ t
1/4
0 t1/2

(
t
1/4
0 t1/2

)6t0 +5

(6t0 + 5)!

(
2t0 + 3
2t + 1

)3t0 +3

e−3/2−2t0 +2t
1 / 4
0 /3

≤
(

t

2t + 1

)3t0 +3
t
3t0 /2+3/2
0 (2t0 + 3)3t0 +3

(6t0 + 5)6t0 +5 e4t0 +7/2+2/3t
1 / 4
0

≤ 2−(3t0 +3) e4t0 +7/2+2/3t
1 / 4
0

(6t0 + 5)3/2t0 +1/2 = o (1) .

Lemma 4.4. No vertex added after t1 has degree exceeding t−2
0 t1/2 whp.

Proof. Let A2 denote the event that some vertex added after t1 has degree exceed-
ing t−2

0 t1/2 . We use a union bound, a third-moment argument, and Lemma 4.1
to prove that Pr [A2 ] = o(1). Specifically,

Pr [A2 ] ≤
t∑

s=t1

Pr
[
dt(s) ≥ t−2

0 t1/2
]

=
t∑

s=t1

Pr
[
dt(s)(3) ≥

(
t−2
0 t1/2

)(3)
]

≤ t60t
−3/2

t∑
s=t1

E
[
dt(s)(3)

]
≤ 5!

√
2t60

t∑
s=t1

s−3/2 ≤ 5!2
√

2t60t
−1/2
1 = o(1).

Lemma 4.5. No vertex added before t1 has degree exceeding t
1/6
0 t1/2 whp.

Proof. Let A3 denote the event that some vertex added before t1 has degree exceed-
ing t

1/6
0 t1/2 . We use again a third-moment argument and Lemma 4.1 to prove
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that Pr [A3 ] = o(1):

Pr [A3 ] ≤
t1∑

s=1

Pr
[
dt(s) ≥ t

1/6
0 t1/2

]
=

t1∑
s=1

Pr
[
dt(s)(3) ≥

(
t
1/6
0 t1/2

)(3)
]

≤ t
−1/2
0 t−3/2

t1∑
s=1

E
[
dt(s)(3)

]
≤ t

−1/2
0 t−3/2

t1∑
s=1

5!
√

2
t3/2

s3/2

≤ 5!
√

2ζ(3/2)t−1/2
0 = o(1),

where ζ(3/2) =
∑+∞

s=1 s−3/2 ≈ 2.612.

Lemma 4.6. The k highest degrees are added before t1 and have degree Δi bounded
by t−1

0 t1/2 ≤ Δi ≤ t
1/6
0 t1/2 whp, i = 1, . . . , k.

Proof. For the upper bound, it suffices to show that Δ1 ≤ t
1/6
0 t1/2 . This follows

immediately by Lemmas 4.4 and 4.5. The lower bound follows directly from Lem-
mas 4.2, 4.4, and 4.5. Assume that at most k − 1 vertices added before t1 have
degree exceeding the lower bound t−1

0 t1/2 . Then the total degree of the supernode
formed by the first t0 vertices is O

(
t
1/6
0

√
t
)
. This contradicts Lemma 4.2.

Finally, since each vertex s ≥ t1 has degree at most t−2
0

√
t � t−1

0 t1/2 , the k

highest-degree vertices are added before t1 whp.

The proof of Theorem 1.3 is completed with the following lemma, whose proof
is deferred to Section 8.

Lemma 4.7. The k highest degrees satisfy Δi ≤ Δi−1 −
√

t/f(t) whp, i = 1, . . . , k.

5. Proof of Theorem 1.4

Having computed the highest degrees of a RAN in Section 4, eigenvalues are com-
puted by adapting existing techniques [Chung et al. 03, Flaxman et al. 05, Mi-
hail and Papadimitriou 02]. We decompose the proof of Theorem 1.4 into Lem-
mas 5.1–5.4. Specifically, in Lemmas 5.1 and 5.2, we bound the degrees and
codegrees (the codegree of vertices i, j is the number of their common neigh-
bors). Having these bounds, we decompose the graph into a star forest and show
in Lemmas 5.3 and 5.4 that its largest eigenvalues, which are (1 ± o(1))

√
Δi ,

dominate the eigenvalues of the remaining graph. This technique was pioneered
in [Mihail and Papadimitriou 02].
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We partition the vertices into three sets S1 , S2 , S3 . Specifically, let Si be the
set of vertices added after time ti−1 and at or before time ti , where

t0 = 0, t1 = t1/8 , t2 = t9/16 , t3 = t.

Lemma 5.1. For every ε > 0 and f(t) with f(t) → +∞ as t → +∞, the following
holds whp: for all s with f(t) ≤ s ≤ t, for all vertices r ≤ s, we have ds(r) ≤
s1/2+εr−1/2 .

Proof. Set q = �4/ε�. We use Lemma 4.1, a union bound, and Markov’s inequality
to obtain

Pr

⎡
⎣ t⋃

s=f (t)

s⋃
r=1

{ds(r) ≥ s1/2+εr−1/2}
⎤
⎦

≤
t∑

s=f (t)

s∑
r=1

Pr
[
ds(r)(q) ≥ (s1/2+εr−1/2)(q)

]

≤
t∑

s=f (t)

s∑
r=1

Pr
[
ds(r)(q) ≥ (s−(q/2+qε)rq/2)

]

≤
t∑

s=f (t)

s∑
r=1

(q + 2)!
2

(
2s

r

)q/2

s−q/2s−qεrq/2 =
(q + 2)!

2
2q/2

t∑
s=f (t)

s1−qε

≤ (q + 2)!
2

2q/2
∫ t

f (t)−1
x1−qε dx ≤ (q + 2)!

2(qε − 2)
2q/2(f(t) − 1)2−qε = o(1).

Lemma 5.2. Let S ′
3 be the set of vertices in S3 that are adjacent to more than one

vertex of S1 . Then |S ′
3 | ≤ t1/6 whp.

Proof. First, observe that when vertex s is inserted, it becomes adjacent to more
than one vertex of S1 if the face chosen by s has at least two vertices in S1 . We
call the latter property A, and we write s ∈ A when s satisfies it. At time t1 ,
there exist 2t1 + 1 faces altogether, which consist of faces whose three vertices
are all from S1 . At time s ≥ t2 , there can be at most 6t1 + 3 faces with at least
two vertices in S1 , since each of the original 2t1 + 1 faces can give rise to at most
three new faces with at least two vertices in s1 . Consider a vertex s ∈ S3 , i.e.,
s ≥ t2 . By the above argument,

Pr [|N(s) ∩ S1 | ≥ 2] ≤ 6t1 + 3
2t + 1

.
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Writing |S ′
3 | as a sum of indicator variables, i.e., |S ′

3 | =
∑t

s=t2
I(s ∈ A), and

taking the expectation, we obtain

E [|S ′
3 |] ≤

t∑
s=t2

6t1 + 3
2t + 1

≤ (6t1 + 3)
∫ t

t2

(2x + 1)−1 dx

≤
(

3t1/8 +
3
2

)
ln

2t + 1
2t2 + 1

= o
(
t1/7

)
.

By Markov’s inequality:

Pr
[
|S ′

3 | ≥ t1/6
]
≤ E [|S ′

3 |]
t1/6 = o(1).

Therefore, we conclude that |S ′
3 | ≤ t1/6 whp.

Lemma 5.3. Let F ⊆ G be the star forest consisting of edges between S1 and S3 − S ′
3 .

Let Δ1 ≥ Δ2 ≥ · · · ≥ Δk denote the k highest degrees of G. Then λi(F ) = (1 −
o(1))

√
Δi whp.

Proof. It suffices to show that Δi(F ) = (1 − o(1))Δi(G) for i = 1, . . . , k. Note that
since the k highest vertices are inserted before t1 whp, the edges they lose are the
edges between S1 and those incident to S ′

3 and S2 , and we know how to bound
the cardinalities of all these sets. Specifically, by Lemma 5.2, |S ′

3 | ≤ t1/6 whp,
and by Theorem 1.3, the maximum degrees in Gt1 , Gt2 are less than t1/8 , t5/16 ,
respectively, whp. Also, by Theorem 1.3, Δi(G) ≥ √

t/log t. Hence, we obtain

Δi(F ) ≥ Δi(G) − t1/8 − t5/16 − t1/6 = (1 − o(1))Δi(G).

To complete the proof of Theorem 1.4, it suffices to prove that λ1(H) is
o(λk (F )), where H = G − F . We prove this in the following lemma. The proof
is based on bounding the maximum degree of appropriately defined subgraphs
using Lemma 5.1 and standard inequalities from spectral graph theory [Chung
Graham 97, Flaxman et al. 05, Mihail and Papadimitriou 02].

Lemma 5.4. λ1(H) = o(t1/4) whp.

Proof. Gershgorin’s theorem states that the maximum eigenvalue of every graph is
bounded by the maximum degree [Strang 05]. We bound the eigenvalues of H by
bounding the maximum eigenvalues of six different induced subgraphs. Specifi-
cally, let Hi = H[Si ], Hij = H(Si, Sj ), where H[S] is the subgraph induced by
the vertex set S and H(S, T ) is the subgraph containing only edges with one
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vertex is S and the other in T . We use Lemma 5.3 to bound λ1(H(S1 , S3)) and
Lemma 5.2 for the other eigenvalues. We set ε = 1/64:

λ1(H1) ≤ Δ1(H1) ≤ t
1/2+ε
1 = t33/512 ,

λ1(H2) ≤ Δ1(H2) ≤ t
1/2+ε
2 t

−1/2
1 = t233/1024 ,

λ1(H3) ≤ Δ1(H3) ≤ t
1/2+ε
3 t

−1/2
2 = t15/64 ,

λ1(H12) ≤ Δ1(H12) ≤ t
1/2+ε
2 = t297/1024 ,

λ1(H23) ≤ Δ1(H23) ≤ t
1/2+ε
3 t

−1/2
1 = t29/64 ,

λ1(H13) ≤ Δ1(H13) ≤ t1/6 .

Therefore, by a union bound we obtain whp

λ1(H) ≤
3∑

i=1

λ1(Hi) +
∑
i<j

λ1(Hij ) = o
(
t1/4

)
.

6. Proof of Theorem 1.5

Before we give the proof of Theorem 1.5, we give a simple proof that the diameter
of a RAN is O(log t) whp. We begin with a necessary definition for the proof
of Claim 6.1 below. We define the depth of a face recursively. Initially, we have
three faces, whose depth equals 1; see Figure 1(a). For each new face β created
by subdividing a face γ, we have depth(β) = depth(γ) + 1. An example is shown
in Figure 3, where each face is labeled with its corresponding depth.

Claim 6.1. The diameter d(Gt) satisfies d(Gt) = O(log t) whp.

Figure 3. An instance of the process for t = 2. Each face is labeled with its depth.
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Proof. A simple but key observation is that if k∗ is the maximum depth of a face,
then d(Gt) = O(k∗). Hence, we need to bound from above the depth of a given
face after t rounds. Let Ft(k) be the number of faces of depth k at time t. Then

E [Ft(k)] =
∑

1≤t1 < ···<tk ≤t

k∏
j=1

1
2tj + 1

≤ 1
k!

( t∑
j=1

1
2j + 1

)k

≤ 1
k!

(
1
2

log t

)k

≤
(

e log t

2k

)k+1

.

By the first moment method, we obtain k∗ = O(log t) whp, and by our observa-
tion, d(Gt) = O(log t) whp.

The depth of a face can be formalized via a bijection between random ternary
trees and RANs. Using this bijection, we prove Theorem 1.5, which gives a refined
upper bound on the asymptotic growth of the diameter.

Proof of Theorem 1.5. Consider the random process that starts with a single vertex
tree and at every step, picks a random leaf and adds three children to it. Let T

be the resulting tree after t steps. There exists a natural bijection between the
RAN process and this process; see [Darrasse and Soria 07] and also Figure 4.
The depth of T in probability is (ρ/2) log t, where 1/ρ = η is the unique solution
less than 1 of the equation η − 1 − log η = log 3; see [Broutin and Devroye 06,

Figure 4. RANs as random ternary trees.
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Figure 5. The height of the random ternary tree cannot be used to bound the
diameter from below. The height of the random ternary tree in the figure can be
arbitrarily large, but the diameter is 2.

pp. 284–285].3 Note that the diameter d(Gt) is at most twice the height of the
tree, and the result follows.

The above observation, i.e., the bijection between RANs and random ternary
trees, cannot be used to bound the diameter from below. A counterexample is
shown in Figure 5, where the height of the random ternary tree can be made
arbitrarily large, but the diameter is 2. It was proved in [Albenque and Marck-
ert 08] that if v, u are two i.i.d. uniformly random internal vertices, i.e., v, u ≥ 4,
then the distance d(u, v) tends to 6 log n/11 with probability 1 as the number of
vertices n of the RAN grows to infinity. However, to the best of our knowledge,
an exact expression for the asymptotic growth of the diameter remains an open
problem. Finally, it is worth mentioning that the diameter of the RAN grows
faster asymptotically than the diameter of the classical preferential attachment
model [Barabási and Albert 99], which whp grows like log t/log log t; see [Bollobás
and Riordan 04].

7. Open Problems

We propose three open problems for future work. The first concerns the diam-
eter. Specifically, as we mentioned earlier, an interesting problem is to find an
exact asymptotic expression for the diameter of a RAN. Since the time of our
original writeup, it was proved in [Ebrahimzadeh et al. 13] that the diameter
asymptotically is c log t, where c ≈ 1.668.

3 There is a typo in [Broutin and Devroye 06]: in “ρ is the unique solution greater than 1
of . . . ” one should replace “greater than” with “less than,” based on the authors’ Theorem 1.
We are grateful to Abbas Mehrabian for pointing this out.
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Figure 6. By the pigeonhole principle, one of the three initial faces receives Θ(t)
vertices. Using Theorem 1.3, it is not hard to see that the encircled set of vertices
S has conductance φ(S) ≈ √

t/t = 1/
√

t whp.

Conjecture 7.1. (Conductance.) We conjecture that the conductance [Bollobás 98] of a
RAN is Θ

(
1/
√

t
)

whp. Figure 6 shows that Φ(Gt) ≤ 1/
√

t.

Conjecture 7.2. (Hamiltonicity and Longest Path.) We conjecture that whp, a RAN is not
Hamiltonian, but the length of the longest path is Ω(n).

Since the time of our original writeup, this conjecture has been refuted. Specif-
ically, it is proved in [Ebrahimzadeh et al. 13] that every path has length
o(n). Furthermore, the authors prove that a RAN always has a path of length
(2n − 5)log 2/ log 3 and that the expected length of its longest path is Ω(n0.88).

8. Appendix

In this appendix, we prove Claim 4.3 and Lemma 4.7.

Claim 4.3. We have

p∗ ≤
(

d0 + r − 1
d0 − 1

)(2t0 + 3
2t + 1

)d0 /2
e3/2+t0 −d0 /2+2r/3

√
t .

Proof. Let

τ =
(

t0 ≡ τ0 , τ1 , . . . , τr︸ ︷︷ ︸
insertion times

, τr+1 ≡ t

)

be a vector denoting that Yt increases by 1 at τi for i = 1, . . . , r. We bound the
probability pτ of this event from above in the following. Note that we consider



180 Internet Mathematics

the case in which the vertices have the same degree as the number of faces around
them. As we mentioned earlier, the other case is analyzed in exactly the same
way, modulo a negligible error term:

pτ =

[
r∏

k=1

d0 + k − 1
2τk + 1

][
r∏

k=0

τk + 1 −1∏
j=τk +1

(
1 − d0 + k

2j + 1

)]

≤ d0(d0 + 1) · · · (d0 + r − 1)

[
r∏

k=1

1
2τk + 1

]

× exp

(
r∑

k=0

τk + 1 −1∑
j=τk +1

log
(
1 − d0 + k

2j + 1

))

=
(d0 + r − 1)!

(d0 − 1)!

[
r∏

k=1

1
2τk + 1

]
exp

(
r∑

k=0

τk + 1 −1∑
j=τk +1

log
(
1 − d0 + k

2j + 1

))
.

Consider now the inner sum, which we bound from above using an integral:

τk + 1 −1∑
j=τk +1

log
(

1 − d0 + k

2j + 1

)
≤
∫ τk + 1

τk +1
log
(

1 − d0 + k

2x + 1

)
dx

≤ −
(

τk+1 +
1
2

)
log (2τk+1 + 1)

+
2τk+1 + 1 − (d0 + k)

2
log (2τk+1 + 1 − (d0 + k))

+
(

τk +
3
2

)
log (2τk + 3) − 2τk + 3 − (d0 + k)

2
log (2τk + 3 − (d0 + k)),

since

∫
log
(

1 − d0 + k

2x + 1

)
= −

(
x +

1
2

)
log (2x + 1) +

2x + 1 − (d0 + k)
2

log (2x + 1 − (d0 + k)).

Hence we obtain

r∑
k=0

τk + 1 −1∑
j=τk +1

log
(

1 − d0 + k

2j + 1

)
≤ A +

r∑
k=1

Bk ,
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where

A =
(

τ0 +
3
2

)
log (2τ0 + 3) − 2τ0 + 3 − d0

2
log (2τ0 + 3 − d0)

−
(

τr+1 +
1
2

)
log (2τr+1 + 1)

+
2τr+1 + 1 − (d0 + r)

2
log (2τr+1 + 1 − (d0 + r))

and

Bk =
(

τk +
3
2

)
log (2τk + 3) − 2τk + 3 − (d0 + k)

2
log (2τk + 3 − (d0 + k))

−
(

τk +
1
2

)
log (2τk + 1)

+
2τk + 1 − (d0 + k − 1)

2
log (2τk + 1 − (d0 + k − 1)).

We first bound from above the quantities Bk for k = 1, . . . , r. Rearranging
terms and using the identity log (1 + x) ≤ x, we obtain

Bk =
(

τk +
1
2

)
log
(

1 +
1

τk + 1
2

)
+ log (2τk + 3)

− 1
2

log (2τk + 3 − (d0 + k))

− 2τk + 2 − (d0 + k)
2

log
(

1 +
1

2τk + 2 − (d0 + k)

)
.

≤ 1
2

+
1
2

log (2τk + 3) − 1
2

log
(

1 − d0 + k

2τk + 3

)
.

First, we rearrange terms, and then we bound the term eA using the inequality
exp

(−x − x2/2
) ≥ 1 − x, which is valid for 0 < x < 1:

A = −
(

τ0 +
3
2

)
log
(

1 − d0

2τ0 + 3

)
+
(

τr+1 +
1
2

)
log
(

1 − d0 + r

2τr+1 + 1

)
+

d0

2
log (2τ0 + 3 − d0)

− d0 + r

2
log (2τr+1 + 1 − (d0 + r)),
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which implies

eA =
(

1 − d0

2τ0 + 3

)−(τ0 +3/2) (
1 − d0 + r

2τr+1 + 1

)τr + 1 + 1
2

(2τ0 + 3 − d0)
d0 /2

× (2τr+1 + 1 − (d0 + r))−(d0 +r)/2

=
(

2τ0 + 3
2τr+1 + 1

)d0 /2

(2τr+1 + 1)−r/2
(

1 − d0

2τ0 + 3

)−(τ0 +3/2)+d0 /2

×
(

1 − d0 + r

2τr+1 + 1

)τr + 1 +1/2−(d0 +r)/2

≤
(

2t0 + 3
2t + 1

)d0 /2

(2t + 1)−r/2
(

1 − d0

2τ0 + 3

)−(τ0 +3/2)+d0 /2

× exp

((
−d0 + r

2t + 1
− 1

2

(
−d0 + r

2t + 1

)2
)(

t +
1
2
− d0 + r

2

))

=
(

2t0 + 3
2t + 1

)d0 /2

(2t + 1)−r/2
(

1 − d0

2τ0 + 3

)−(τ0 +3/2)+d0 /2

× exp

(
−d0 + r

2
+

(d0 + r)2

8t + 4
+

(d0 + r)3

4 (2t + 1)2

)
.

Now we bound from above the term exp (A +
∑r

k=1 Bk ) using the above upper
bounds:

exp

(
A +

r∑
k=1

Bk

)
≤ eAer/2

r∏
i=1

√
2τk + 3

1 − (d0 + k)/(2τk + 3)

≤
(

1 − d0

2τ0 + 3

)−(τ0 +3/2)+d0 /2

exp

(
−d0

2
+

(d0 + r)2

8t + 4
+

(d0 + r)3

4 (2t + 1)2

)

×
(

2t0 + 3
2t + 1

)d0 /2

(2t + 1)−r/2
r∏

i=1

√
2τk + 3

1 − (d0 + k/2τk + 3)
.

Using the above upper bound, we obtain

pτ ≤ C (r, d0 , t0 , t)
r∏

k=1

[
(2τk + 3 − (d0 + k))−1/2

(
1 +

1
τk + 1/2

)]
,

where

C (r, d0 , t0 , t) =
(d0 + r − 1)!

(d0 − 1)!

(
1 − d0

2τ0 + 3

)−(τ0 +3/2)+d0 /2

× exp

(
−d0

2
+

(d0 + r)2

8t + 4
+

(d0 + r)3

4 (2t + 1)2

)(
2t0 + 3
2t + 1

)d0 /2

(2t + 1)−r/2 .
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We need to sum over all possible insertion times to bound the probability p∗

of interest. We set τ ′
k ← τk − �(d0 + k)/2� for k = 1, . . . , r. For d = o

(√
t
)

and
r = o

(
t2/3

)
, we obtain

p∗ ≤ C (r, d0 , t0 , t)
∑

t0 +1≤τ1
< ···<τr ≤t

r∏
k=1

[
(2τk + 3 − (d0 + k))−1/2

(
1 +

1
τk + 1/2

)]

≤ C (r, d0 , t0 , t)

×
∑

t0 −�d0 /2�+1≤τ ′
1

≤···≤τ ′
r ≤t−�(d0 +r)/2�

r∏
k=1

[
(2τ ′

k + 3)−1/2
(

1 +
1

τ ′
k + (d0 + k)/2 + 1/2

)]

≤ C (r, d0 , t0 , t)
r!

(
t−�(d0 +r)/2�∑

t0 −�d0 /2�
(2τ ′

k + 3)−1/2 +
1√
2

(
τ ′
k +

3
2

)−3/2
)r

≤ C (r, d0 , t0 , t)
r!

(∫ t−(d+r)/2

0

[
(2x + 3)−1/2 +

1√
2

(
x +

3
2

)−3/2
]

dx

)r

≤ C (r, d0 , t0 , t)
r!

(√
2t + 3 − (d0 + r) +

2
3

)r

≤ C (r, d0 , t0 , t)
r!

(2t)r/2 exp
(
−r

2
d0 + r − 3

2t

)
exp

(
2r

3
√

2t − (d0 + r) + 3

)

≤
(

d0 + r − 1
d0 − 1

)(
2t0 + 3
2t + 1

)d0 /2
[(

1 − d0

2t0 + 3

)−(1−d0 /(2t0 +3))
]t0 +3/2

×
(

2t

2t + 1

)r/2

exp

(
−d0

2
+

(d0 + r)2

8t + 4
+

(d0 + r)3

4 (2t + 1)2 − r (d0 + r − 3)
4t

+
2r

3
√

2t + 3 − (d0 + r)

)
.

By removing the o (1) terms in the exponential and using the fact that x−x ≤ e,
we obtain the following bound on the probability p∗:

p∗ ≤
(

d0 + r − 1
d0 − 1

)(
2t0 + 3
2t + 1

)d0 /2

exp
(

3
2

+ t0 − d0

2
+

2r

3
√

t

)
,

completing the proof.

We now restate and prove Lemma 4.7.

Lemma 4.7. The k highest degrees satisfy Δi ≤ Δi−1 −
√

t/f(t) whp, i = 1, . . . , k.



184 Internet Mathematics

Proof. Let A4 denote the event that there are two vertices among the first t1 with
degree at least t−1

0 t1/2 and within
√

t/f(t) of each other. By the definition of
conditional probability and Lemma 4.4, we have

Pr [A4 ] = Pr
[A4 |Ā3

]
Pr
[Ā3

]
+ Pr [A4 |A3 ]Pr [A3 ] ≤ Pr

[A4 |Ā3
]
+ o(1).

It suffices to show that Pr
[A4 |Ā3

]
= o(1). Note that by a simple union bound,

we have

Pr [A4 ] ≤
∑

1≤s1 <s2 ≤t1

√
t/f (t)∑

l=−√
t/f (t)

pl,s1 ,s2 = O

(
t21

√
t

f(t)
max pl,s1 ,s2

)
,

where pl,s1 ,s2 = Pr
[
dt(s1) − dt(s2) = l|Ā3

]
.

We consider two cases, and we show that in both of them, max pl,s1 ,s2 =
o
(
f(t)/t21

√
t
)
.

Case 1: (s1 , s2) /∈ E(Gt). Note that at time t1 , there exist mt1 = 3t1 + 3 < 4t1
edges in Gt1 :

pl,s1 ,s2

≤
t
1 / 6
0 t1 / 2∑

r=t−1
0 t1 / 2

4t1∑
d1 ,d2 =3

Pr [dt (s1) = r ∧ dt (s2) = r − l|dt1 (s1) = d1 , dt1 (s2) = d2 ]

(2)

≤ t
1/6
0 t1/2

4t1∑
d1 ,d2 =3

(
2t

1/6
0 t1/2

d1 − 1

)(
2t

1/6
0 t1/2

d2 − 1

)(
2t0 + 3
2t + 1

)(d1 +d2 )/2

× exp

(
3
2

+ t1 +
2t

1/6
0

3

)
(3)

≤ t
1/6
0 t1/2

4t1∑
d1 ,d2 =3

(
2t

1/6
0 t1/2

)d1 +d2 −2
(

2t0 + 3
2t + 1

)(d1 +d2 )/2

exp(2t1)

≤ t
1/6
0 t1/2e2t1 t21

(
2t

1/6
0 t1/2

)8t1 −2
(

2t0 + 3
2t + 1

)4t1

= t
4t1 /3+1/6
0 t−1/2e2t1 t212

8t1 (2t0 + 3)4t1

(
t

2t + 1

)4t1

= o

(
f (t)
t21
√

t

)
.

Note that we omitted the tedious calculation justifying the transition from (2)
to (3), since calculating the upper bound of the joint probability distribution is
very similar to the calculation of Pr [A1 ] in Lemma 4.2.
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Case 2: (s1 , s2) ∈ E(Gt). Observe that in any case, (s1 , s2) share at most two
faces (which may change over time). Note that the two connected vertices s1 , s2

share a common face only if s1 , s2 ∈ {1, 2, 3}.4 Consider the following modified
process Y′: whenever an incoming vertex “chooses” one of the two common faces,
we do not insert it. We choose two other faces that are not common to s1 , s2

and add one vertex in each of those. Notice that the number of faces increases
by 1 for both s1 , s2 as in the original process, and the difference of the degrees
remains the same. An algebraic manipulation similar to that in Case 1 gives the
desired result.
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