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Multicommodity Allocation for
Dynamic Demands Using
PageRank Vectors
Fan Chung, Paul Horn, and Jacob Hughes

Abstract. We consider a variant of the contact process concerning multicommodity allo-
cation. In this process, the demands for several types of commodities are initially given
at some specified vertices, and then the demands spread interactively in the contact
graph. To allocate supplies in such a dynamic setting, we use a modified version of
PageRank vectors, called Kronecker PageRank, to identify vertices for shipping sup-
plies. We analyze both the situation that the demand distribution evolves mostly in
clusters around the initial vertices and the case that the demands spread to the whole
network. We establish sharp upper bounds for the probability that the demands are
satisfied as a function of PageRank vectors.

1. Introduction

Efficient allocation of resources to meet changing demands is a task arising in
numerous applications. For example, institutions such as governments and corpo-
rations respond to the needs of a populace, and wish to meet the demands within
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a limited expenditure of resources. In some cases in which demand spreads, one
has to be able to act before demand becomes unmanageable. In the case of an
epidemic, for instance, it is desirable to find a way to distribute medicine so
that the disease can be contained. Such problems have been studied in several
contexts using the contact process model [Kiss et al. 06, Ganesh et al. 05, Borgs
et al. 10, Newman 02, Chung et al. 09]. In [Chung et al. 09], it was demonstrated
how to use PageRank vectors both to restrict the number of nodes inoculated
and to provide certain containment guarantees.

In this paper, we study a variant of the classical contact process, a continuous-
time Markov process on a contact graph. This model was previously used for
modeling the spread of disease. In our scenario, vertices in the graph each have
varying levels of demand for multiple commodities. Demand at a vertex propa-
gates to its neighbors at a rate depending on the current demand. Our model al-
lows for rich interactions between different commodities; for instance, demand for
one commodity can influence demand for another. This fits many scenarios that
arise. For example, the demand for iPhones may surpass the demand for iPads.

As another example, demand at a node can sometimes be viewed as a measure
of discontent with the current supply of a resource. It is natural for an unhappy
node to create unrest in its neighbors. As the contact process continues, the
demands at a vertex are increased based on the demands at neighboring vertices
and are decreased at a satisfaction rate, which can be thought of as a frequency
of shipments. The rates at which demand spreads will be a linear combination of
demands from neighboring vertices. These rates will be encapsulated as a spread
matrix B, roughly analogous to the infectivity parameter in the classical contact
process. The goal of this paper is to find satisfaction rates depending on the
spread matrix B and the geometry of the contact graph that ensure that all
vertices have no demand and the process dies out. This process will be defined,
in detail, in Section 2.

To satisfy the demands that evolve according to our model as defined in Sec-
tion 2, the goal is to ship commodities and supply to vertices with unsatis-
fied demands in an efficient way. The model here differs somewhat from typical
resource-allocation problems in the sense that we do not specify the location of
the “warehouses” for the supply. We will be concerned with neither the sources
of the supply nor the detailed incremental costs of shipping. Instead, our goal is
to identify how often to ship each commodity to a particular vertex in order to
contain and satisfy demand, given an initial seed set. The reader is referred to
[Chevaleyre et al. 06] for the classical resource-allocation problem.

After we describe the demand model in Section 2, we proceed to analyze
our supply scheme. First, we introduce the Kronecker PageRank in Section 3
based on the PageRank originally introduced in [Brin and Page 98]. Our analysis
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consists of two parts. First, we give conditions that ensure that all demand is
satisfied in O(log n) time with high probability, regardless of the initial demand.
This is a global solution in the sense that it involves “scheduling shipments”
to all vertices in the graph in a way that will be made precise once the model
is formally introduced in Section 2 and Theorem 4.1. Next, in Section 5, we
analyze a situation whereby shipments are scheduled to only a subset of vertices
containing the initial demand. In particular, when the contact graph has some
clustering structure, we are interested in subsets such that the demand within
the subset is satisfied quickly (in O(log n) time) and demands reach a vertex
not receiving shipments with low probability. Precise results in this direction are
given in Section 5.

Our analysis provides a tradeoff in the following sense: On the one hand, if one
would like to guarantee that the demand escapes a set with probability at most ε,
our results will allow us to use PageRank (or a sharper Kronecker PageRank as
defined in Section 3) to identify a subset of vertices to which supplies will be
shipped and provide a guarantee that this will be sufficient. On the other hand,
if one would like to send shipments to a particular set of vertices, then our
analysis in Theorem 5.3 allows a guaranteed bound on the escape probability
that depends on the clustering structure of the contact graph.

2. The Demand Model

We model the demand spreading along an undirected simple graph G = (V,E).
We write this v ∼ w when v and w are adjacent. For each vertex v ∈ V , let dv be
the degree of v, which is the number of neighbors of v. We adopt the convention
for this discussion that each vertex is adjacent to itself, and dv includes v in
the count of neighbors. We let n = |V |, the number of nodes of G. Let D be the
diagonal degree matrix with entries Dvv = dv , and let A be the adjacency matrix
with entries

Avw =

{
1, if v ∼ w,

0, otherwise.

A walk is a sequence of vertices (v0 , v1 , . . . , vk ), where vi ∼ vi+1. A random
walk of length k is a sequence of random variables (x0 , . . . , xk ), where the starting
vertex x0 is chosen according to some distribution, and

P (xi+1 = v | xi) =

{
1/dxi

, if xi ∼ v,

0 otherwise.

The transition probability matrix for a random walk on G is given by W = D−1A.
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If B is a k × k matrix and A an n × n matrix, then the Kronecker product
A ⊗ B is the nk × nk block matrix

A ⊗ B =

⎛
⎜⎜⎝

a11B · · · a1nB
...

. . .
...

an1B · · · annB

⎞
⎟⎟⎠ .

An exponential random variable with parameter λ has probability density
function given by f(x) = λe−λx for x ≥ 0, and 0 for x < 0. This distribution will
be denoted by Exp(λ). Exponential random variables are memoryless, that is, if
X is an exponential random variable, then for constants a, b > 0, one has

P (X > a + b | X > a) = P (X > b).

If X and Y are independent and X ∼ Exp(λ1), Y ∼ Exp(λ2), then
min{X,Y } ∼ Exp(λ1 + λ2). A Poisson point process at rate λ is a sequence of
random variables X1 ,X2 , . . . such that Xi − Xi−1 has distribution Exp(λ).

Before we describe our model, let us briefly recall the notion of a contact
process on a graph G, which we denote by CP(T, β,σ, G). In a contact process
(see, for example, [Borgs et al. 10] or [Chung et al. 09]), a disease initially infects
a set T ⊆ V (G). The disease has an infectivity parameter β, and each vertex has
a certain amount of “medicine” σv . Each infected vertex independently infects
its neighbors at times given by a Poisson point process at rate β, and each
infected vertex is cured at times given by a Poisson point process at rate σv . In
the most frequently studied case, σ is constant and the host graph is an infinite
graph. The process ends when all vertices are cured, and the basic problem is
to determine under what conditions on σ and β the process ends almost surely
(a.s.). In the case of finite graphs, if σv > 0 for every vertex, it is easy to observe
that the process ends a.s., so the problem becomes determining how fast the
process ends.

The k-commodity dynamic demand model on a graph G is a variant of the
contact process, DD(τ (0), B,σ, G). In this situation, the spread matrix B is a
k × k real matrix (not assumed to be symmetric or even nonnegative) along
with a supply function σ : V → R k and the initial demand τ (0) : V → N k . At
time t, each node v has demand τ v (t) ∈ N k , with each coordinate representing a
different product in demand. A node v is said to be satisfied at time t if τ v (t) = 0,
and unsatisfied otherwise. The state of the process is described by the demand
vector τ , where τ j

v (t) is the demand for commodity j at node v at time t.
The spread matrix B = [βij ] describes how the demand for one commodity

influences demands for other commodities. The i, j entry of B, βij , determines
the spread rate of the demand for commodity j that is caused by demand for
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commodity i. In particular, we can describe the rate of spread events as follows.
If v is a node that is unsatisfied at time t, and w an adjacent vertex, then there
are spread events from v to w with rates max{τ v (t)B, 0}. That is, the rate at
which τ j

w increases due to the demand at v is given by max{∑i τ i
v (t)βij , 0}. Here,

when we say that an event occurs with rate λ, we mean that the elapsed time
until that event takes place is distributed as Exp(λ). Because the minimum of
exponential random variables is itself an exponential random variable, we can
capture the total spreading rates in a condensed form. We define the rate function
ρ(t) : V → R k at time t by

ρv =
∑
w∼v

τw (t)B = (τ (t)(A ⊗ B))v ,

where τ (t) is viewed as a vector with indices indexed by V × k, and ρi
v (t) is the

rate at which τ i
v is increasing at time t.

Supply events occur with rates given by τ (t)Diag(σ), independently of any
neighboring supply events. That is, the time until τ i

v is decreased by 1 is dis-
tributed as Exp(σi

v τ i
v ).

We briefly give a construction of the process to show that it is well defined.
Let

−→
E denote the set of ordered edges, that is, ordered pairs that are edges in

the graph, so that uv and vu are distinct. We run independent Poisson point
processes

{Xj,ρ
e }

e∈−→E (G),j∈[k ],ρ∈N k ,

so that Xj,ρ
e is at rate max{0, [τ vB]j}, and independent Poisson point processes

{Xi,n
v }v∈V (G),i∈[k ],n∈N ,

so that Xi,n
v is at rate nσi

v . Then these countably many point processes can easily
be seen to define the entire process; a spread event of type j from a vertex v to
a vertex u that is currently in state ρ is controlled by the point process Xj,ρ

vu ,
with satisfaction events handled similarly.

An advantage of such a formulation is that it gives an easy coupling be-
tween processes that shows that if B′ ≤ B pointwise, then the stochastic process
DD(τ (0), B,σ, G) stochastically dominates DD(τ (0), B′,σ, G) in the sense that
in the coupling, the demands in the B process are always at least those in the B′

process. This can be seen by noting that the rates satisfy ρB ≥ ρB′ pointwise for
all ρ ∈ N l . We thus take point processes Y j,ρ

e at rate [ρB − ρB′]i . If the point pro-
cesses {Xj,ρ

e } and {Xi,n
v } are used to determine DD(τ (0), B,σ, G), then the point

processes {Xj,ρ
e ∪ Y j,ρ

e } and {Xi,n
v } are used to determine DD(τ (0), B′,σ, G).

In particular, this allows us to replace B with B′, where B′
ij = max{Bij , 0},

and conclusions about the extinction of the B′ process still hold for B.



54 Internet Mathematics

Furthermore, this turns out not to be entirely unreasonable; one hopes that
the negative entries in B will afford better bounds on the extinction time, but in
many cases with negative entries in B, extinctions of some demand types mean
that the process is eventually run in a nonnegative case. In light of this, we will
hereinafter assume for convenience that B is nonnegative.

Given an initial demand τ (0) and spread matrix B, our goal is to find a supply
function σ such that demand is satisfied. Ideally, we would like to do this with
small supply rates. Furthermore, the supply rates should depend only on the
contact graph G, the spread matrix B, and the initial demand τ (0), but not on
t or τ (t).

3. The Kronecker PageRank

The notion of PageRank was first introduced in [Brin and Page 98] for Google’s
search algorithms. Although PageRank was originally used for the Web graph,
we can define the PageRank for any finite graph G. Here we will use a modified
version of PageRank, called personalized PageRank, which has two parameters,
a jumping constant α ∈ [0, 1] and a seed s, which is some probability distribution
on the vertex set V of G.

The personalized PageRank vector pr(α, s) for jumping constant α and seed
distribution s on V is given by

pr(α, s) = α

∞∑
l=0

(1 − α)lsWl.

Note that here we view s as a row vector, which will be our convention for all
vectors throughout this paper. We note that the PageRank vector is also the
solution to the recurrence relation

pr(α, s) = αs + (1 − α)pr(α, s)W.

The original definition of PageRank [Brin and Page 98] is the special case in
which s is the uniform distribution over all the vertices.

For a subset of vertices H ⊂ V , the volume of H is the sum of degrees of the
vertices of H. The Cheeger ratio h(H) of H measures the cut between H and
its complement H̄ via the relationship

h(H) =
e(H, H̄)

min{vol(H), vol(H̄)} .
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The α-core of a subset H is the set of vertices

Cα =
{

v ∈ H | pr(α, 1v )1H ≥ 1 − h

α

}
.

A basic tool for analyzing PageRank is the fact (see [Andersen et al. 07]) that
for a subset with Cheeger ratio h, we can choose α, say α = h/2, such that at
least half of the vertices of H are in the α-core of H. Therefore, if the seed is
in the α-core of H, then we can use PageRank to identify a large part of H.
Another advantage of using PageRank is the fact that there are very efficient
algorithms for approximating PageRank vectors [Andersen et al. 07].

One tool that we will use to understand the k-commodity dynamic demand
model will be the Kronecker PageRank vector, which we define below. This is a
generalization of the personalized PageRank vector.

Definition 3.1. (Kronecker PageRank.) Let B be a k × k matrix with spectral radius
strictly less than 1, and let W be the transition matrix for a random walk on
a graph G. Let s be a nonnegative vector in R k×|V |. The Kronecker PageRank
vector with parameters B and s is defined as

Kpr(B, s) =
∞∑

l=0

s(W ⊗ B)l =
∞∑

l=0

s(Wl ⊗ Bl).

The requirement that the spectral radius of B be less than 1 is necessary
to ensure convergence of the infinite sum, since the spectrum of W ⊗ B is the
product of the spectra of W and B. Since the eigenvalues of W have absolute
value at most 1, the sum will converge.

We note that when B is a 1 × 1 matrix B = β < 1 and s is a probability
distribution, then we have the relationship

Kpr(B, s) =
∞∑

l=0

s(W ⊗ β)l =
∞∑

l=0

sβlW l =
1

1 − β
pr(1 − β, s),

so the Kronecker PageRank is a natural extension of personalized PageRank. We
will see in Theorem 5.3 that the Kronecker PageRank will arise naturally in our
analysis in Section 3 and give better bounds than those afforded by standard
PageRank by incorporating the spread matrix. We remark that the Kronecker
PageRank vectors can be efficiently computed and approximated along the same
lines as those for the usual PageRank.

For a square matrix A, there are many different matrix norms that can be used
(see [Horn and Johnson 90]). We will use the following notation for the following
norms:
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1. ‖A‖1 =
∑

i,j |aij | is the 	1 norm.

2. |||A|||1 = maxj

∑
i |aij | is the maximum column sum norm.

3. |||A|||∞ = maxi

∑
j |aij | is the maximum row sum norm.

4. |||A|||2 = max
{√

λ | λ is an eigenvalue of A∗A
}

is the spectral norm.

4. Global Analysis: Supplying Every Vertex

Here we show that if supply rates are above a certain threshold, then with prob-
ability approaching 1, demands will be satisfied.

Theorem 4.1. Consider the k-commodity demand model on a graph G with n vertices
parameterized by spread matrix B = [βij ]. If the supply rates to each vertex v are

σi
v > dv

(∑
j

βij + βji

2

)
+ δ

for δ > 0, then with probability 1 − ε, all vertices are satisfied at time t for all

t >
1
δ

(
1
2

log(nk) + log(X(0)) + log
(

1
ε

))
.

Proof. We consider the expectation E [τ (t)]. Let X(t) = ‖τ (t)‖1 , the total demand
at time t. We will begin by considering the quantity ∂

∂ t E [τ (t)].
From the discussion in Section 2, we know that demand is increasing with

rates given by ρ(t) = τ (t) (A ⊗ B), but also demand decreases according to the
supply rates. Let S = diag(σ), the diagonal nk × nk matrix with entries given
by the supply vector. Then we can see that demand decreases at each vertex
according to rates given by the supply rate vector τ (t)S.

To proceed, we need the following two well-known and simple facts concern-
ing exponentially distributed random variables. We use the notation f(h) =
0h→0(g(h)) to indicate that f(h) ≤ Cġ(h) for h sufficiently small.

Suppose X is an exponentially distributed waiting time with rate λ. Then

P (X < h) = λh + Oh→0(h2),

which follows from the fact that the probability that an exponential waiting time
is at most h is given by∫ h

0
λe−λh = 1 − e−λh = λh + Oh→0(h2).
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As an immediate consequence, we see that if X and Y are independent expo-
nentially distributed waiting times with rates λ1 , λ2 , then

P (X,Y < h) = Oh→0(h2). (4.1)

Using these two facts, we will show that we can neatly encode the behavior of
the k-commodity demand model in a single differential equation. Fix a vertex v

and commodity i. We will show that

∂

∂t
E [τ i

v (t)] = [E [τ (t)](A ⊗ B − S)]iv .

To do this, we compute the derivative by the definition; that is, we compute

lim
h→0

E [τ i
v (t) − τ i

v (t + h)]
h

.

To do so, consider the conditional expectation E [τ i
v (t) − τ i

v (t + h) | τ (t)].
Note that by (4.1), the probability that two independent events (two spread
events, two satisfy events, or a spread and a satisfy event) occur is Oh→0(h2).
On the other hand, given a neighbor u of v and a commodity j, the probability
of a spread event originating from this neighbor and commodity in time (t, t + h)
is exactly Bjiτ

j
u (t)h + Oh→0(h2). Likewise, the probability of a satisfaction event

in this time is τ i
v (t)σi

vh + Oh→0(h2). Linearity of expectation yields

E [τ i
v (t) − τ i

v (t + h) | τ (t)] = τ (t)(A ⊗ B − S)h + o(h2).

Applying the tower property of conditional expectation yields the result for
this vertex v and commodity i. Since this holds for all choices of v and i, we
obtain the single equation

∂

∂t
E [τ (t)] = E [ρ(t) − τ (t)S] = E [τ (t)](A ⊗ B − S).

Solving the matrix differential equation with initial condition E [τ (0)] = τ (0)
yields

E [τ (t)] = τ (0)et(A⊗B−S ) .

Let Q = A ⊗ B − S. Then by [Dahlquist 59],
∣∣∣∣∣∣etQ

∣∣∣∣∣∣
2 ≤ etν , where ν is the

largest eigenvalue of (Q + Q∗)/2. We note that

Q + Q∗

2
= A ⊗

(
B + B∗

2

)
− S,

which has diagonal terms βii − σi
v ranging over all values of v and i. By the

Gershgorin circle theorem, the eigenvalues of (Q + Q∗)/2 are contained in the
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intervals[
−(dv − 2)βii − dv

(∑
j �=i

βij + βji

2

)
− σi

v , dv

(∑
j

βij + βji

2

)
− σi

v

]
.

Since

σi
v > dv

⎛
⎝∑

j

βij + βji

2

⎞
⎠ + δ,

all the eigenvalues of (Q + Q∗)/2 are less than −δ. Therefore,

E [X(t)] =
∥∥∥τ(0)et(A⊗B−S )

∥∥∥
1
≤

√
nk

∥∥∥τ(0)et(A⊗B−S )
∥∥∥

2

≤
√

nk ‖τ(0)‖2

∣∣∣∣∣∣∣∣∣et(A⊗B−S )
∣∣∣∣∣∣∣∣∣

2
≤

√
nk ‖τ(0)‖1 etν ≤

√
nkX(0)e−tδ .

Thus Markov’s inequality gives that P (X(t) > 0) < ε if

t >
1
δ

(
1
2

log(nk) + log(X(0)) + log
(

1
ε

))
.

We note that this approach works for all initial distributions τ (0). This indi-
cates that in many situations, this approach may be overkill and that we could
have used smaller supply rates. In the next section, we analyze the process more
carefully and give conditions that depend on the initial distribution of demand.

5. Local Analysis: Supplying a Small Subset

For the remainder of the discussion, it is convenient to introduce a reformulation
of the model that takes advantage of the fact that demands take on integer
values. Rather than view demands as a function τ : V → N k , we view demands
as discrete objects sitting on each node. Borrowing language from chip-firing
games on graphs (see, for example, [Merino 05]), we view units of the demand as
chips located on vertices of the graph. For example, if k = 7 and for a vertex v,
we have τ v (t) = (0, 1, 2, 0, 2, 0, 3), then we would say that at time t, there were
one 2-chip, two 3-chips, two 5-chips, and three 7-chips at vertex v, corresponding
to one “unit of demand” for commodity 2, and so on.

In contrast to classical chip-firing games, the number of chips is not static, and
the game is parameterized by continuous time. We restate the possible transitions
in terms of demand chips. For an i-chip at vertex v, there are two types of
transition events:
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1. For each vertex w ∼ v and each j = 1, . . . , l, a j-chip is added at w at
rate βij . When this occurs, we say that the new j-chip is created by the
i-chip.

2. The i-chip itself is removed at rate σi
v .

It is important to note that due to the properties of exponential random
variables, the rates add linearly, and the model is equivalent to the original
description discussed in Section 2. The main advantage of this reformulation is
the ability to trace back the history of a chip. If there is a chip cl at vertex vl

at time t, then either c existed at time t = 0 or there is a sequence of l + 1 chips
(c0 , . . . , cl) located at vertices along a path π = (v0 , v1 , . . . , vl), where c0 existed
at t = 0, and cr is created by cr−1 for r = 1, . . . , l. We allow π to have repeated
vertices to allow for the case in which demand created more demand at the same
vertex. If a chip c exists at time 0, we refer to it as an initial chip.

For a path π = (v0 , v1 , . . . , vl) and a chip c0 located at v0 , we define the event
Sπ ,c0 to be the event that there is a sequence of l + 1 chips (c0 , . . . , cl) located
respectively at (v0 , v1 , . . . , vl), and cr is created by cr−1 for r = 1, . . . , l.

It is important to note that Sπ ,c0 occurring does not imply that there is any
demand at vl at time t, because it could have been satisfied at some time before
t. However, if there is a demand at vl at time t, then Sπ ,c must have occurred
for some initial chip c at vertex v0 and some walk π from v0 to vl .

We begin by showing that if supply rates are large enough, then the probability
of demands spreading along a long walk is small. Inspired by Theorem 4.1, we
make the assumption that supply rates are proportional to the degree of the
vertices. That is, we assume that σi

v > μi(dv ) for all v for constants μi > 0.

Lemma 5.1. Let M = diag(μ1 , . . . , μk ), B̂ = M−1B and ζ = min{|||B̂|||1 , |||B̂|||∞}.
Then for every chip c0 located at v0 and every walk π = (v0 , . . . , vl) of length l,
we have

P (Sπ,c0 ) ≤ k

l∏
j=0

1
dvj

ζl .

Proof. Let Sr denote the event that a chip cr at vr creates a chip at vr+1. If cr

is an i-chip, then for it to create any chip at vr+1, a spread event must occur
before cr is removed. The time until cr creates a j-chip at vr+1 is an exponential
random variable with rate βij . Since the time until cr is removed is given by
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Exp(σi
v ), the probability of cr creating a j-chip is

βij

βij + σi
v

≤ βij

σi
v

<
βij

μidvr

.

Thus

P (Sr ) <
∑
i,j

βij

μidvr

=
1

dvr

1B̂1∗.

For a walk π of length l, we want to consider the intermediate steps more
carefully. Since there are l transitions that occur, we can use the same reasoning
as above to obtain the bound

P (Sπ,c) <

l∏
r=0

1
dvr

1B̂l1∗ =
l∏

r=0

1
dvr

‖B̂l‖1 ≤ k

l∏
r=0

1
dvr

∣∣∣∣∣∣∣∣∣B̂l
∣∣∣∣∣∣∣∣∣

1
≤ k

l∏
r=0

1
dvr

∣∣∣∣∣∣∣∣∣B̂∣∣∣∣∣∣∣∣∣l
1
.

The factor of k that appears in the final lines above is just a consequence
of switching from the vector 1-norm ‖B̂l‖1 to the maximum column sum norm
|||B̂l |||1 (see [Horn and Johnson 90]).

We could just as easily have switched to the maximum row sum norm and
obtained the term k|||B̂|||l∞, and so it follows that

P (Sπ,c) < min
{

k
l∏

r=0

1
dvr

∣∣∣∣∣∣∣∣∣B̂∣∣∣∣∣∣∣∣∣l
1
, k

l∏
r=0

1
dvr

∣∣∣∣∣∣∣∣∣B̂∣∣∣∣∣∣∣∣∣l
∞

}
= k

l∏
j=0

1
dvj

ζl .

We note that the decision to use ζ = min{|||B̂|||1 , |||B̂|||∞} in Lemma 5.1 reflects
the difficulty in working with arbitrary spread matrices B. For certain classes of
spread matrices (e.g., if B is symmetric or diagonalizable), it is possible to obtain
tighter bounds. While the previous lemma will be useful in obtaining a bound
using PageRank, a more careful analysis is possible that will lead naturally to
use of Kronecker PageRank, which we explore in Theorem 5.3.

Theorem 5.2. Suppose that initial demand is contained in S ⊂ H ⊂ V , and each
vertex v ∈ H has supply rates σi

v > μidv and σi
w = 0 for w ∈ H̄. Let M =

diag(μ1 , . . . , μk ), B̂ = M−1B, and ζ = min{|||B̂|||1 , |||B̂|||∞}. Let x(t) be defined
by xv (t) =

∑
i τ i

v (t), and X(t) = ‖x(t)‖1 = ‖τ (t)‖1 . Let EH denote the event that
demands spread outside the set H. Then:

1. P (EH ) ≤ X (0)
ζ pr

(
1 − ζ, x(0)

X (0)

)
1∗̄

H
.

2. If S in the (1 − ζ) core of H, then P (EH ) ≤ 2X (0)h(H )
ζ (1−ζ ) , where h(H) is the

Cheeger ratio of H.
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Proof. Let Pl denote the set of all paths of length l from an initial chip in S to H̄

such that the first k − 1 steps are in H. Let P =
⋃∞

l=1 Pl . The key observation
is that if w ∈ H̄ ever has demand, then Sπ,c must have occurred for some initial
chip c and path π from the location of c to w. Thus we can use the union bound
to get that

∑
π∈P

P (Sπ,c) ≤
∑

l

∑
(π ,c)∈Pl

P (Sπ,c)

≤
∑

l

∑
v0 ∈S

∑
c at v0

∑
vl ∈H̄

∑
π=(v0 ,...,vl )∈Pl

P (Sπ,c)

≤
∑

l

∑
v0 ∈S

∑
c at v0

∑
vl ∈H̄

∑
π=(v0 ,...,vl )∈Pl

ζl
l∏

r=0

1
dvr

=
∑

l

x(0)ζl(D−1A)l1∗̄H =
∑

l

x(0)ζlW l1∗̄H

=
X(0)

ζ
pr

(
1 − ζ,

x
X(0)

)
1∗̄H ,

proving the first statement. The second statement follows the same proof as
[Chung et al. 09, Theorem 3.2].

Theorem 5.3. Suppose that the initial demand is contained in S ⊂ H ⊂ V , and each
vertex v ∈ H has supply rates σi

v ≥ μidv . Let M = diag(μ1 , . . . , μk ), B̂ = M−1B,
and ζ = ‖B̂‖1 . Let X(t) = ‖τ (t)‖1 , the total number of demands at time t. Let
EH denote the event that demands spread outside the set H. Then EH can be
bounded above using the Kronecker PageRank vector via the relationship

P (EH ) ≤ X(0)Kpr
(

B̂,
τ(0)
X(0)

)
1H̄ .

Proof. Let f be a vector indicator function of commodity type on chips, that is,
f(c) = ei if c is an i-chip, where ei denotes the ith standard basis vector for R k .
Let C0 denote the set of initial chips. By the same methods that were used in
the proof of Lemma 5.1, we can bound the probability that demand originating
from c ever spreads along a path π = (v0 , v1 , . . . , vl) by the sum

P (Sπ ,c) ≤ f(c)B̂l1∗
l∏

r=0

1
dvr

.
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Therefore, using the same technique as in the proof of Theorem 5.2, we obtain
the bound∑

π∈P

P (Sπ ,c) ≤
∑

l

∑
u∈S

∑
π∈Bl

P (Sπ ,u ) ≤
∑

l

∑
c∈C0

∑
vl ∈H̄

∑
π=(v0 ,...,vl )∈Pl

P (Sπ ,u )

≤
∑

l

∑
c∈C0

∑
vl ∈H̄

∑
π=(v0 ,...,vl )∈Pl

f(c)B̂l1∗
l∏

r=0

1
dvr

=
∑

l

τ(0)(D−1A ⊗ B̂)l1H̄

=
∑

l

τ(0)(W ⊗ B̂)l1H̄ = X(0)Kpr
(

B̂,
τ(0)
X(0)

)
1H̄ .

Let St denote the event that all of the vertices are satisfied at time t. In order to
complete the analysis of the local case, we would like to bound P (St |EH ), where
EH is as in Theorems 5.2 and 5.3. Such a bound is not immediately given by
Theorem 4.1, but obtaining one is not difficult. To derive a bound on P (St |EH ),
consider running a modified Dirichlet version that is identical to the standard
process with the same supply rates, except demand leaving H is ignored. Let S′

t

denote the event that in the Dirichlet process, all of the events are satisfied at
time t. Then P (S′

t) can be bounded directly by Theorem 4.1, since this Dirichlet
process restricted to vertices in H is the standard process on H. Furthermore,
P (St ∩ EH ) ≤ P (S′

t). Therefore,

P (St |EH ) =
P (St ∩ EH )

P (EH )
≤ P (S′

t)
P (EH )

.

Combining this observation along with Theorems 5.2 and 5.3 yields that the
probability of escape from H is bounded, and if the process does not escape
from H, it dies quickly.

Theorems 5.2 and 5.3 can be used in two different ways. As stated, they
provide a way to bound the probability that demands escape from a given subset.
However, they can be also used to construct such a bounding subset. For example,
given initial demand τ (0) contained in an initial set of vertices S ⊂ V , we can
algorithmically construct H such that demand stays in H with probability 1 − ε

as follows. We do this by constructing an increasing family of subsets {Hr}. We
begin by setting H0 = S and

pr =
X(0)

ζ
pr

(
1 − ζ,

τ (0)
X(0)

)
.

Then we follow the following procedure:
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1. Compute f(r) = 〈pr,1∗
H̄r

〉.
2. If f(r) < ε, set H = Hr and end the process.

3. If f(r) ≥ ε, let Hr+1 = Hr ∪ v for some v �∈ Hr , and return to step 1.

This process will eventually terminate, since |Hr+1 | = |Hr | + 1, and f(r) = 0
once Hr = V .

6. An Example on a Random Geometric Graph

We conclude with an example calculation on synthetic data. Our graph G is an
instance of a random geometric graph.

Two hundred vertices were placed uniformly at random in a unit square, and
two vertices are adjacent if the distance between them is less than 0.13 units.

Figure 1. A comparison between Theorems 5.2 and 5.3 on a random geometric
graph.
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We let k = 3 and

B =

⎛
⎜⎝

0.4 0.2 0.3
0.2 0.3 0.4
0.3 0.4 0.5

⎞
⎟⎠ .

The initial demand is given by τ j
v (0) = 1 for all commodities for the vertices

marked by triangles, and τ j
v (0) = 0 for all other vertices. In addition, we set

μi = 3 for all i.
We demonstrate the difference between Theorems 5.2 and 5.3 in the following

way. Figure 1 shows the graph G. The demands start in the triangular vertices
and spread outward from there. Theorem 5.3 states that with 95% probability,
demands stay in the square vertices. Theorem 5.2 states that with 95% prob-
ability, demands stay in the diamond and square vertices. This small example
illustrates how Kronecker PageRank can be used to obtain improved results.
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