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Communities, Random Walks,
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Abstract. Sybil attacks, in which an adversary forges a potentially unbounded number
of identities, are a danger to distributed systems and online social networks. The goal
of sybil defense is to accurately identify sybil identities.

This article surveys the evolution of sybil defense protocols that leverage the struc-
tural properties of the social graph underlying a distributed system to identify sybil
identities. We make two main contributions. First, we clarify the deep connection be-
tween sybil defense and the theory of random walks. This leads us to identify a com-
munity detection algorithm that, for the first time, offers provable guarantees in the
context of sybil defense. Second, we advocate a new goal for sybil defense that addresses
the more limited, but practically useful, goal of securely white-listing a local region of
the graph.

1. Introduction

The possibility that malicious users may forge an unbounded number of
sybil identities, indistinguishable from honest ones, is a fundamental threat to
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distributed systems that rely on voting [Douceur 02]. This threat is particularly
acute in decentralized systems, where it may be impractical or impossible to
rely on a single authority to certify which users are legitimate [Margolin and
Levine 05]. The goal of sybil defense is to accurately identify sybil identities1—
“ideally, the system should accept all legitimate identities but no counterfeit
entities” [Douceur 02]—but simple techniques can be either too brittle (beat-
ing a Completely Automated Turing Test to tell Computers and Humans Apart
[CAPTCHA; Von Ahn et al. 03] costs a fraction of a cent) or too blunt (IP
filtering penalizes all users behind a Network Address Translation [NAT]).

Against this background, Yu et al. have put forward a radically different ap-
proach [Yu et al. 06, 08]: protecting a distributed system by leveraging the social
network that connects its users. Intuitively, as long as sybil identities are unable
to create too many attack edges connecting them to honest identities, it may
be possible to separate the wheat from the chaff by analyzing the topological
structure of the users’ social graphs. This style of sybil defense2 promises not
only to be more surgical, but offers a mathematically precise and elegant way to
characterize the robustness of a sybil defense technique in terms of the number
of attack edges it can handle. The vision is to offer universal sybil defense to
all honest nodes in the system: as long as the social graph conforms to certain
assumptions, an honest node will correctly classify almost all honest nodes in
the graph while rejecting all but a bounded number of sybil nodes [Yu et al. 08].

Several protocols that embrace this style of sybil defense have since been pro-
posed [Yu et al. 06, Danezis and Mittal 09, Tran et al. 11, Wei et al. 12, Cao
et al. 12], and higher-level distributed applications that rely on them are begin-
ning to emerge [Lesniewski-Laas 10, Lesniewski-Laas and Kaashoek 10, Quercia
and Hailes 10, Tran et al. 09].

The first goal of this work is to examine the promise and the fundamental limits
of universal sybil defense. Indeed, as [Viswanath et al. 10] pointed out in their
recent analysis of social network-based sybil defenses it is not known whether
“there are fundamental limits to using only the structure of social networks to
defend against Sybils.”

We offer a first answer to this question by establishing both precise theoretical
bounds on the resilience of several well-known social network properties that

1 Although this goal may be more accurately characterized as sybil detection [Viswanath
et al. 12a], we use here the term sybil defense originally proposed by [Yu et al. 08] and widely
adopted in the literature.

2 Henceforth, mentions of sybil defense, unless specified otherwise, refer to techniques that
leverage the structure of social networks.
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have been leveraged in the context of sybil defense and by evaluating in depth
the validity of the social defense vision.

As we shall see, at the core of social sybil defense are a set of assumptions
about the structure of a social graph under sybil attacks that, in essence, amount
to modeling the social graph as consisting of two sparsely connected regions:
one comprised of sybil nodes, and the other of honest nodes, homogeneously
connected with one another. We will discuss several studies, including our own
experimental results, suggesting that this representation of the world lacks essen-
tial nuance. Rather, the evidence suggests that although honest entities in social
graphs do organize in tightly knit overlapping communities, those communities
together form a network that, as a whole, is more vulnerable than each single
community.

Our second goal for this study is to advocate a realignment of the focus of sybil
defense to leverage effectively the robustness of communities to sybil infiltration.
The intuition that motivates us is not new. Prior work has suggested casting
sybil defense as a community detection problem [Viswanath et al. 10] and asked
whether it is possible to use off-the-shelf community detection algorithms to find
sybil nodes. On this front, we make two contributions. First, we show that this
approach requires extreme caution, as the choice of the community detection pro-
tocol can dramatically affect whether sybil nodes are accepted as honest. Second,
we identify the mathematical foundations on which the connection between sybil
defense and community detection rests: we identify a well-founded theory and
point to established literature to guide the development of future sybil defense
protocols.

Our conclusion is that instead of aiming for universal coverage, sybil defense
should settle for a more limited goal: offering honest nodes the ability to white-list
a set of nodes of any given size, ranked accordingly to their trustworthiness. We
believe that this is a good bargain, and not just because it results in a goal that,
unlike its alternative, is attainable, but because (i) the guarantees it provides
are, in practice, what nodes that engage in crowd-sourcing [Yuen et al. 11] or
cooperative peer-to-peer (P2P) applications [Pouwelse et al. 05, Cox and Noble
03] need, and (ii) the computational cost of providing these guarantees depends
only on the size of the desired white-listed set rather than, as in techniques that
aim for universal sybil defense, on the total number of identities in the network.

As a first concrete step toward fulfilling the new goal, we propose for sybil
defense, we present the first community detection algorithm that offers provable
guarantees in the context of sybil defense. Perhaps surprisingly, the algorithm is
based directly on an application, in a context much different from which it was
originally designed, of the random walk algorithm of [Andersen et al. 07].
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Despite these advances, we believe that it is important to acknowledge that,
however narrowing, a nontrivial gap still exists between the assumptions neces-
sary to support the theory behind the current state-of-the-art sybil defense and
the reality of sybil attacks encountered in the wild.

For example, evidence from the RenRen social network [Yang et al. 11] shows
attacks that differ from what current sybil defenses anticipate and that, despite
their simplicity, can be devastating.

The final goal of this work is to suggest that a promising way to address this
challenge is through defense in depth, where early defense layers (of which we
sketch a few) are designed to catch the simple sybil subgraphs where defenses
based on community detection techniques fail and, as a side effect, to “nudge” the
attacker toward precisely those settings where these techniques can effectively
detect sybil nodes.

1.1. Roadmap

This article proceeds as follows. Section 2 examines four structural properties of
social graphs (popularity, small-world property, clustering coefficient, and con-
ductance) that have been previously leveraged by sybil defense and asks: which
can better serve as a foundation for sybil defense? The answer, we find, is conduc-
tance, a property intimately related to the concept of mixing time of a random
walk. We then proceed in Section 3 to discuss protocols that exploit variations
in conductance as a basis for decentralized universal sybil defense [Danezis and
Mittal 09, Tran et al. 11, Wei et al. 12, Yu et al. 06, 08]. These protocols pro-
vide elegant worst-case guarantees when it comes to their vulnerability to sybil
attacks, but these guarantees are critically sensitive to a set of assumptions that
do not appear to hold in actual social networks [Bilge et al. 09, Leskovec et al.
08, Mohaisen et al. 10]. This motivates us to explore, beginning with Section 4,
an alternative goal for sybil defense that leverages two observations: (i) social
graphs have an internal structure organized around tightlyknit communities and
(ii) the graph properties crucial for sybil defense are significantly more likely
to hold within a community rather than in the entire social graph. Section 5
reviews recent work on the theory of random walks that provides a solid theo-
retical foundation to sybil defense based on community detection; we deepen our
investigation of random walks in Section 6, where we show how the well-known
concept of Personalized PageRank (not to be confused with PageRank itself) of-
fers honest nodes a path toward a realistic target for sybil defense, more limited
than universal coverage but nonetheless useful: a way to white-list trustworthy
nodes that proves efficient and robust in both theory and practice. Section 7
greets us with a sobering result: in spite of their sophistication, state-of-the-art
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sybil defense protocols seem helpless against very crude real-life sybil attacks.
There is reason for hope (and future research), however: we show that sybil de-
fense protocols based on random walks continue to be effective when used in
combination with very simple checks that leverage structural properties of the
social graph other than conductance. Section 8 offers our conclusions and points
to directions for future research.

2. Foundations of Sybil Defense via Social Networks

Sybil defense via social networks is predicated on the assumption that it is pos-
sible to leverage the structural properties of the social graph G underlying a
distributed system to differentiate the subgraph H comprising only of honest
nodes from the sybil subgraph S. In this section, we ask a basic question: which
structural property, if any, holds the greatest promise toward defending against
sybil attacks?

We consider (and briefly review below) four well-known structural properties
of a social graph: the popularity distribution among its nodes, the small-world
property, the graph’s clustering coefficient, and its conductance [Barabási and
Albert 99, Watts and Strogatz 98, Leskovec et al. 08]. We focus on these particu-
lar properties because of their prominence in social network analysis and because
they have been used to defend against sybil attacks.3 The literature on social
graphs discusses several other properties (including assortativity [Newman 03],
betweenness centrality [Freeman 77], and modularity [Newman and Girvan 04])
that we do not consider: we see this paper as a first step towards a comprehen-
sive characterization of the defensive powers of the structural properties of social
graphs.

2.1. Structural Properties of Social Graphs

Popularity: The node degree distribution of social graphs is heavy-tailed, as in a
power-law or lognormal distribution.

Small-world property: The diameter of a social graph—i.e., the longest distance
between any two nodes in the graph—is small.

Clustering coefficient: A measure of how closelyknit social networks are. When
we associate the vertex of a social network with the user that it represents,

3 More specifically: conductance is at the heart of social network-based sybil defense [Yu
et al. 06]; the clustering coefficient has been used for sybil defense in a recent work [Yang
et al. 11]; node degrees are used as a feature in a recent defense technique based on machine
learning [Yang et al. 13]; and the distance between nodes plays a fundamental role in other
recent defense schemes [Xu et al. 10, Viswanath et al. 12b].
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the clustering coefficient is the ratio between the actual number of friendships
between the friends of a user and the number of all possible friendships between
them.

Formally, let fv denote the actual number of edges between neighbors of a
vertex v, i.e.,

fv := |{xy : x ∈ Nv , y ∈ Nv , xy ∈ E},
where Nv denotes the set of neighbors of v, and let k be the maximum number
of edges between neighbors of v:

k =
(

deg(v)
2

)
,

where deg(v) denotes v’s degree. Then,

cv :=
fv

k
.

The clustering coefficient of a graph is the average clustering coefficient of all its
vertices, i.e.,

c(G) :=
1
|V |

∑
v∈V (G)

cv .

Conductance: Intuitively, the conductance φ(C) of a set C of vertices in a given
network G = (V,E) is the ratio between the number of edges going out from C

and the number of edges inside C. More precisely, given a set of vertices C, the
conductance of the set is defined as

φ(C) :=
|cut(C)|
vol(C)

,

where the volume of C, vol(C), is defined as the sum of the degrees of the vertices
in C

vol(C) :=
∑
v∈C

deg(v),

and the cut induced by C is the set cut(C) of edges with one endpoint in C and
the other endpoint outside of C,

cut(C) := {uv ∈ E : u ∈ C, v ∈ V − C}.
Finally, the conductance of a graph G is defined as

φ(G) := min
vol(C )≤|E |

φ(C).
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The conductance of a graph is tightly related to its mixing time [Sinclair 92],
a property that is at the core of many solutions developed to date for sybil de-
fense [Yu et al. 06, 08]. Informally, the mixing time of a graph measures how fast
a random walk approaches the stationary distribution. A more precise definition
relies on a few important notions about random walks, which we now quickly
review.

Given an undirected graph G = (V,E) we define the uniform random walk in
G as the random walk defined by the following transaction probability matrix:

P (u, v) =

{
1

deg(u) if uv ∈ E,

0 otherwise.

It is a well-known result of the theory of Markov chains (see for instance [Mitzen-
macher and Upfal 05]) that any connected, non-bipartite graph has a unique
stationary distribution π that depends only on the degree of the nodes:

π(v) =
deg(v)
vol(V )

.

Hence, if P t(u, v) is the probability of reaching node v from node u after a
t-step-long random walk, we have that for all u and v

lim
t→∞P t(u, v) = π(v).

Assume now to start a random walk at a given node u and to perform t steps.
The variation distance Δu (t) measures how closely the probability distribution
of the endpoint approximates the stationary distribution

Δu (t) =
1
2

∑
v

|P t(u, v) − π(v)|.

We are finally ready to formalize the notion of mixing time.

Definition 2.1. (Mixing time). The mixing time T (ε) of a random walk, for any ε > 0, is
given by

T (ε) = max
u∈V

min
t
{t : Δu (t) < ε}.

A crucial assumption underlying most of the work in social sybil defense
[Mohaisen et al. 10] is that social networks are fast mixing, i.e., that their mix-
ing time is T (ε) = min(log(n), log( 1

ε )), where n is the number of vertices. For
ε = Θ( 1

n ), this implies a mixing time T (ε) = O(log(n)). We define τ as T ( 1
n ).
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As we have mentioned, the mixing time of a graph is intimately related to
its conductance. Intuitively, when conductance is high, mixing time is low. In
particular, it is possible to show that a class of networks is fast mixing (i.e., τ is
O(log n)) if and only if its conductance is asymptotically constant [Mitzenmacher
and Upfal 05].

2.2. Preliminaries

Before proceeding with our analysis, we review a few important concentration
results.4

Theorem 2.1. (Markov inequality). For any random variable X with nonnegative values
and for any ε > 0

P (X > ε) ≤ E[X]
ε

.

Theorem 2.2. (Chernoff bound). Let X =
∑n

i Xi for X1 , · · ·Xn independent random
variables in [0, 1]. Then

P (|X − E[X]| > εE[X]) ≤ 2 exp
(
−ε2

3
E[X]

)
.

Definition 2.2. (Lipschitz Condition). A function f satisfies the Lipschitz condition with
respect to the random variables X1 , · · · ,Xn with parameters cj , 1 ≤ j ≤ n, if for
any 1 ≤ j ≤ n and aj , a

′
j .

|f(X1 = a1 , · · · ,Xj−1 = aj−1 ,Xj = aj ,Xj+1 = aj+1 , · · · ,Xn = an )
− f(X1 = a1 , · · · ,Xj−1 = aj−1 ,

Xj = a′
j ,Xj+1 = aj+1 , · · · ,Xn = an )| ≤ cj .

(2.1)

Theorem 2.3. (Bounded differences inequality). Assume that f satisfies the Lipschitz condi-
tion with respect to the random variables X1 , · · · ,Xn with parameters cj , j ∈ [n].
Then

P (|f − E[f ]| > t) ≤ 2 exp
(
− t2

2c

)
,

4 For a more comprehensive treatment, see [Mitzenmacher and Upfal 05] and [Dubhashi and
Panconesi 09].
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where c =
∑n

j=1 c2
j .

Finally, henceforth we say than an event E occurs with high probability if
limn→∞ P (E) = 1, where n is the number of vertices in the graph.

2.3. Which Property is More Resilient?

If an attack can add sybil identities to a social network G consisting only of
honest nodes without altering a given structural property of G, then that attack
will be undetectable by any sybil defense technique that leverages that property.
To assess the suitability of a property to serve as a basis for sybil defense, we
then compare, under a given adversarial model, the effort required to create an
undetectable attack.

To this end, we assume that a graph H with n honest nodes is given and that
the attack induces a graph S of sybil nodes whose topology is under total control
of the adversary (unlike H, which is fixed). For each property Π, we characterize
the adversary’s effort as the number of edges incident to H that the adversary
needs to add in order to introduce n sybil nodes in a way undetectable to Π.

To establish clear and almost-tight bounds on the number of attack edges
necessary, we introduce a simple but powerful attacker that we will use for some
of our bounds. To avoid detection, our adversary starts by building S so that,
when looked through the filter of Π, it looks similar to H. For simplicity and
only for the purpose of deriving the bounds for popularity, clustering coefficient,
and diameter, we assume that the adversary builds S as a copy of H.5

The adversary then tries to set up m := |E(H)| potential attack edges that
connect H with S. The probability of a node v becoming an endpoint of an
attack edge is proportional to v’s degree:

degH (v)
2m

, (2.2)

As we will see, this factor is crucial in leaving unaltered the properties of the
social graph and in particular its degree distribution.

If the attacker is able to create arbitrarily many attack edges, no sybil defense
can hope to distinguish between the two regions of the graph. Therefore, as is

5 Although in practice it is neither necessary nor likely, this assumption, without qualita-
tively altering our conclusions, leads to simple bounds on the effort required to make attacks
undetectable to defenses based on popularity, network diameter, and clustering coefficient.
Note that neither the conductance bound nor the theorems about ACL (see Section 6) rely on
this assumption.
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customary in the sybil defense literature [Yu et al. 06, 08], we assume that the at-
tacker’s ability to create attack edges is limited; in particular, we postulate that
tentative attack edges are accepted with probability p and rejected with proba-
bility 1 − p. To account for the outcome of recent social engineering experiments
[Bilge et al. 09], we allow p to be constant, resulting in an expected number of
attack edges equal to pm. It follows easily from large deviation theory that, if
m is large enough, the number of attack edges is also concentrated around pm.
We denote with G the graph that results from joining H and S through the set
of attack edges. We define R to be the set of tentative attack edges the attacker
attempts to introduce. Similarly, let g be the number attack edges the attacker
succeeds in establishing.

Under this simple attack model, how resilient, then, are the four structural
properties of social graphs that we are considering?

2.3.1. Popularity. The intuitive motivation for popularity as a basis for social de-
fense is that the degree distribution of nodes may be noticeably altered as a
result of an adversary introducing a large number of attack edges, thereby pro-
viding evidence of an attack. Under our attack model, however, we show that
the adversary can ensure that G’s popularity distribution will be statistically
indistinguishable from that of H even after establishing many attack edges. In-
tuitively, since the nodes at the endpoints of an attack edge are chosen with
probability proportional to their degree, after the attack, only a few nodes will
see their degree change by much; in fact, the degree of a vertex in H will increase,
in expectation, by only degH (v )

2m p|R|.
This intuition is formalized in the following simple proposition.

Proposition 2.1. Let H be the input graph, S be the attack graph, R the set of
tentative attack edges between S and H and p the probability that each attempt
to add an attack edge succeeds. Finally, let G be the resulting (random) graph.
Then, for each v ∈ G,

E[degG (v)] = degH (v)
(
1 + |R| p

2m

)
,

where m is the number of edges in the honest region. Furthermore, if degH (v) >

log2 n in H, then with high probability the final degree of honest nodes is concen-
trated, i.e.,

degH (v)
(
1 + |R| p

2m
− o(1)

)
≤ degG (v) ≤ degH (v)

(
1 + |R| p

2m
+ o(1)

)
.
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Proof. Let v be a node in H (for nodes in S the same analysis applies).
Then, because all attack edges are added with probability proportional to
the original degree of the node in H, E[degG (v)] = degH (v) + |R| degH (v )

2m =
degH (v)

(
1 + |R| p

2m

)
. Furthermore, if v’s degree is larger than log2 n in H, then

by the Chernoff bound (Theorem 2.2) it follows that:

P (|degG (v) − E[degG (v)]| > 6 log1.5 n) ≤ e−
1
3 6 log n ∈ O(n−2).

Thus, with high probability, the post-attack degree of a node v with degree larger
than log2 n will be

degH (v)
(
1 + |R| p

2m
− o(1)

)
≤ degG (v) ≤ degH (v)

(
1 + |R| p

2m
+ o(1)

)
.

Our experiments with real-life social networks confirm the above conclusion.
Figure 1 shows the degree distribution of snapshots of several social networks
before and after two attacks in which attack edges are inserted with probability
p = 0.01 and p = 0.1, respectively: the curves before and after the attacks have
the same shape. We conclude that popularity is ill-suited as a foundation for
sybil defense.

2.3.2. Small-World Property. The small-world property does not fare much better than
popularity, since the adversary can easily keep the diameter of G from growing
suspiciously. First, it is easy for the adversary to bound the relative growth
of the diameter of G with respect to that of H: if S = H and the adversary
succeeds in inserting just one attack edge, the diameter can at most double.
Our experimental evaluation of several real-life social networks shows (see 90%
diameter column of Table 1) that the 90%-effective diameter [Leskovec et al. 05],
which measures the maximum distance between 90% of the pairs of nodes, is
indeed barely affected under attack.

2.3.3. Clustering Coefficient. Leveraging the clustering coefficient appears promising
because attack edges reduce its value. Unfortunately, although the clustering
coefficient of social networks is typically high, its value varies significantly from
network to network [Leskovec et al. 08], from 0.79 in the actor collaboration
network of IMDB, down to 0.35 for Live Journal and to a mere 0.09 for the
social network of Yahoo! Messenger chat exchanges. Thus, if an attack modifies
the clustering coefficient by a small multiplicative factor, the change is difficult
to detect. This intuition is captured in the following result.

Lemma 2.2. Let H be the input graph, S be the attack graph obtained by copying H

and p the probability that a tentative attack edge succeeds in attaching to a node
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in H. Then, if c(H) is the clustering coefficient of H and c(H) ∈ O(1), with high
probability, c(G) ≥ α−1c(H), where α := 14(1 + 1

2 p)2 .

Proof. We show that the insertion of attack edges does not increase, for most
nodes, their degree by much. This implies a lower bound for the final clustering
coefficient of the graph under attack.

First, note that, by definition, all nodes of degree 1 in H have a clustering
coefficient of 0. So, in the following we consider only nodes with degree greater
than 1. After the attack, the expected degree of a node v in G is equal to
degH (v)(1 + 1

2 p). By the Markov inequality (Theorem 2.1), it follows that the fi-
nal degree of v is at least 3

2 degH (v)(1 + 1
2 p) with probability less than 2

3 . So each
node v has degG (v) < 3

2 degH (v)
(
1 + 1

2 p
)

with probability at least 1
3 and thus

deg2
G (v) <

9
4

deg2
H (v)

(
1 +

1
2
p

)2

.

degG (v)(degG (v) − 1) <
9
4

(
1 +

1
2
p

)2

degH (v)

×(degH (v) − 1) +
9
4

(
1 +

1
2
p

)2

degH (v).

As degH (v) > 1 we have

degG (v)(degG (v) − 1) <
9
2

(
1 +

1
2
p

)2

degH (v)(degH (v) − 1).

It follows that the clustering coefficient of each node decreases by, at most,

a factor of 27
2 (1 + 1

2 p)2 and that, by linearity of expectation, the clustering
coefficient of G decreases by, at most, a factor of 27

2 (1 + 1
2 p)2 .

Consider the sum of the clustering coefficients of the nodes in the graph H

(the same argument applies also to nodes in S). By assumption, we know that
this sum is Θ(|VH |). Now, each node v ∈ H contributes to this sum by at most
1 and, with probability at least 1

3 , by c H ( v )
9
2 ( 1 + 1

2 p ) 2 , where cH (v) is the initial value
of v’s clustering coefficient.

By linearity of expectation, the expected sum of the clustering coefficients after
inserting the attack edges is also in Θ(|VH |). To prove that the bound promised
by the lemma holds with high probability, we then apply the Bounded Difference
Inequality (Theorem 2.3) with a Lipschitz-condition coefficient of cj = 1 for each
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of the random variables corresponding to the clustering coefficient of the nodes
in H.

Note that the constants in the theorem are large only to make the statement
hold with high probability. In practice, one can expect much smaller variations,
as shown in Table 1.

The implications of this lemma are disappointingly clear: the clustering coef-
ficient is not a sound basis for sybil defense, because, even after the attack, its
value cannot drop by too much. The Clustering Coeff column of Table 1 confirms
the theorem’s predictions.

Note that even though the theorem applies to the clustering coefficient of the
graph, a similar observation holds for the clustering coefficient of each single
node, as the degrees of almost any node change by a tiny multiplicative factor.
Thus, sybil defense techniques that rely solely on analyzing the clustering co-
efficient of each node [Yang et al. 11] can be easily circumvented by a capable
attacker.

2.3.4. Conductance. [Yu et al. 08] proved that if H belongs to a class of graphs whose
conductance is asymptotically constant, an adversary that can introduce O(n)
attack edges to build a graph G whose conductance is indistinguishable from
that of H. In the following, we generalize this result to graphs H of arbitrary
conductance.

We begin with two preliminary observations. First, because, by definition,
the conductance of a graph is the minimum of φ(C) on any subset C of the
graph’s vertices, an adversary can always enforce φ(G) ∈ O(φ(H)) by introducing
a suitable cut in the sybil region, whose topology is under his complete control.

Second, an adversary who wants to introduce n sybil nodes needs to add at
least nΩ(φ(H)) edges, lest the cut between the sybil and honest part of G become
too sparse, making it easy to use changes in conductance to detect the attack.

We now show that, by adding just a few more edges, an adversary, as defined
earlier, can ensure that φ(G) ∈ Ω(φ(H)).

Theorem 2.4. Let H denote a network of n honest nodes with conductance φ such
that φ vol(H) ∈ Ω(log n) and φ ≤ e−1 , and let S be a copy of H. Suppose that the
adversary is able to establish between S and H φ log(φ−1)vol(H) attack edges,
whose endpoints are selected with probability proportional to the degrees of the
nodes. Let G be the resulting graph. Then, with high probability, φ(G) ∈ Ω(φ).

Theorem 2.4 is actually a direct consequence of the following, more general
result.
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Theorem 2.5. Let H = (V,E) be a connected simple graph such that φ(H)vol(V ) ∈
Ω(log n), φ(H) ≤ 1

e and let S = (V ′, E′) be another connected simple graph with
φ(S) ≥ φ(H). Suppose further that

φ(H)vol(V ) ≤ vol(V ′) ≤ vol(V ).

Let GF = (VF ,EF ) be the union of S with H and let g be the number of ran-
dom attack edges between H and S, whose endpoints are selected with probability
proportional to the degrees of the nodes. Then, if

log φ(H)−1 · φ(H) · vol(V ) ≤ g ≤ vol(V ′),

we have that, with high probability, φ(GF ) ∈ Ω (φ(H)).

Note that the assumption that φ(H) ≤ 1
e , which restricts somewhat the gen-

erality of the result, holds in real networks.
In order to avoid disrupting the flow of the article, we defer to the Appendix

the rather long proof of Theorem 2.5. Its fundamental implication, however, is
clear: if the adversary is able to introduce at least φ(H)vol(V ) log 1

φ(H ) attack
edges (or O(vol(V )) when the mixing time is O(log n)), then the conductance of
the graph will remain, with high probability, very nearly the same as that of H.
This in turn implies that the mixing time of the network does not change after
the attack, and so it is hard to detect such an attack using this property.

Theorem 2.5 then allows us to draw mixed conclusions about the suitability
of conductance for the sybil defense. On the one hand, it proves that detection
techniques based on changes in global conductance can in principle be circum-
vented; on the other, it shows that the effort required to do so is much higher
for conductance than for any of the other properties we have considered.

Table 1 confirms the theorem’s message. As expected, conductance drops sig-
nificantly under a weak attack (p = 0.01), providing leverage for sybil detection.
Under a strong attack (p = 0.1), however, conductance may actually increase
because, by adding random attack edges, the adversary enlarges every cut with
some probability, including the cut with minimum conductance that defines the
conductance of the entire final graph.6

Note that computing a graph’s conductance is NP-hard. The conductance
values that we report are computed by a widely used technique proposed in
recent social network literature [Leskovec et al. 08].

6 Note that any hope of using an increase in conductance as an indication of a possible attack
is futile, because the adversary can always insure that conductance is below a threshold by
creating a sparse cut in S .



Alvisi et al.: Communities, Random Walks, and Social Sybil Defense 377

Property Number of edges to circumvent it

Degree distribution g ≥ 0
Diameter g ≥ 1
Clustering coefficient 0 ≤ g ≤ m

Conductance φ(G)m log φ(G)−1 ≤ g ≤ m

Table 2. The number g of attack edges needed to circumvent the four properties.

2.4. Discussion

None of the structural properties of social graphs that we have considered pro-
vides an impregnable defense against sybil attacks in general, or even against
the specific attack we have assumed. However, as Table 2 shows, when a graph
under attack is observed through the lens of conductance, the adversary has to
work much harder to look inconspicuous. These results both motivate and justify
the insight of Yu and his collaborators to rely on conductance in the work that
jump-started sybil defense via social networks [Yu et al. 06]. We review their
approach, its successes, and what we believe to be ultimately its fundamental
limitations, in the next section.

3. Leveraging Conductance Toward Universal Sybil Defense

The vision behind the seminal work of Yu and his collaborators was to develop
a decentralized approach to universal sybil defense, with the goal of allowing
honest users to correctly assess with high probability the honesty of every other
user in the system. False positive and false negatives would still be possible,
but they would be few and, further, their number would be bound within a
rigorous theoretical framework. This compelling vision, first articulated in the
SybilGuard protocol [Yu et al. 06], was further refined in their later work on the
SybilLimit protocol [Yu et al. 08] and has inspired several other efforts in sybil
defense [Danezis and Mittal 09, Tran et al. 11, Wei et al. 12, Cao et al. 12].

We begin this section by discussing the main intuition underlying these tech-
niques and the guarantees that they provide; we then proceed to discuss the
crucial role that a set of key assumptions play in ensuring those guarantees, and
present evidence suggesting that the assumptions do not appear to hold in actual
social graphs.
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3.1. Picking Whom to Trust

The verification process that an honest node u uses in the above protocols to
determine whether it can trust another node v is based, at its core, on the
following idea: use a random walk to sample some portion of the graph uniformly
at random and identify which nodes to trust on the basis of that sample. Different
protocols apply this sampling strategy in different ways and to different parts of
the graph. SybilLimit [Yu et al. 08] samples edges; SybilGuard [Yu et al. 06] and
Gatekeeper [Tran et al. 11] sample nodes in the graph; SybilInfer [Danezis and
Mittal 09] uses the random walks to build a Bayesian model for the likelihood
that a trace T was initiated by an honest node. In the remainder, we provide
an overview of how SybilLimit [Yu et al. 08] applies the random sampling of
edges to identify honest users. Although the details of the discussion are specific
to SybilLimit, the intuition for how the structural properties of the graph make
random sampling effective is common to this entire family of protocols.

Let us consider a particularly simple version of the sybil detection problem.
We are given two disjoint graphs H and S—the graph of honest and, respec-
tively, sybil nodes; an honest vertex u—the seed; and a vertex v. Our task is to
determine whether v belongs to H or to S. Suppose that both nodes select an
edge at random, subject to the constraint that they must pick an edge from the
graph they belong to: u accepts v if they pick the same edge.

If the vertices belong to different graphs, the test is perfect: the probability that
u accepts v is 0. Otherwise, the probability of collision is very low, 1

m , but it can
be boosted thanks to the classic birthday paradox. Vertex u picks a set Su of, say,√

m distinct edges, while v picks a set Sv of
√

m edges independently at random:
now u accepts v if there is a collision (i.e., Su ∩ Sv 
= ∅). This probability is

1 − Pr(no collision) = 1 −
(

1 − 1√
m

)√
m

∼ 1 − 1
e
, (3.1)

a good probability of success. Note now that the set Su can itself be picked at
random. Since |Su | =

√
m � m, almost all edges will be distinct. This simple

protocol succeeds with good probability: each vertex picks a set of
√

m edges
independently and uniformly at random. If the two sets intersect, then u accepts
v, otherwise it does not. The protocol is symmetric and can be used by both u

and v to determine whether to trust one another. This basic idea can be further
refined to obtain a test that succeeds with overwhelming probability with small-
sized edge sets.

With this protocol, the probability that an honest seed accepts a sybil node
remains 0, while the probability of accepting another honest node can be pushed
to 1 at an acceptable computational cost. But how can we implement the test
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in a distributed fashion? It is here that mixing time, and hence conductance,
enter the picture. A simple approach is to take a random walk in the graph—
which, in the interest of efficiency, should be very short—and pick the last edge
on the walk. This is a correct implementation of the previous protocol pro-
vided that the graph is fast mixing. Indeed, as we saw in Section 2.2, if a graph
is fast mixing, the probability that a random walk of length O(log(n)) ends
in u is approximately deg(u)

2m . If we pick a random edge e = (u, v) incident to
the final vertex of the walk, the edge is picked with probability approximately
equal to

deg(u)
2m

1
deg(u)

+
deg(v)

2m

1
deg(v)

=
1
m

,

which means that each edge is picked uniformly at random.
In reality, however, H and S are connected through the attack edges that nodes

in S have convinced nodes in H to accept: it is then possible that a random walk
starting from v ∈ S will traverse an attack edge, enter H, and pick one of the
edges selected by u ∈ H. The intuition is that, as long as the cut between H

and S is sparse, in such situations it is sufficiently unlikely that the mechanism
continues to function with good probability. Indeed, as we already mentioned,
recent work has proved that as long as the number of attack edges is bound by
o( n

log n ), then this approach can reliably distinguish between honest and sybil
nodes [Yu et al. 06].

3.2. Limitation of the Model

There are, then, two fundamental assumptions that underlie this elegant ap-
proach toward decentralized universal sybil defense. The first is that the cut
between the sybil and honest region—the set of attack edges—is suitably sparse.
The second is that the mixing time of the honest region is O(log(n)). The combi-
nation of these two assumptions ensures the high probability that random walks
of Θ(log n) steps will end in a random edge in the honest region.

Recent literature has cast doubts on whether these assumptions hold in prac-
tice. Social graphs do not seem to be fast mixing after all [Mohaisen et al. 10],
and fake identities are accepted as friends with much higher probability than
anticipated [Bilge et al. 09, Yang et al. 11], implying that the set of attack
edges is not as sparse as assumed. We then ask: to what degree are SybilLimit-
like protocols sensitive to their assumptions about sparse cuts and mixing
time?

To answer this question, using SybilLimit [Yu et al. 08] as representative (we
find that the behavior of other SybilLimit-like protocols is similar), we produce,
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as in the recent work of Viswanath et al., a ranking of nodes with respect to a
given verifier node u, in decreasing order of trust: the first node in the ranking
is the node that u trusts the most [Viswanath et al. 10]. We then measure the
defensive efficacy of SybilLimit by using three metrics, well known in the field of
information retrieval, that appear very natural in this context: precision, recall,
and ROC. In particular, we define the precision at position k as the fraction of
honest nodes among the k nodes that the protocol ranks the highest. Similarly,
we define the recall at position k as the ratio between the number of honest
nodes among the top k positions in the ranking and the total number of honest
nodes in the network.

Another well-known accuracy measure, employed in our analysis, is the ROC
index, which measures the probability that a randomly chosen honest node be
considered more trustworthy than a randomly chosen sybil one. A probability of
1 corresponds to the ideal case in which every honest node is ranked higher than
any sybil one; a probability of 0 indicates the reverse case; a random ranking
corresponds to 0.5 probability.

3.2.1. Sensitivity to Mixing Time. SybilLimit-like protocols do not operate on raw
social networks: they are to be used only on networks that have been pre-
processed by iteratively removing all nodes with degree lower than five [Yu
et al. 06]. Table 3 shows the statistical properties of the graphs we use in our
experiments.

Mohaisen et al. were the first to observe that this step, while boosting the
mixing time of social graphs to the level required by SybilLimit to be effective,
can also reduce the size of the graph [Mohaisen et al. 10]. Table 3 confirms this
observation: in the case of Wiki-Talk, the preprocessing step removes over 85%
of the nodes. Removed nodes are effectively considered sybils by the protocol,
and although those nodes might still be able in some circumstances to enlist
other nodes in the network as proxies [Yu et al. 08], it is unclear in general how
removed nodes can safely take advantage of honest nodes’ resources and vice
versa [Mohaisen et al. 10].

Figure 2 shows the impact of the preprocessing step on the performance of
SybilLimit. Preprocessing increases the performances of SybilLimit in most net-
works, with the notable exception of the Enron network, where preprocessing
decreases SybilLimit’s performance: in this small and incomplete network (e-mail
between contacts outside of the company is not available) eliminating low-degree
nodes ends up disrupting severely the connectivity of the honest region.

3.2.2. Sensitivity to Sparse Cuts. Figure 3 plots SybilLimit’s precision versus recall
for the preprocessed Facebook dataset—a similar behavior is observed with all
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Figure 2. The ROC of the SybilLimit on each of the social networks we consider,
when the graphs are attacked with attack strength p = 0.01. Other SybilLimit-
like protocols show qualitatively similar results.

other networks in our dataset. SybilLimit proves very effective when the number
of attack edges is within the theoretical bound (which corresponds to p = 0.01).
Once the bound is exceeded, however, the performance of SybilLimit falls rather
quickly: the algorithm can no longer ensure that at most log(n) sybil nodes per
attack edge are admitted, leading to a sudden drop in the precision observed in
our experiments.

3.3. Discussion

The goal of universal decentralized sybil defense with strong theoretical guaran-
tees, which has driven early research on sybil defense via social networks, rests
on assumptions (short mixing time and cut sparseness) whose validity is at best
dubious. What to do? In a recent survey [Yu 11], Yu suggests a couple of ways
forward: one could offer sybil defense only to the nodes in the core of the social
graph, in effect institutionalizing the removal of nodes that are not well con-
nected, or one could simply renounce the elegant theoretical worst-case claims
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Figure 3. Precision vs. recall of SybilLimit for different values of p (ranging from
0.01 to 0.10). The number of attack edges is pm. The theoretical guarantee of
SybilLimit-like holds only for p = 0.01. The results are shown for the Facebook
network. As the number of attack edges goes beyond the prescribed limit, there is
a significant drop in performance. The same test made with other graphs shows
similar results.

of the current framework and rely instead on “weaker but less clean assump-
tions” [Yu 11]. In the next section, we explore a third alternative that offers
every honest node a useful degree of sybil protection without compromising on
elegance and rigor.

4. Communities

The theoretical guarantees offered by the protocols discussed so far hold only
as long as honest nodes are closely connected to one another everywhere in the
social graph and the cut between honest and sybil nodes is sparse. Empirical
evidence suggests a different reality: social graphs consist of communities, each
a tightly knit subnetwork. Indeed, it is quite conceivable that the cut between
two tightly knit communities of honest nodes A and B be as sparse as the cut
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between A and the sybil region: to an honest node in A using a protocol in the
style of SybilLimit, a sybil node would then be indistinguishable from an honest
node in B [Viswanath et al. 10, 12a].

Although these considerations argue against the universal sybil defense, they
suggest an alternative goal: to provide each honest node u with the ability to
white-list a trustworthy set of nodes—vis. those in the community to which u

belongs. This new goal can be more precisely stated as follows:

Problem 4.1. Let u be an honest user and C be a subset of honest vertices in the
social graph such that: (a) u ∈ C, (b) the graph induced by C has mixing time
τ and (c) there are at most o(|C|τ−1) edges between C and the rest of the social
graph. We want an algorithm (ideally, amenable to an efficient distributed imple-
mentation) that, given u and the social graph, can distinguish almost perfectly
between the nodes in C and the nodes outside of C.

We make two observations. First, the problem of universal sybil defense is a
special case of Problem 4.1 in which τ = O(log n), and C is the entire honest re-
gion. Second, sybil defense appears, informally, to reduce to the task of detecting
the “community” C of the honest seed u.

The fundamental affinity between community detection and sybil defense has
been first observed by [Viswanath et al. 10]. After pointing out that, from the per-
spective of an honest node, SybilLimit-like protocols separate the social graph in
two communities—honest nodes and sybils—they go on to ask a natural follow-
up question: can off-the-shelf community detection algorithms be used to detect
sybils? Their answer is mixed: on the one hand, they show that a generic commu-
nity detection algorithm due to [Mislove et al. 10] (also a coauthor in [Viswanath
et al. 10]) achieves results comparable to those of SybilLimit-like protocols on
both a synthetic topology and a real-life Facebook social graph; on the other,
they observe that attackers wise to the community substructure of the honest
portion of the social graph can manage, as we discussed above, to make the sybil
region appear indistinguishable from a subnetwork of honest nodes.

We believe that a first step toward a more conclusive answer is to recognize
that casting the problem simply in terms of generic community detection leaves
it underspecified. Although intuitively compelling, the notion of community is
ambiguous, as are the many community detection algorithms found in the liter-
ature, each aiming for a subtly different notion of community, clearly indicated
by [Fortunato 09]. But what should be the basis of a notion of community that
can be used effectively for the sybil defense?
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4.1. The Minimum Conductance Cut

A somewhat obvious candidate to serve in this role is conductance. Conductance
is difficult to tamper with (see Section 2), and it is intimately related to mixing
time, a critical property to leverage against sybil attacks (see Section 3).

It is tempting to define the problem of sybil defense in terms of the minimum
conductance cut problem found in the community detection literature:

Problem 4.2. Let G = (V,E) be an undirected graph. Find a set C ⊂ V whose
conductance φ(C) is as close as possible to φ(G), the minimum conductance of
the graph.

If we believe that the honest region is fast mixing and that it is connected to
the sybil region via a sparse cut, then the set C should be very close to capturing
precisely the entire honest region. This view is of course too simplistic and can
lead to community detection algorithms that can be circumvented by an adver-
sary using far fewer attack edges than needed to dupe SybilLimit-like protocols.
Mislove’s algorithm [Mislove et al. 10], a community detection algorithm that
has been used in the context of sybil defense [Viswanath et al. 10], provides an
interesting example.

Mislove’s algorithm is a heuristic algorithm that finds small conductance
cuts—which is, in essence, analogous to finding an approximate solution to Prob-
lem 4.2. Note that finding an approximate cut is the best one can hope for, unless
P = NP . The set C is built greedily. Starting from a vertex u, the algorithm
grows C by incorporating the vertex v connected to C that results in a set C ∪ {v}
with minimal conductance. If no neighboring vertex decreases the conductance,
then the algorithm adds the vertex that increases it the least.7

Although this simple heuristic appears to capture the intuition behind Prob-
lem 4.2, it fails against the following simple attack. Let v be an honest node,
that has no neighbor of degree smaller than 3. We create the sybil region with
nodes s0 , s1 , . . . , sn as follows:

� s0 and s1 are connected to v.

� for every i ≤ n − 2, si is connected with the next two sybil nodes in the
sequence, si+1 and si+2, and also with the previous two, si−1 and si−2 .

7 The original proposal for Mislove’s algorithm [Mislove et al. 10] relies on a normalized
conductance metric, but in the context of sybil defense the protocol is evaluated using just
conductance [Viswanath et al. 10]. For consistency, we follow the approach of the second work.
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Figure 4. Two edge attack.

Figure 4 illustrates the attack, involving only the two attack edges connecting
v to s0 and s1 , that results in Mislove’s algorithm deterministically admitting
every node of the sybil region.8

At the beginning, the best choice for the algorithm is to add the lowest-degree
node s0 : the value of the ratio that defines the conductance of the new set
decreases, as its numerator is increased by only two edges (those from s0 to s1

and s2), while its denominator is incremented by three. After this fatal mistake,
the best node to add becomes s1 , which raises the numerator again by two and
the denominator by four. Proceeding in a similar way leads to admitting the
entire sequence s2 , . . . sn .

8 Furthermore this attack can be modified to withstand also the preprocessing defined in
Section 3.2. For instance, to avoid a preprocessing of nodes with degree < 5, the attacker can
add in the sybil region a series s0 , s1 , . . . , sn of sybil nodes as before. Each sybil node si is
connected to the previous four sybil nodes si−1 , . . . , si−4 (if they exist) and the four consecutive
sybil nodes si+1 , . . . , si+4 (if they exist). Furthermore s0 , s1 , and sn are connected to v. In
this setting it is possible to see that if initially v picks s0 , it will then pick all the nodes in the
sybil region in sequence. If node v has no honest neighbor of degree 5 (after preprocessing),
then the entire sequence of sybil nodes is admitted before any of his honest neighbors.
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4.2. Discussion

Reframing sybil defense to leverage the community substructure that exists in
social graphs requires a deep understanding of the relationship between sybil
defense and conductance—in essence, understanding when a solution to Prob-
lem 4.2 is also a solution to Problem 4.1. The key to the approach we explore in
subsequent sections relies, at a local scale, on a technique central to the efforts
towards universal sybil defense discussed in Section 3: random walks.

5. Fast-Mixing Communities

Because of its tight connection with the theory of random walks, the minimum
conductance cut problem, which we have used to formalize the intuitive relation-
ship between sybil defense and community detection, has been studied in depth.
Indeed, as we will see, a recently proposed sybil-defense algorithm [Cao et al. 12]
is based on a well-known random walk algorithm previously developed to answer
certain foundational issues in the theory of algorithms [Spielman and Teng 04].

Problem 4.2, as we have called it, is NP-hard [Garey and Johnson 79] and from
the point of view of approximation, a series of results have established various
nontrivial approximation guarantees [Sinclair and Jerrum 89, Leighton and Rao
99, Arora et al. 09]. In our context, however, these sophisticated algorithms do
not appear to be directly applicable. They are not obviously parallelizable, an
essential scalability requirement given the huge size of real-life social networks.
A second, more subtle, drawback is that their running time is polynomial in the
size of the entire graph. In contrast, there exist methods whose time complexity
depends only on the size of the set of trustworthy nodes that we are trying to
determine, which we expect to be significantly smaller than the size of the entire
network.

Spielman and Teng developed the first such “local” algorithm [Spielman and
Teng 04]. Very roughly, their idea is to associate a weight with each node and
to identify as part of the community all nodes whose weight exceeds a certain
threshold. To determine the weight of a node, they effectively run many trun-
cated random walks of the same length t ∈ Õ( 1

φ ), all originating from the same
node (the seed): a node’s weight is given by the frequency with which it is visited
divided by its degree. The potential of this algorithm for sybil detection be-
comes evident once one interprets the weight of a node v as a measure of the
trust that the seed node puts in v. Indeed, the recent sybil detection protocol
SybilRank [Cao et al. 12] is essentially an implementation of the algorithm of
Spielman and Teng, run using multiple seed nodes.
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Figure 5. Impact of varying α. Precision vs. recall graph with Facebook-New
Orleans dataset under (a) a weak attack (edge density p = 0.01) and (b) a strong
attack (edge density p = 0.1). Figures (c) and (d) refer to a weak and a strong
attack, respectively, in the WikiTalk graph.

Since the work of Spielman and Teng, however, the use of truncated random
walks for computing low conductance cuts has been further refined. In particular,
[Andersen et al. 07] originate many random walks from the honest seed, as in the
previous algorithm [Spielman and Teng 04], but the length of their random walks,
instead of being fixed, is determined by means of a (geometrically distributed)
random variable. This algorithm has a property that is extremely useful in our
context: it identifies a region around the honest seed whose conductance is smaller
than what is computable with the approach used in SybilRank.

[Andersen and Peres 09] and, very recently, [Gharan and Trevisan 12] have
proposed further improvements. It is not immediately obvious, to us at least,
if these algorithms can be used by an honest seed to rank other nodes accord-
ing to its trust in them. For this reason, we will focus henceforth on the method
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proposed by Andersen, Chung, and Lang, which naturally computes such a rank-
ing [Andersen et al. 07].

5.1. Discussion

Formalizing community detection in terms of Problem 4.2 allows us to draw
from the rich literature on algorithms based on randomwalks. Among them, the
algorithm of Andersen, Chung, and Lang stands out for the combination of its
features: it supports node ranking; the cut it computes has smaller conductance
than most of its peers; its running time depends on the size of the community,
not that of the graph; and it is easy to parallelize. In the next section we will see
that this algorithm solves Problems 4.1 and 4.2 simultaneously, i.e., it is able to
identify a community of honest nodes containing the honest seed, without being
lured into the sybil region. Further, we will prove the first theoretical guarantees
concerning the performance of a community detection algorithm in the context
of sybil defense and show experimentally that the algorithm is quite competitive
with the state of the art.

6. Personalized PageRank and Local Defense

In this section we analyze the “variable length” random walk method of
[Andersen et al. 07], ACL henceforth, and show that it provides both formal and
experimental guarantees for our localized vision of social sybil defense: white
listing of the community to which our honest node belongs.

ACL is based on the Personalized PageRank (PPR) random walk, whose def-
inition we now review. Starting from an initial seed vertex v, at each step in the
walk a pebble returns to node v with probability α and moves to a uniformly
random neighbor of its current location with probability 1 − α. This random
walk has a unique stationary distribution [Andersen et al. 07] that we denote as
pprα,v := (pprα,v (v1), . . . ,pprα,v (vn )). Clearly, this distribution depends on the
starting node v and the jumpback parameter α. We will drop these subscripts
when they are clear from the context.

Intuitively, it is as if, starting from the honest seed, we performed many ran-
dom walks whose length is determined by means of a geometric random variable:
a random walk has length k with probability α(1 − α)k−1 . The expected length of
each walk is α−1 , meaning that long walks are rare and short walks in the neigh-
borhood of the seed are common. In this fashion, the nodes in the “community”
to which the seed belongs should be visited most frequently. Nodes are assigned
a score proportional to the number of times they are visited.
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ACL introduces an additional step to the PPR computation: the score assigned
to the vertices is given by

scoreα,v (u) :=
pprα,v (u)
deg(u)

, (6.1)

for all vertices u. This step, also used in the algorithm of [Spielman and Teng
04], ensures that the score acquired by u is not inflated by its unusually high
degree.

In the following, we will prove theoretical guarantees for the ACL score. It
is interesting to note that they hold only for the ACL score and not for the
PPR score (for which several nodes of high volume may be included in the first
positions of the ranking). The ACL algorithm proceeds by sorting the nodes in V

in descending order of scoreα,v . Although ACL is originally motivated by finding
a low conductance cut, the properties enjoyed by such ranking can be exploited
in the context of sybil defense as well, as the rest of the section shows.

Intuitively, the ranking computed using a honest node v as the seed defines,
from the point of view of v, an ordering of the nodes in V , from the most
trustworthy to the least.

This ranking is significantly more robust than that obtained by methods
based on PageRank (see for example EigenTrust [Kamvar and Schlosser 03] and
TrustRank [Gyöngyi et al. 04]): because a random walk can be reset only to the
seed node, this ranking is immune to all attacks to PageRank based on exploit-
ing random walks that jump back to a spam node [Cheng and Friedman 06].
Notably, in the context of sybil defense, ACL solves Problem 4.1: it computes a
low-conductance cut containing the honest seed and almost no sybil nodes. The
next subsection is devoted to proving the following theorem, which formalizes
this result.

Theorem 6.1. Let C be a set of vertices such that the graph it induces is connected
and has mixing time τ and with | cut(C)| ∈ o(vol(C)τ−1). Let 1/2 > ε > 0 be a
constant and let α := (10τ)−1 . Given a seed v, define

Sv := {u : scoreα,v (u) > (2vol(C)e1/10)−1}
(this is the set of nodes that obtain high enough ACL score). Then, there exists
a subset C ′ ⊂ C such that vol(C ′) ≥ (1 − ε)vol(C) and such that, if v ∈ C ′, then
vol(Sv ∩ C) ≥ (1 − o(1))vol(C) and vol(Sv \ C) = o(vol(C)).

Notice that here, and in the rest of the section, when referring to the mixing
time of the graph induced by the set C, we write τ in place of τ(ε) where ε ∈ O( 1

n )
(see Definition 2.1).
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Some comments are in order. Theorem 6.1 provides mathematical guaran-
tees on the security of the ACL ranking in the context of sybil defense. If we
let the set C of the statement be any connected subset of the honest region,
and denote with τ its mixing time, the theorem says that the ACL score com-
puted using most of the nodes in C as seeds recovers C almost perfectly in
the first positions of the ranking, essentially achieving the goal envisioned by
Problem 4.1.

Notice that the guarantees of Theorem 6.1 are expressed in terms of volume
and not, as has been the custom in prior articles on sybil defense (see for instance
[Yu et al. 06, 08, Tran et al. 11]) in terms of number of nodes. However, if
we assume that vol(C) ∈ O(|C|), then the guarantees given in terms of volume
translate into the familiar ones expressed in terms of number of nodes. Because
social graphs consist mostly of low-degree nodes, we expect this condition to be
roughly satisfied in practice, as our experiments on the performances of ACL
confirm. More formally, it can also be shown, for instance, that if the graph
follows a power-law distribution [Albert and Barabási 02] with exponent greater
than two, then this condition holds.

6.1. Security Guarantees of ACL

In this section we prove Theorem 6.1. Our results are heavily based on previous
work [Andersen et al. 07, Zhu et al. 13]: for completeness, we present here the
full proof of all the statements and discuss the security implications in detail.

Referring to the statement of Theorem 6.1, we use the following notation:
C is a subset of nodes that induces a connected component, denoted as G[C],
with mixing time τ and cut cut(C) ∈ o( vo l (C )

τ ). Intuitively, C is the community
of the honest seed, connected to the rest of the social graph by means of a
somewhat sparse cut. The rankings PPR and ACL will be computed with respect
to α := (10τ)−1 .

To prove the theorem, we first lower bound the ACL score for all nodes inside
Sv and then we upper bound the aggregate PPR score of the nodes outside C.
More specifically, we first prove the following lemma, which shows that the total
score that can be absorbed by the complement of the community C containing
the honest seed is negligible.

Lemma 6.1. (Boundedness Lemma). Let C be a set of vertices such that the graph it induces
is connected, has mixing time τ , and its cut is such that | cut(C)| ∈ o(vol(C)τ−1);
and let α := (10τ)−1 . Then, for any positive constant 0 < c1 < 1

2 , there exists a



392 Internet Mathematics

subset C ′ of C, such that vol(C ′) ≥ (1 − c1)vol(C) and such that

∑
u∈V \C

pprα,v (u) = o(1),

where v is any (seed) node in C ′ (the o(1) term goes to zero as C grows).

Proof. Let b(i, t) be the random variable describing the following event: a random
walk of length t, starting on node i, crosses an edge in cut(C) during the walk.
To upper bound P [b(i, t)], we will use a technique inspired by [Yu et al. 06].

Suppose that the walk starts from the stationary distribution restricted to the
subgraph C (considering also the edges that leave C): then, the probability of
crossing any edge in the cut in a given step is equal to cut(C )

vol(C ) . So, by the union
bound, the probability of crossing the cut in one of the t steps is smaller than
or equal to t·cut(C )

vol(C ) .
Let pi be the probability that we visit vertex i in the stationary distribution.

Since pi = deg(i)/vol(C), we have:

∑
i∈C

P [b(i, t)]
deg(i)
vol(C)

=
∑
i∈C

P [b(i, t)] pi ≤ t
| cut(C)|
vol(C)

.

So,

∑
i∈C

P [b(i, t)] deg(i) ≤ t| cut(C)|.

Now, this inequality implies that there is a set C ′ ⊆ C of nodes of volume
at least (1 − c1)vol(C), with constant 0 < c1 < 1

2 , such that for any i ∈ C ′ we
have P [b(i, t)] ≤ t cut(C )

(1−c1 )vol(C ) . Otherwise, we would get a contradiction because∑
i∈C ′ P [b(i, t)] deg(i) > t| cut(C)|.
For 1 ≤ i ≤ n, let xi be the indicator vector for node vi (i.e., a vector whose

components are all set to 0 except for the ith one, which is set to 1). With
abuse of notation we write xv for the indicator vector of the node v. We can now
describe the PPR calculation in matrix form as in [Andersen et al. 07]:

pprα,v = α

∞∑
t=0

(1 − α)txvW t , (6.1)
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where pprα,v defines the PPR vector with jump-back probability α and seed
node v. W is the standard random walk transfer matrix.9 Wij is the probability
of reaching node j, in a single step of the walk, starting from node i.

Let B =
∑

vi ∈V \C xi , we have that:

pprα,v (B) = α

∞∑
t=0

(1 − α)txvW t(B). (6.2)

Now suppose that v ∈ C ′. Note that the probability of landing in a node in
V \ C at step t starting from v is upper-bounded by the probability of crossing
the cut during a walk of length t. Hence,

pprα,v (B) ≤ α
∞∑

t=0

(1 − α)t t
cut(C)

(1 − c1)vol(C)

≤ α
cut(C)

(1 − c1)vol(C)

∞∑
t=0

(1 − α)t t

≤ α

log2(1 − α)
cut(C)

(1 − c1)vol(C)

≤ 1
α

cut(C)
(1 − c1)vol(C)

.

By choosing α = 1
10τ ,

≤ 10τ
1

c1vol(C)
o

(
vol(C)

τ

)
= o(1) .

Note that since the score of each node is obtained by dividing the ppr prob-
ability by the degree (whose value, by the completeness hypothesis, is at least
equal to 1), the previous lemma provides also a bound on the total score of nodes
in V \ C.

We have showed that the overall score assigned to nodes in V \ C is propor-
tional to the size of the cut and strictly bounded by o(1). We now prove that
most of the nodes in C receive a constant fraction of the overall score.

9 The ACL algorithm [Andersen et al. 07] is actually defined in terms of a lazy version of
the walk, in which at every step there is a probability of 1/2 of remaining in the same node.
For the purpose of this study the two definitions are equivalent up to a simple change in α, so
for simplicity here we use the standard random walk.
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As in the statement of Theorem 6.1, let Sv denote the set of nodes that receive
a high ACL score with respect to a seed v, that is, Sv := {u : scoreα,v (u) >

(2vol(C)e1/10)−1}.

Lemma 6.2. (Coverage Lemma). Let C be a set of vertices such that the graph it induces is
connected, has mixing time τ , and its cut is such that | cut(C)| ∈ o(vol(C)τ−1);
and let α := (10τ)−1 . Then, for any positive constant 0 < c1 < 1

2 , there is a
set C ′ ⊆ C such that vol(C ′) ≥ (1 − c1)vol(C) and such that vol(Sv ∩ C) ≥
(1 − o(1))vol(C), for v ∈ C ′.

Proof. Observe that, by setting α = 1
10τ , a sizable fraction of the PPR random

walks will be longer than τ , the mixing time of G[C]. More precisely, let l(t) be
the probability of a PPR random walk that is t steps long. Since the lengths of
the random walks follow a geometric distribution, we have that l(t) = α(1 − α)t

and consequently,
∞∑

t=τ

l(t) = (1 − α)τ .

Consider the set C ′ ⊆ C for which we showed in the previous lemma that, for
any v ∈ C ′, the probability of crossing the cut for a t-step long walk starting in
a node in C ′ is bounded by t cut(C )

c1 |vol(C )| .
Fix a node v ∈ C ′ and let vi 
= v be any other node in C. We want to determine

a lower bound on the score assigned to node vi by PPR if we compute it using
v as seed.

As already mentioned, we have

pprα,v (vi) = α

∞∑
t=0

(1 − α)txvW txi ,

where W is the standard random walk transfer matrix. If we restrict our attention
to random walks longer than the mixing time, we obtain the lower bound

pprα,v (vi) ≥ α

∞∑
t=τ

(1 − α)txvW txi .

So, in order to find a good lower bound to pprα,v (vi), we would like to know
the probability that a random walk of length t, for t > τ , ends in vi . Note that
this would be easy in the graph induced by C, because we know that its mixing
time is τ , while it is not immediately obvious when we consider the edges going
out of C (whether attack or nonattack edges). But from the previous lemma we
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know that the total PPR score leaking from C is o(1). This implies that very few
random walks “leak” probability outside of C. Let us suppose that no random
walk leaves C and denote by ppr′ the ppr score in this setting. Then, since the
mixing time of G[C] is τ , we can compute ppr′:

ppr′α,v (vi) ≥ α
∞∑

t=τ

(1 − α)t
(deg(vi)

vol(C)
− 1

ε

)
≥ α

∞∑
t=τ

(1 − α)t

(
deg(vi)

(1 + δ)vol(C)

)
.

For any positive δ > 0 it follows that,

ppr′α,v (vi) ≥ deg(vi)
(1 + δ)vol(C)

(
α

∞∑
t=τ

(1 − α)t

)

≥ deg(vi)
(1 + δ)vol(C)

(
1 − 1

10τ

)τ

≥ deg(vi)
(1 + δ)vol(C)

e−1/10 .

We know from Lemma 6.1 that the total score distributed by walks that cross
the edges in the boundary of C is at most o (1). From the previous chain of
inequalities, each node in C has ppr′ ∈ Ω( 1

vol(C ) ). So, even if we remove the
score distributed by walks that cross the cut, there exists a set C ′′ ⊆ C with
vol(C ′′) ≥ (1 − o(1))vol(C) for which each node vi in C ′′ has PPR score greater
than deg(vi )

2vol(C )

(
e−1/10

)
and ACL score larger than 1

2vol(C )

(
e−1/10

)
Note that these lemmata imply the existence of a gap between the score of the

nodes inside and those outside of C. We leverage this gap to prove Theorem 6.1.

Proof of Theorem 6.1. From Lemma 6.1, we have that the nodes in V \ C have ag-
gregate PPR score in o(1); furthermore, all nodes in C ′′ have score at least

1
2 vo l (C ) (e−1 / 1 0 ). The PPR score of a node of degree d in V \ C, computed using as
seed node v ∈ C ′, must be larger than d

2 v o l (C ) (e−1 / 1 0 ) to be in the set Sv : thus, the
total volume of nodes in Sv \ C is o(vol(C)). Hence the claim follows.10

6.1.1. Comparison with the State of the Art. In the theoretical framework that underpins
SybilLimit and its ilk, the honest region H ⊂ V is assumed to be fast mixing,
i.e., τ = O(log(|H|)). Let g be the number of attack edges connecting honest and
sybil nodes.

By setting α = 1
1 0 lo g ( |H |) and choosing C = H, we have cut(C) = g. Suppose to

have g = o( |H |
l o g (n ) ), as in the assumption of SybilLimit [Yu et al. 08]. As |H| =

10 Note that the theorem would not hold if we used the PPR score directly.
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O(vol(H)), in a connected graph ACL is able to accept a slightly larger number
of attack edges than SybilLimit: O( vo l (H )

l o g ( |H |) ) vs O( |H |
l o g ( |H |) ). Note, however, that ACL

guarantees are expressed in terms of the volume of H rather than the number of
its nodes.

Moreover, with the additional assumption that vol(C) = O(|C|) discussed in
the previous section, Theorem 6.1 guarantees that for any positive constant 0 <

c1 < 1
2 , the ranking given by scoreα,v (u), for a fraction 1 − o(1) of nodes u ∈ V ,

contains in the first |V | positions all but a 1 − o(1) fraction of good nodes,
essentially matching both the number of attack edges and the guarantees of
SybilLimit.

The consequences of our theoretical results can be summarized as follows.

� Under the hypotheses of SybilLimit-like protocols, the performance of ACL
is comparable with the state of the art.

� In the more general setting where only a subset of the honest region is
assumed to be wellconnected, ACL can guarantee that a subset of honest
nodes is trusted more than sybil nodes.

� In harder settings, there is an explicit trade-off between the mixing time
of the honest region and the number of attack edges that the network can
handle.

6.2. Computing the Ranking

Algorithm 1. ApproxACL(v, α, ε)
ppr(u) = 0 ∀u ∈ V

r(v) = 1
r(u) = 0 ∀u ∈ V \ {v}
Q = {v}
while |Q| 
= 0 do

Extract u from Q.
while r(u) ≥ εdeg(u) do

ppr, r = Pushu (ppr, r)
Insert in Q all the nodes w in the neighborhood of u such that r(w) ≥
εdeg(w).

end while
end while
scoreα,v (u) = ppr(u)

deg(u) ∀u ∈ V

return scoreα,v
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The PPR distribution can be expressed as the solution of a system of linear
equations, and it can be computed or approximated very efficiently in parallel
(see, for instance, [Fogaras et al. 05] and [Bahmani et al. 11]). Here we present
the push-flow algorithm of Andersen et al., which computes an approximation of
the ACL score and possesses many desirable properties [Andersen et al. 07]. The
algorithm, which we name ApproxACL, for Approximated ACL score, has three
input parameters: the starting honest vertex v, the jump back probability α, and
the error parameter ε. ApproxACL computes a vector qε

α,v := (q1 , . . . , qn ) that is
an approximation of the ACL score vector scoreα,v . ApproxACL first computes
an approximation of the ppr stationary distribution as follows. The algorithm
starts with an amount of “residual PPR score” equal to 1 from the starting node
v. This residual score flows from the source node to the rest of the network with
a series of “trickle” operations. Each push-flow operation simulates one step of
the PPR random walk by transferring a small amount of residual score from
a vertex u to its neighbor w in proportion to the probability that the random
walk moves from u to w in one step. For each node v, ApproxACL keeps track
of two quantities: a ppr(v) value and a residual value r(v). The former is the
current approximation of the PPR of the node v, and the latter is the amount of
total residual amount of “score” that the node is allowed to distribute to itself
and to its neighbors. Once the approximated PPR distribution is computed, the
algorithm divides the stationary distribution probability of each node by the
degree to compute the approximated ACL score.

The algorithm is described as Algorithm 1 (for a full discussion see [Andersen
et al. 07]).

Algorithm 2. Pushv (ppr, r)
Ensure: The new updated vectors pprnew and rnew are such that pprnew = ppr

and r = r′ with the following exceptions:
pprnew(v) = ppr(v) + αr(v)
rnew(v) = 1−α

2 r(v)
for all u ∈ V : (u, v) ∈ E do

rnew(u) = r(u) + 1−α
2deg(v ) r(v)

end for
return pprnew e rnew

How does the behavior of ApproxACL change as a function of the parameters
α and ε? Theorem 6.1 tells us how we should set the value of α. The dependence
on ε is also reasonably straightforward. The parameter ε measures how far we
are from the actual ACL score. Clearly, smaller values of ε imply longer running
times. The good news is that this dependence on precision is linear: it is possible
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δ

ε = 10−4 = 10−5 = 10−6 = 10−7

= 10−3 0.84 0.83 0.82 0.82
= 10−4 0.81 0.79 0.79
= 10−5 0.73 0.73
= 10−6 0.99

Table 4. Kendall-Tau distance correlation between an ε-ranking and a δ-ranking
for the Facebook snapshot.

The index is a real number between +1 (perfect concordance) and −1 (reverse order).
A value of 0 indicates that one ranking is a random permutation of the other. Similar
high correlation was observed for different snapshots of social networks.

to show that the running time of the algorithm is O( 1
αε ) and therefore, for a

given α, the running time is O( 1
ε ).

A second consequence of the choice of ε comes from the way the push-flow
algorithm works. It can be shown that all vertices w whose probability ppr(w) in
the stationary distribution is smaller than ε receive a score of 0 from ApproxACL.
When ApproxACL stops, nodes with a nonzero ppr value define a connected
component around the source, whereas the score of all outside vertices is 0. It
is interesting to see what happens when ApproxACL is run with two values
ε < δ. If we produce the ACL-ranking in the two cases, then the nonzero portion
of the ε-ranking is longer than the corresponding prefix of the δ-ranking. The
surprising finding is that these rankings are very stable, in the following sense.
Let uε

1 , . . . , u
ε
n and uδ

1 , . . . , u
δ
n be the two rankings. Then these two rankings

are almost the same. This can be measured for instance with the Kendall–Tau
distance, as reported in Table 4. This is a very useful property in the context
of the sybil defense. It says that if we want to identify quickly a set of trusted
nodes, we can do so simply by using a larger value of ε. Because the running
time of the protocol is dependent on the values of α and ε and not on the size of
the graph, this allows ApproxACL to effectively scale in situations where partial
node rankings suffice.

6.3. Comparative Evaluation

Our key question in evaluating ACL is to determine whether it succeeds in
expanding the guarantees offered by today’s social defense systems in two
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(d) SybilLimit on WikiTalk

Figure 6. The impact of varying the attack strength, respectively, on Facebook
(a,b) and WikiTalk graph (c,d). Results for SybilLimit are reported on prepro-
cessed graphs whereas for ACL we use raw graphs.

directions: (i) withstanding denser attacks, and (ii) providing high-quality
sybil defense without relying on the assumption that the entire graph is fast
mixing.

6.3.1. Method and Environment. Viswanath et al. observe that, despite their pecu-
liarities, sybil defense schemes are based on the same fundamental principle—
community detection—and produce highly correlated results [Viswanath et al.
10]. Hence, for the sake of clarity, the experiments we report compare ACL only
against SybilLimit, which we use as the SybilLimit-like champion. Although
SybilLimit performed better than its peers, our experiments with SybilGuard,
SybilInfer, and Gatekeeper returned qualitatively similar results.

The graphs we use to compare their performances are generated by subject-
ing social networks that we assume to include only honest nodes to the attack
described in Section 2.3. We then run ACL and SybilLimit on the resulting
graphs, rank the nodes using the same methodology discussed in Section 3, and
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measure precision (the percentage of nodes in the prefix of the ranking that are
honest) and recall (the percentage of honest nodes that are in the ranking’s pre-
fix) from the perspective of 10 randomly chosen seeds. We report the average of
the values we obtain.

We configure SybilLimit to have 1.5
√

m random walks of length 1.5 log(n),
where m is the number of edges in the final graph. ACL is configured with
α = 10−3 and ε sufficiently small to label every node in the attacked graph with
nonzero weight. (Figure 5 shows the results for other configuration of alpha.
Notice that the results are qualitatively similar across a wide range of parameter
settings.) For DBLP ε = 10−7 ; for all other graphs ε = 10−6 suffices. In Section
6.3.4, where we report the results of the other algorithms as well, we set the
length of the random walks in SybilGuard as 1.5 log(n) and the number of ticket
sources in Gatekeeper as 400.

6.3.2. ACL Tolerates Denser Attacks. Figure 6 shows the degree to which ACL and Sybil-
Limit succeed in defending the Facebook and WikiTalk graphs when the attack
strength, measured as the percentage p of attack edges in the graph, varies
from p = 0.01 to p = 0.1. Note that, to respect the “operating range” of each
protocol, the results we report for ACL are obtained on the original Facebook
graph, while the results from SybilLimit apply to the preprocessed Facebook
graph.

We observe that the ability of ACL to correctly classify nodes degrades grace-
fully as the attack increases in strength, remaining relatively high even when
p = 0.1. Indeed, for the Facebook graph, the selectivity of ACL under an attack
of strength p = 0.05 is comparable to SybilLimit’s with an attack of p = 0.01.
The performance of SybilLimit, on the other hand, decreases rather rapidly as
the attack strength increases.

6.3.3. ACL Does Not Need Preprocessing. Figure 7 shows the protection offered by ACL
and SybilLimit to the DBLP, Epinions, Facebook, Slahdot, RenRen, and Wik-
iTalk graphs for an attack where p = 0.01. For ACL, we report only results from
the raw graph. For SybilLimit we report results from both the raw and prepro-
cessed graphs.

Without preprocessing, ACL achieves high precision at high recall. Sybil-
Limit’s performance, however, is mixed. For most graphs, SybilLimit provides
excellent protection as long as the graphs are preprocessed. When the graphs are
not preprocessed, the offered coverage degrades to varying extents. The degrada-
tion in coverage for Facebook and RenRen is negligible; for Epinions the degra-
dation is minor but noticeable.
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Figure 7. The precision-recall trade-offs for ACL and SybilLimit on DBLP, Epin-
ions, Facebook, Slahdot, RenRen, and WikiTalk, with p = 0.01. Results for ACL
are reported for the raw graphs. Results for SybilLimit are reported for both raw
and preprocessed graphs.
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SybilLimit performs poorly on DBLP with or without preprocessing, though
preprocessing the graph does provide a significant boost. We speculate that this
poor performance is the side effect of the relatively high mixing time observed
by recent work [Mohaisen et al. 10].

6.3.4. A Second Attack Model. In this section we compare the algorithms using an
attack model widely used in the literature [Danezis and Mittal 09, Wei et al. 12].
The number of attack edges g is fixed, and random honest nodes are declared to
be sybil until we achieve g attack edges. Then, more sybil nodes are created from
scratch until a total of γ sybils is reached. These γ sybils are then connected
to one another via a scale-free topology: similar to other recent sybil defense
literature [Wei et al. 12], our attack uses the scale-free topology of Barabási-
Albert. We run each experiment ten times, and report the average values of
precision and recall.

Figure 8 shows the results for our Facebook and WikiTalk graph and
g = 50,000 and γ = 10,000. In the Facebook graph, ACL and Mislove are essen-
tially perfect, outperforming all other algorithms (Gatekeeper, SybiLimit, and
SybilGuard). In the WikiTalk graph, Mislove is outperformed by the other algo-
rithms. The large performance difference between the two graphs confirms the
sensitivity of Mislove ’s algorithm to the graphs’ topology (see Section 4) and
supports similar observations made in the recent literature [Cao et al. 12]. We
also ran experiments with other graphs and obtained similar results.

6.4. Local vs. Global Detection

We have shown that ACL is very effective in practice to address Problem 4.1.
Building a universal sybil defense system for community-structured networks,
however, remains an open problem.

In a recently published paper, Cao et al. suggested to expand defensive cover-
age by relying on multiple trusted seed nodes instead of a single one [Cao et al.
12]. More precisely, suppose there are several trusted seeds evenly distributed
among communities of honest nodes; it is then possible to merge the local rank-
ing of the nodes to get a unified global ranking of the nodes in the network.

Although effective in practice, the use of multiple seeds does not immedi-
ately lead to strong theoretical guarantees, even assuming that all seeds are
honest nodes. For example, suppose we can prove, as it is typical for ACL, that
a 1 − o(1) fraction of the honest seeds will assign a negligible fraction of the
overall score to sybil nodes and distribute the rest evenly across the honest re-
gion. There is always, however, a fraction of unlucky honest seeds for which
such guarantees are impossible—e.g., seeds at the boundary between the honest
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Figure 8. The precision of ACL and the other algorithms on the Facebook and
WikiTalk graphs with the attack model described in Section 6.3.4 with g = 50000
and γ = 10000. Results are shown for the average of 10 random trials.

and sybil regions. Unfortunately, because of the arbitrary nature of the sybil
region, walks originating from these nodes might produce an unconstrained (and
adversarial) probability distribution among the sybil nodes.

This is true not only for the ACL algorithm, but virtually for any sybil defense
algorithm that relies on random walks and mixing time (see for instance [Yu et
al. 06, 08, Cao et al. 12]).

Unfortunately, it is not clear how such unlucky choice of seeds will affect the
overall ranking. In fact, notice that while the correct seeds will distribute evenly
the score among honest nodes, the wrong ones might concentrate the score to a
smaller, but still significant, subregion of the sybil graph, thus letting such nodes
overtake the first positions of the ranking.

Nevertheless, we think that the use of multiple seeds is a promising research
direction, and recent literature [Cao et al. 12] has empirically verified the effec-
tiveness of this approach in real-world scenarios.

6.5. Discussion

We have shown experimentally that ACL can identify quite accurately the com-
munity of a given honest seed and that it provides formal guarantees for the
rankings it produces. Although it is effective at solving Problem 4.1, as we are
about to see in the next section, ACL is still vulnerable to some simple, primitive
sybil attacks that are encountered in deployed social networks—a stark reminder
of the gap that, while narrowing, still exists between the theoretical assumptions
that underpin the theory behind the current state of the art in sybil defense, and
the reality of sybil attacks encountered in the wild. The existence of this gap does
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not, in our view, belittle the importance of the current theoretical tools, as it
is only by understanding their strengths and limitations that one can obtain a
firmer grasp of the problem of social sybil defense. It does, however, point to a
concrete challenge, and the next section outlines an approach that we believe
can prove fruitful in addressing it.

7. Social Sybil Defense Against Real-World Attacks

Our appraisal in Section 2 of the resilience of different structural properties of
social graphs indicated that leveraging the complementary notions of mixing
time and conductance is the most promising line of defense against sybil attacks;
furthermore, techniques based on this approach can provide impressive end-to-
end guarantees. Yet one key question remains: how effective are these techniques
against actual sybil attacks?

Although data on sybil attacks in deployed social networks is not readily avail-
able, two recent papers have included experience reports that shed light on the
types of attacks that occur in the wild.

Cao et al. report to have successfully used SybilRank to identify sybil users in
the Tuenti social network [Cao et al. 12]. They observe large clusters of sybil users
in regular topologies (star, mesh, tree, etc.) that are connected to the honest com-
munities through a limited number of attack edges. They also report that an un-
specified fraction of the remaining accounts are sybil, but to preserve confidential-
ity they are unable to report on the number or characteristics of those accounts.

Yang et al.’s experience in analyzing the RenRen social network is significantly
different [Yang et al. 11]: they did not observe any large clusters of well-connected
sybil nodes connected in turn to the honest subgraph through a small set of attack
edges, as would be expected by the sybil defense techniques we have surveyed;
instead, they find isolated sybil nodes each connected to the honest subgraph
through a large number of attack edges.

The simple attack observed in the RenRen social network is problematic for
conductance-based protocols. We simulated the attack on our Facebook graph
by introducing s isolated sybil nodes and by allowing the attacker to attempt
to establish m potential attack edges by selecting both the honest and the sybil
endpoint uniformly at random (m and n denote the number of edges and of
vertices, respectively, in the Facebook graph). As usual, each potential attack
edge is accepted with probability p. In the experiment we set s = pn so that the
order of magnitude of the average degree of sybil and honest nodes is the same. To
assess the results, we used the well-known ROC index, defined in Section 3.2. The
results show that, even for a very small number of attack edges (p = 0.01), every
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protocol performs poorly: the ROC is 0.45 for SybilLimit, 0.44 for SybilGuard,
0.34 for Mislove, 0.49 for Gatekeeper, and 0.37 for ACL. Notice that a 0.50 ROC
is consistent with a random ranking.

These results are not coincidental, as the vulnerability of conductance-based
techniques to an attack where each sybil node can create more than one attack
edge is fundamental: indeed, Yu et al. proved a lower bound of Θ(1) to the
number of attack edges per sybil node that any mixing-time-based algorithm
might tolerate [Yu et al. 08].

These experiences indicate that although today’s socially based sybil defenses
are designed to provide the theoretically best defense posture, they may be also
easily circumvented.

7.1. Defense in Depth

To overcome this impasse, we believe that effective sybil-defense mechanisms
should embrace a strategy inspired by the notion of defense in depth [Stytz 04]:
rather than relying solely on techniques based on conductance, they should in-
clude a portfolio of complementary detection techniques. For example, Yang et
al. observe that it is possible to spot sybil nodes by tracking their clustering
coefficient (see Section 2) and the rate at which their requests of friendship are
accepted: both of these measures in the RenRen graph are significantly higher
for honest nodes than for sybils (in the case of the clustering coefficient, this is
because a single sybil node that randomly issues friendship requests is unlikely
to have many friends who are themselves friends with each other) [Yang et al.
11]. As a rule of thumb, Yang et al. suggested to report as sybil those users
whose friendship-request acceptance rate is less than 50% and whose clustering
coefficient is below 1/100. They report that this is sufficient to correctly identify
more than 98% of the sybil nodes, with a false positive rate of less than 0.5%.
Note that, while these results sound impressive, they are not cause for uncondi-
tional celebration, as it is quite easy for a slightly more sophisticated adversary
to circumvent both checks by issuing friendship requests to other sybil nodes
under his control. But, at the very least, checks like these make the life of the
attacker more difficult and prevent more sophisticated defenses from being triv-
ially sidestepped. Indeed, they can even nudge the attacker, who might like it or
not, toward the kind of attacks where conductance-based method can start to
be effective. For instance, simply adding a defense layer that monitors the rate
of friendship acceptance introduces a bound (albeit loose) on the conductance
of the cut between honest users and sybil nodes.

In particular, assume that honest users accept sybil request with probability
p and that the threshold of accepted requests below which a node is flagged as
sybil is T . Then, in our attack model, the following simple result holds:
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Proposition 7.1. Suppose that honest nodes accept friendship from a sybil node with
probability p. Then, to have average acceptance ratio larger than T and avoid
detection, a sybil node must create T −p

1−T edges to fellow sybil nodes for every
tentative attack edge aimed at an honest node.

Proof. For a given sybil node, let δ be the ratio between the number Es of edges
connecting to other sybil nodes and Eh , the number of attack edges that a sybil
attempts to create with honest node, i.e., δ = Es

Eh
.

Note that in expectation the total number of edges that the sybil node will
successfully create is Es + pEh , so its average acceptance rate is Es +pEh

Es +Eh
=

δEh +pEh

δEh +Eh
= δ+p

δ+1 . So to have the average acceptance ratio larger than T , we have
that δ+p

δ+1 > T and hence δ > T −p
1−T .

For example, if honest users accept friendship requests with probability p =
10% and T = 50% [Yang et al. 11], then each sybil node should have eight links
to sybil nodes for every attack edge to avoid detection.

Proposition 7.1 bounds the conductance of the cut between honest and sybil
nodes, in the sense that whenever the sybil region has fewer edges than the
honest region, the conductance of the cut is at most 2p 1−T

T −p .
Although this bound on conductance is loose, it is encouraging that such lim-

itation to the attacker can be obtained based on a fairly primitive measure such
as the rate of friendship acceptance. We speculate that in the near future new de-
fense layers based on advanced machine-learning and profiling techniques [Stein
et al. 11] will force a sybil attacker who wants to escape detection to gener-
ate sybil regions that ever more accurately resemble honest regions, connected
through a sparse cut of attack edges to the honest portion of the graph: in other
words, exactly the scenario suitable for conductance-based sybil defense.

8. Conclusions

This work has traced the evolution of social sybil defenses from the seminal work
of [Yu et al. 06] to the developments of the last several years [Yu et al. 08, Danezis
and Mittal 09, Tran et al. 11, Cao et al. 12] to recent reports [Yang et al. 11, Cao
et al. 12] that detail their usage in practice.

We have identified two main trends in the literature. The first is based on
random walk methods whose goal is to identify fast-mixing (sub)regions that
contain the honest seed. The implicit assumption is that social networks under
sybil attacks must exhibit a simple structure—a fast-mixing region of honest
nodes connected via a sparse cut to the sybil region. We have seen how this initial
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simplified picture of the world has progressively become more nuanced, leading
to methods based on random walks that are able to cope with a more complex
world consisting of a constellation of tightlyknit, fast-mixing communities loosely
connected among themselves and to the sybil region.

The other trend that we have discussed considers sybil defense as an instance of
community detection. Although we have revealed the limitation of this approach,
we have been able to enucleate its core validity.

As we have shown with our discussion on Personalized PageRank, the two
approaches can go hand in hand to yield more robust sybil defense proto-
cols that are competitive with the state of the art. The discussion has high-
lighted the importance of the body of literature that studies foundational issues
on random walks. As we have shown, both algorithms and useful conceptual
tools can be distilled from it and successfully deployed in the context of sybil
defense.

We also compare our solutions with real-world attacks. We believe that the
defense-in-depth approach that we have advocated as a response to this chal-
lenge can be facilitated by moving from the original vision of offering individual
honest users decentralized and universal sybil defense [Yu et al. 06, 08] toward
defense techniques that assume that the defender has complete knowledge of the
social graph topology [Cao et al. 12, Yang et al. 11] and can deploy the kind of
parallelizable implementations suitable for handling the large graphs of online
social networks. In particular, social network operators are in a position to use
machine learning techniques, user profiling, and monitoring of user activity to
gain additional knowledge that can help them filter sybil attacks not wellsuited
for detection using techniques based on random walks, community detection,
and their combination. Still, as attackers increase in sophistication, claims of a
silver bullet should be met with healthy skepticism. As the arms race between
attackers and defenders continues, it will be increasingly important that new
defense mechanisms clearly state the kind of attack they aim to withstand, a
landscape that too often is blurred.
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Appendix

A.1 Proof of Theorem 2.5

We prove Theorem 2.5, whose statement we now recall.

Theorem 2.5. Let H = (V,E) be a connected simple graph such that φ(H)vol(V ) ∈
Ω(log n), φ(H) ≤ 1

e and let S = (V ′, E′) be another connected simple graph with
φ(S) ≥ φ(H). Suppose further that φ(H)vol(V ) ≤ vol(V ′) ≤ vol(V ).
Let GF = (VF ,EF ) be the union of S, H and let g be the number of random attack
edges between H and S, whose endpoints are selected with probability proportional
to the degrees of the nodes. Then if log( 1

φ(V ) ) · φ(V ) · vol(V ) ≤ g ≤ vol(V ′) we
have that, with high probability,

φ(GF ) ∈ Ω (φ(V )).

To prove the theorem we need to show that the probability that all sets of volume
smaller than 1

2 vol(VF ) have conductance in Ω(φ(H)) is 1 − o(1).
We start by defining some useful notation.

Definition A.1. For any disjoint subsets A,B of VF , let CF (A,B) be the number of
edges with one endpoint in A and one in B in the final graph GF . More formally:

CF (A,B) := |(x, y) ∈ EF : x ∈ A, y ∈ B|.
Similarly let CH (A,B) and CS (A,B) be the analogous for graph H and S,
respectively.

Definition A.2. For any K ⊆ VF , let CH (K) be the number of edges with one end-
point in K ∩ V and the other in V \ K. More formally:

CH (K) := CH (K ∩ V, V \ K).

Similarly for the graph S, let CS (K) bet CS (K) = CS (K ∩ V ′, V ′ \ K).

In the rest of the section, unless otherwise specified, vol(K), φ(K), cut(K) without
subscript refer to the volume, conductance, and cut of K ⊆ VF , respectively, in the
graph GF . On the other hand, volH (K), φH (K), cutH (K) refer to the volume, con-
ductance, and cut of the subset K ∩ V , respectively, in the graph H , and a similar
convention is adopted for the graph S.

Definition A.3. Let K be the family of subsets of VF such that for any KF ∈ K,
vol(KF ) ≤ 1

2 vol(VF ) and G [KF ] is connected.

We use the following proof strategy. First, we show that we can restrict our attention
to only the subsets of VF in K . Then, we partition these subsets and derive a prob-
abilistic bound on their cut in GF . Using these bounds, we show that the probability
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that any subset KF of VF with vol(KF ) ≤ 1
2 vol(VF ) has conductance φ(KF ) ∈ Ω(φ(H))

is 1 − o(1).
We begin by showing that we can restrict our attention to the family of sets K such

that for any KF ∈ K the induced graph GF [KF ] is connected, thus motivating the
definition of K .

Lemma A.1. Let GF [KF ] be the subgraph induced by KF and let KF1 ,KF2 , · · · ,
KFR

, with R > 1, be the connected components of GF [KF ]. If φ(KFi
) ≥ α for all

i with 1 ≤ i ≤ R then φ(KF ) ≥ α.

Proof.

φ(KF ) =
| cut(KF )|
vol(KF )

=
∑

i | cut(KFi
)|∑

i vol(KFi
)

=
∑

i φ(KFi
)vol(KFi

)∑
i vol(KFi

)
≥
∑

i αvol(KFi
)∑

i vol(KFi
)

=α.

We proceed by defining a useful partitioning of K .

Definition A.4. Let Kk,k′ ⊆ K be the family of subsets of VF such that KF ∈ Kk,k′

if and only if CH (KF ) = k and CS (KF ) = k′.

Definition A.5. For any subset KF ⊆ VF let YKF
be the number of attack edges

with two endpoints in KF , let XV ∩KF
be the number of attack edges with one

endpoint in V ∩ KF and the other one in VF \ KF , and, finally, let XV ′∩KF
be

defined in a specular way.

Given the previous definitions, we can now proceed with stating a few lemmas, whose
proof we postpone to the last subsection of this appendix.

Lemma A.2. Let C be a constant larger than 12000, volS (V ′) ≤ volH (V )
12 and let

φ(H) < 1
e . For any 0 ≤ k, k′ ≤ 1

C �φ(H) · vol(V ′)� we have

|Kk,k′ | ≤ exp
( 1

384
log
(

1
φ(H)

)
· φ(H) · volS (V ′)

)
.

Lemma A.3. Under the assumptions of Theorem 2.5, let KF ∈ K.
YKF

has expected value

E[YKF
] = g

volH (KF )
volH (V )

volS (KF )
volS (V ′)

.

Moreover

P (YKF
> 3vol(KF ) + E[YKF

]) ≤ exp (−3volH (V )) .

Based on these lemmas, we can now prove the main result.
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Proof of Theorem 2.5. We want to prove that, for all KF ⊆ VF such vol(KF ) ≤ 1
2 vol(VF ) we

have φ(VF ) ∈ Ω(φ(H)) with probability 1 − o(1). We begin by splitting K in 4 families
of sets. Then we consider each family separately and we prove that the probability that
for any set KF ∈ K the probability that φ(KF ) /∈ Ω(φ(H)) is asymptotically smaller
than the size of the family to which it belongs. This, in turn, will imply the result.

From Lemma A.1 we know that we can restrict our attention to sets KF ⊆ VF whose
induced subgraph GF [KF ] consists of single connected components. The lemma shows
in fact that if we can prove a lower bound on the conductance of all such connected
components of G[KF ], then the bound applies also to φ(KF ).

We now proceed to prove that for any k, k′ all subsets KF ⊆ VF in Kk,k′ have
conductance Ω(φ(H)) with probability 1 − o(1).

We start with an easy example to warmup; notice that in this simple case the result
holds with probability 1:

a) K0 ,0 Let us consider the elements KF ∈ K0 ,0 . If CH (KF ) is 0, since H is con-
nected, we have that KF ∩ V is either equal to V or to the empty set. Similarly,
we can see that KF ∩ V ′ is either equal to V ′ or to the empty set. Recall that
K0 ,0 ⊆ K contains only sets KF such that vol(KF ) ≤ 1

2 vol(VF ) and that, by assump-
tion, volH (V ) ≥ volS (V ′). Then, the only two possible elements of K0 ,0 are V and
V ′.

If V ∈ K0 ,0 we have volH (V ) = volS (V ′). Otherwise vol(V ) = volH (V ) + g >
volS (V ′) + g = vol(V ′), but since vol(VF ) = vol(V ) + vol(V ′) < 2vol(V ) then vol(V ) >
1
2 vol(VF ), which contradicts the definition of K .

As volH (V ) = volS (V ′) we have φ(V ) = g
vol(V ) = g

vol(V ′) ≥ log( 1
φ (H ) )φ(H).

Similarly, if V ′ ∈ K0 ,0 we have φ(V ′) = g
vol(V ′) ≥ log( 1

φ (H ) )φ(H).

b) General Case We now consider the general case in which k ≥ 0 and k′ ≥ 0, recall
k = CH (KF ) and k′ = CS (KF ). Recall the definitions of YK F

,XV ∩K F
and XV ′∩K F

,
given in Definition A.5.

We have

φ(KF ) =
CH (KF ) + CS (KF ) + XV ∩K F

+ XV ′∩K F

volH (KF ) + volS (KF ) + XV ∩K F
+ XV ′∩K F

+ 2YK F

(A.1)

=
CH (KF ) + CS (KF ) + XV ∩K F

+ XV ′∩K F

volH (KF ) + volS (KF ) + g
. (A.2)

To find the right bound for the conductance, it is necessary to consider separately the
following four cases that cover the relative size of the volumes of V ∩ KF and V ′ ∩ KF

in relation to V and V ′, respectively.

1) Large V ∩ KF and small V ′ ∩ KF : when volH (KF ) ≥ 3volH (V )
4 and volS (KF ) <

3volS (V ′)
4 .

2) Smal V ∩ KF and large V ′ ∩ KF : when volH (KF ) < 3volH (V )
4 and volS (KF ) ≥

3volS (V ′)
4 .

3) Small V ∩ KF and small V ′ ∩ KF : when volH (KF ) < 3volH (V )
4 and

volS (KF ) < 3volS (V ′)
4 .
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4) Large V ∩ KF and large V ′ ∩ KF : when volH (KF ) ≥ 3volH (V )
4 and

volS (KF ) ≥ 3volS (V ′)
4 .

Case 1. Large V ∩ KF and small V ′ ∩ KF . In this case we have volH (KF ) ≥ 3volH (V )
4

and volS (KF ) < 3volS (V ′)
4 . Recall that KF ∈ K has vol(KF ) ≤ 1

2 vol(VF ), where VF =
V ∪ V ′. So we have,

volH (KF ) ≤ 1
2
vol(VF ) ≤ 1

2
(volH (V ) + volS (V ′) + 2g) ,

by the assumption volS (V ′) ≥ g. Now,

volH (KF ) ≤ 1
2

(volH (V ) + 3volS (V ′)) .

Hence, from the assumption on the size of KF ∩ V , we have

3
4
volH (V ) ≤ 1

2
(volH (V ) + 3volS (V ′)) ,

and

volS (V ′) ≥ 1
12

volH (V ).

Now, suppose that k or k′ ≥ 1
C
�φ(H) · vol(V ′)�, for a large constant C , by equation

A.1 we get:

φ(KF ) ≥
1
C
�φ(H) · vol(V ′)�

volH (KF ) + volS (KF ) + 2g
≥

1
C
�φ(H) · vol(V ′)�

12volS (V ′) + volS (V ′) + 2volS (V ′)

≥
1
C
�φ(H) · vol(V ′)�

15volS (V ′)
≥ 1

15C
φ(H),

where the last inequality comes from vol(V ′) ≥ volS (V ′). Hence we have φ(KF ) ∈
Ω(φ(H)).

We can therefore restrict now our attention to the case where k, k′ ≤ 1
C
�φ(H) ·

vol(V ′)�. Consider a single set KF ∈ Kk,k′ for a given pair of k, k′. In expectation
over the random choice of attack edges according to the model we have:

E[XV ∩K F
] = g

volH (KF )
volH (V )

volS (V ′ \ KF )
volS (V ′)

.

This is because, for each of the g attack edges, there is a probability deg(v )
volH (V ) that

v ∈ V will be the endpoint in H and, similarly, there is a probability deg(v ′)
volS (V ′) that the

other endpoint will be v′ ∈ V ′.
Since volH (K F )

volH (V ) ≥ 3
4 and volS (V ′\K F )

volS (V ′) = 1 − volS (K F )
volS (V ′) ≥ 1

4 , we have

E[XV ∩K F
] ≥ 3

16
g.
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Further, since attack edges are independent, using the Chernoff bound (Theorem 2.2)
we get that

P

[
XV ∩K F

≤ 1
16

g

]
≤ exp

(
− 1

192
g

)
.

Thus, with probability 1 − exp
(− 1

192 g
)
, we have that φ(KF ) is lower bounded by

φ(KF ) ≥ CH (KF ) + CS (KF ) + XV ∩K F
+ XV ′∩K F

volH (KF ) + volS (KF ) + XV ∩K F
+ XV ′∩K F

+ 2YK F

≥
1
16 g

volH (KF ) + volS (KF ) + 2g
≥

1
16 g

15volS (V ′)

≥ 1
240

φ(H),

where the last inequality comes form the bound on XV ∩K F
and the previous consider-

ations on the volume of KF .
To complete the proof of this case we have to show that the result holds not only for

a single set, but for all the sets KF ∈ Kk,k′ with k, k′ ≤ 1
C
�φ(H) · vol(V ′)�.

By Lemma A.2, we know that

|Kk,k′ | ≤ exp
(

1
384

log
(

1
φ(H)

)
· φ(H) · volS (V ′)

)
,

for any with k, k′ ≤ 1
C
�φ(H) · vol(V ′)�.

Furthermore, there are at most volH (V )2 ≤ 4n4 different pairs k, k′ with k, k′ ≤
1
C
�φ(H) · vol(V ′)� such that Kk,k′ is not empty. So, using the union bound, we get

that:

P

(
∃KF ⊆ V ∪ V ′ : φ(KF ) <

1
160

φ(H)
)

≤ 4n4P

(
∃KF , k, k′ : KF ⊆ Kk,k′ ∧ φ(KF ) <

1
160

φ(H)
)

≤ 4n4 exp
(

1
384

log
(

1
φ(H)

)
· φ(H) · volS (V ′)

)
· P
(

φ(KF ) <
1

160
φ(H)

)

≤ 4n4 exp
(

1
384

log
(

1
φ(H)

)
· φ(H) · volS (V ′)

)
· exp

(
− 1

192
g

)

∈ O

(
exp

(
− 1

384
log
(

1
φ(H)

)
· φ(H) · volS (V ′)

))
.

Thus, for all KF covered by Case 1 we have that with high probability
φ(KF ) ∈ Ω(φ(H)).

Case 2. Large V ′ ∩ KF and small V ∩ KF . In this case we have volH (KF ) < 3volH (V )
4

and volS (KF ) ≥ 3volS (V ′)
4 .
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If volH (KF ) ≥ volS (KF ) we have

φ(KF ) ≥ CH (KF )
volH (KF ) + volS (KF ) + 2g

≥ CH (KF )
volH (KF ) + 3volS (KF )

≥ CH (KF )
4volH (KF )

∈ Ω(φ(H)).

So we can restrict our attention to the case when volH (KF ) < 4
3 volS (V ′), and the

proof of this case mirrors the one for the case above.

Case 3. Small S ∩ KF and small H ∩ KF . In this case we have volH (KF ) < 3volH (V )
4

and volS (KF ) < 3volS (V ′)
4 . For this reason, volH (KF ) ≤ 4volH (V \ KF ), as volH (KF ) ≤

1
2 volH (V ). Hence,

CH (KF ) ≥ φ(H)volH (KF ).

Similarly, CS (KF ) ≥ φ(S)volS (KF ) and hence the following inequality for φ(KF )
holds

φ(KF ) =
CH (KF ) + CS (KF ) + XV ∩K F

+ XV ′∩K F

volH (KF ) + volS (KF ) + XV ∩K F
+ XV ′∩K F

+ 2YK F

≥ φ(H)volH (KF ) + φ(S)volS (KF ) + XV ∩K F
+ XV ′∩K F

volH (KF ) + volS (KF ) + 2YK F
+ XV ∩K F

+ XV ′∩K F

≥ φ(H)volH (KF ) + φ(S)volS (KF )
volH (KF ) + volS (KF ) + 2YK F

.

By Lemma A.3 we know that

E[YK F
] = g

volH (KF )
volH (V )

volS (KF )
volS (V ′)

,

and that P (YK F
> 3vol(KF ) + E[YK F

]) ≤ exp (−3volH (V )) .
Thus, P (YK F

> 8 · max (volH (KF ), volS (KF ))) ≤ P (YK F
> 3vol(KF ) + E[YK F

]) is
at most exp (−3volH (V )).

In this case we have a strong probabilistic bound and thus we can use a simpler bound
on the size of Kk,k′ . In fact it is enough to notice that |Kk,k′ | ≤ 2volH (V ) 2volS (V ) ≤
22volH (V ) to get from the union bound that:

P (∃KF ⊆ V ∪ V ′ : YK F
> 8 · max (volH (KF ), volS (KF ))) ∈ O

(
e−volH (V )) .

Thus, with high probability,

φ(KF ) ≥ φ(H)volH (KF ) + φ(S)volS (KF )
volH (KF ) + volS (KF ) + 16 max (volH (KF ), volS (KF ))

≥ 1
18

φ(H).

Case 4. Large S ∩ KF and large H ∩ KF . Finally, in this case we have volH (KF ) ≥
3volH (V )

4 and volS (KF ) ≥ 3volS (V ′)
4 . Note that g ≤ volS (V ′) ≤ 4

3 volS (KF ),
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φ(KF ) =
CH (KF ) + CS (KF ) + XV ∩K F

+ XV ′∩K F

volH (KF ) + volS (KF ) + XV ∩K F
+ XV ′∩K F

+ 2YK F

≥ CH (KF ) + CS (KF )
volH (KF ) + volS (KF ) + 2g

≥ CH (KF ) + CS (KF )
volH (KF ) + volS (KF ) + 8

3 volS (KF )

≥ CH (KF ) + CS (KF )
11
3 (volH (KF ) + volS (KF ))

.

Note that for any four positive positive real numbers we have that if a/b > c/d, then
a+ c
d+ b

≥ c
d
, thus we get

φ(KF ) = min
(

CH (KF )
11
3 volH (KF )

,
CS (KF )

11
3 volS (KF )

)
≥ O(φ(H)).

Having covered all four cases, we can then conclude that φ(GF ) ∈ Ω (φ(H)) with
high probability, completing the proof.

A.2 Proofs of Lemmas A.2 and A.3.

Proof Proof of Lemma A.2.
Remember that Kk,k ′ contains the subsets KF of VF such that CH (KF ) = k and

CH (KF ) = k′. Notice that once we have selected the k edges between KF ∩ V and
V \ KF and the k′ ones between KF ∩ V ′ and V ′ \ KF , we have defined the two cuts in
V and V ′, so we have just four possible sets KF . Thus, for a given pair k, k′, we have
at most

|Kk,k′ | ≤ 4
((|E|

k

)
·
(|E ′|

k′

))
≤ 4
( |E|

1
C
�φ(H) · vol(V ′)�

)
·
( |E ′|

1
C
�φ(H) · vol(V ′)�

)

≤ 4
( |E|e

1
C

φ(H) · vol(V ′)

) 1
C

φ (H ) ·vol(V ′) ( |E ′|e
1
C

φ(H) · vol(V ′)

) 1
C

φ (H ) ·vol(V ′)

≤ 4

(
|E||E ′|e2(

1
C

φ(H) · vol(V ′)
)2
) 1

C
φ (H ) ·vol(V ′)

≤
(

2Ceδ

φ(H)
2Ceδ

φ(H)

) 1
C

φ (H ) ·vol(V ′)
,

where δ = max
(

|E |
vol(V ′) ,

|E ′ |
vol(V ′)

)
. Thus, by the theorem hypotheses, δ = |E |

vol(V ′) . Finally,
because of the lower bound on the size of volS (V ′) we know that,

δ =
|E|

volS (V ′)
≤ 12|E|

volH (V )
≤ 6,
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and hence,

|Kk,k′ | =
(

12Ce

φ(H)

) 2
C

φ (H ) ·volS (V ′)

≤ exp
((

log
(

12C

φ(H)

)
+ 1
)

2
C

φ(H) · volS (V ′)
)

≤ exp
((

log (12C) + log
(

1
φ(H)

)
+ 1
)
· 2
C

φ(H) · volS (V ′)
)
.

Using the fact that C > 9000 we have |Kk,k′ | ≤ exp
(

1
384 log

(
1

φ (H )

)
· φ(H) ·

volS (V ′)
)
, completing the proof.

Proof Proof of Lemma A.3.
By definition of YK F

we have

E[YK F
] = g

volH (KF )
volH (V )

volS (KF )
volS (V ′)

.

Let χ be the event {YK F
> 3vol(KF ) + E[YK F

]}. Using the Chernoff bound (Theo-
rem 2.2) we get that:

P (χ) = P (YK F
− E[YK F

] > 3vol(KF ))

= P

(
YK F

− E[YK F
] >

(
3vol(KF )
E[YK F

]

)
E[YK F

]
)

≤ P

(
|YK F

− E[YK F
]| >

(
3vol(KF )
E[YK F

]

)
E[YK F

]
)

≤ exp
(
− 1

3E[YK F
]
(3vol(KF ))2

)

≤ exp

(
− volH (V )volS (V ′)

3gvolH (KF )volS (KF )
(3vol(KF ))2

)

≤ exp

(
− 3volH (V )

volS (V ′)
g

(vol(KF ))2

volH (KF )volS (KF )

)

≤ exp (−3volH (V )) .

The last inequality follows from the fact that vol(KF ) ≥ volH (KF ), volS (KF ) and
that volS (V ′) ≥ g.
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