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Abstract We consider the length L(n) of the longest path in a randomly generated Apollonian
Network (ApN) An. We show that with high probability L(n) ≤ ne− logc n for any constant
c < 2/3.

1. INTRODUCTION

This article concerns the length of the longest path in a random Apollonian Network (ApN)
An. We start with a triangle T0 = xyz in the plane. We then place a point v1 in the centre
of this triangle, creating three triangular faces. We choose one of these faces at random and
place a point v2 in its middle. There are now five triangular faces. We choose one at random
and place a point v3 in its center. In general, after we have added v1, v2, . . . , v1, there will
be 2n + 1 triangular faces. We choose one at random and place vn inside it. The random
graph An is the graph induced by this embedding. It has n + 3 vertices and 3n + 6 edges.

This graph has been the object of study recently; in the context of scale-free graphs [5].
Properties of its degree sequence, properties of the spectra of its adjacency matrix, and
its diameter were determined. The diameter result was improved, and the diameter was
determined asymptotically [3, 4]. The study [4] proves the following result concerning the
length of the longest path in An:

Theorem 1.1. There exists an absolute constant α such that if L(n) denotes the length of
the longest path in An then

Pr
(

L(n) ≥ n

logα n

)
≤ 1

logα n
.
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The value of α from [4] is rather small, and we will assume for the purposes of this proof
that

α <
1

3
. (1.1)

The aim of this work is to give the following improvement on Theorem 1.1:

Theorem 1.2.

Pr
(
L(n) ≥ ne− logc n

) ≤ O
(
e− logc/2 n

)
for any constant c < 2/3.

This is most likely far from the truth. It is reasonable to conjecture that, in fact, L(n) ≤ n1−ε

w.h.p. for some positive ε > 0. For lower bounds, [4] shows that L(n) ≥ nlog3 2 + 2 always
and E(L(n)) = �(n0.8). An �(nlog3 2) lower bound for arbitrary 3-connected planar graphs
has been proven [1].

2. OUTLINE PROOF STRATEGY

We take an arbitrary path P in An and bound its length as follows. We add vertices to
the interior of xyz in rounds. In round i we add σi vertices. We start with σ0 = n1/2 and
choose σi � σi−1, where A � B i.f.f B = o(A). We will argue inductively that P visits
only τi−1 = o(σi−1) faces of Aσi−1 and then use Lemma 4.1 to argue that roughly a fraction
τi−1/σi−1 of the σi new vertices go into faces visited by P . We then use a variant (Lemma
5.1) of Theorem 1.1 to argue that w.h.p. τi

σi
≤ τi−1

2σi−1
. Theorem 1.2 will follow easily from

this.

3. PATHS AND TRIANGLES

Fix 1 ≤ σ ≤ n and let Aσ denote the ApN we have after inserting σ vertices A interior
to T0. It has 2σ + 1 faces, which we denote by T = {T1, T2, . . . , T2σ+1}. Now add N

more vertices B to create a larger network Aσ ′ , where σ ′ = σ + N . Now consider a
path P = x1, x2, . . . , xm through Aσ ′ . Let I = {i : xi ∈ A} = {i1, i2, . . . , iτ }. Note that
Q = (i1, i2, . . . , iτ ) is a path of length τ − 1 in Aσ . This is because ikik+1, 1 ≤ k < τ

must be an edge of some face in T . We also see that for any 1 ≤ k < τ , the vertices
xj , ik < j < ik+1 will all be interior to the same face Tl for some l ∈ [2σ + 1].

We summarize this in the following lemma, using the notation of the preceding
paragraph.

Lemma 3.1. Suppose that 1 ≤ σ < σ ′ ≤ n and that Q is a path of Aσ that is obtained
from a path P in Aσ ′ by omitting the vertices in B.
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Suppose that Q has τ vertices and that P visits the interior of τ ′ faces from T . Then

τ − 1 ≤ τ ′ ≤ τ + 1.

Proof. The path P breaks into vertices of Aσ plus τ + 1 intervals where, in an interval,
it visits the interior of a single face in T . This justifies the upper bound. The lower bound
comes from the fact that except for the face in which it starts, if P reenters a face xyz, then
it cannot leave it, because it will have already visited all three vertices x, y, z. Thus, at most
two of the aforementioned intervals can represent a repeated face.

4. A STRUCTURAL LEMMA

Let

λ1 = log2 n.

A sequence of events En holds quite surely (q.s.) if Pr(¬En) = O(n−K ) for any constant
K > 0.

Lemma 4.1. The following holds for all i. Let σ = σi and suppose that λ1 ≤ τ � σ .
Suppose that T1, T2, . . . , Tτ is a set of triangular faces of Aσ . Suppose that N � σ and that
when adding N vertices to Aσ we find that Mj vertices are placed in Tj for j = 1, 2, . . . , τ .
Then, for all J ⊆ [2σ + 1], |J | = τ , we have

∑
j∈J

Mj ≤ 100τN

σ
log

(σ

τ

)
.

This holds q.s. for all choices of τ, σ , and T1, T2, . . . , Tτ .

Proof. We consider the following process that starts with s newly born particles. Once
a particle is born, it waits an exponentially mean one distributed amount of time. After
this time, it simultaneously dies and gives birth to k new particles, and so on. A birth
corresponds to a vertex of our network and a particle corresponds to a face.

Let Zt denote the number of deaths up to time t . The number of particles in the
system is βN = s + N (k − 1). Then we have

Pr(Zt+dt = N ) = βN−1 Pr(Zt = N − 1)dt + (1 − βNdt) Pr(Zt = N ).

So, if pN (t) = Pr(Zt = N ), we have fN (0) = 1N=s and

p′
N (t) = βN−1pN−1(t) − βNpN (t).
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This yields

pN (t) =
N∏

i=1

(k − 1)(i − 1) + s

(k − 1)i
× e−st (1 − e−(k−1)t )N

= Ak,N,se
−st (1 − e−(k−1)t )N .

We have A3,0,s = 1. When s is even, s,N → ∞, and k = 3, we have

A3,N,s =
N∏

i=1

(
s/2 + i − 1

i

)
=
(

N + s/2 − 1

s/2 − 1

)

≈
(

1 + s − 2

2N

)N (
1 + 2N

s − 2

)s/2−1
√

2N + s

2πNs
.

We also need to have an upper bound for a small, even s, N2 = o(s), say. In this case, we
use

A3,N,s ≤ sN .

When s ≥ 3 is odd, s,N → ∞ (no need to deal with small N here), and k = 3 we
have

A3,N,s =
N∏

i=1

(
2i − 2 + s

2i

)
= (s − 1 + 2N )!((s − 1)/2)!

22N (s − 1)!N !((s − 1)/2 + N )!

≈
(

1 + s − 1

2N

)N (
1 + 2N

s − 1

)(s−1)/2 1

(2πN )1/2
.

We now consider τ → ∞, τ � σ,N ≥ m ≥ 2τN/σ � τ and arbitrary t (under
the assumption that τ is odd and σ is odd). (We sometimes use A ≤b B in place of
A = O(B)).

Pr(M1 + · · · + Mτ = m | M1 + · · · + Mσ = N )

= Pr(M1 + · · · + Mτ = m) Pr(Mτ+1 + · · · + Mσ = N − m)

Pr(M1 + · · · + Mσ = N )

= A3,m,τA3,N−m,σ−τ

A3,N,σ

≈
(
1+ τ−1

2m

)m (
1+ 2m

τ−1

)(τ−1)/2
(

1+ σ−τ−2
2(N−m)

)N−m(
1+ 2(N−m)

σ−τ−2

)(σ−τ−2)/2
(N (2(N−m)+σ ))1/2

(
1+ σ−1

2N

)N (
1+ 2N

σ−1

)(σ−1)/2
(2πmσ (N−m))1/2

≤b

e(τ−1)/2
((

2m
τ

)(τ−1)/2
eo(τ )

)
e(σ−τ )/2

(
1 + 2(N−m)

σ−τ−2

)(σ−τ−2)/2
(N (2(N − m) + σ ))1/2

eσ/2−σ 2/8N

((
2N
σ

)(σ−1)/2
eσ 2/(4+o(1))N

)
(mσ (N − m))1/2
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≤b

eo(τ )
(

2m
τ

)(τ−1)/2 (
1 + 2(N−m)

σ−τ−2

)(σ−τ−2)/2
(N (2(N − m) + σ ))1/2(

2N
σ

)(σ−1)/2
(mσ (N − m))1/2

(4.1)

The above bound can be rewritten as

≤b

eo(τ )
(

2
τ

)(τ−1)/2
N1/2σ (σ−1)/2

(2N )(σ−1)/2σ 1/2
× m(τ−1)/2

(
1 + 2(N−m)

σ−τ−2

)(σ−τ−2)/2
(N − m + σ )1/2

(m(N − m))1/2
.

Suppose first that m ≤ N − 4σ . Then, the bound becomes

≤b

eo(τ )
(

2
τ

)(τ−1)/2
N1/2σ (σ−1)/2

(2N )(σ−1)/2σ 1/2
× m(τ−2)/2

(
1 + 2(N − m)

σ − τ − 2

)(σ−τ−2)/2

(4.2)

≤b

eo(τ )2(τ−1)/2N1/2σ (σ−1)/2

(2N )(σ−1)/2τ τ/2
× m(τ−2)/2

(
2(N − m)

σ − τ

)(σ−τ )/2

eσ 2/(N−m)

≤ eo(τ )N1/2

m1/2

(
σ (N − m)

N (σ − τ )

)(σ−τ )/2 (σm

τN

)(τ−1)/2
eσ 2/(N−m)

≤b

eo(τ )N1/2

m1/2

(
e2mσ

τN
· exp

{
−m(σ − τ )

(τ − 1)N
+ 2σ 2

(τ − 1)(N − m)

})(τ−1)/2

= eo(τ )N1/2

m1/2

(
e2mσ

τN
· exp

{
− mσ

(τ − 1)N

(
1 − τ

σ
− 2σ

m
− 2σ

N − m

)})(τ−1)/2

≤ eo(τ )N1/2

m1/2

(
e2mσ

τN
· exp

{
− mσ

3τN

})(τ−1)/2

.

We inflate this by n2
(2σ+1

τ

)
to account for our choices for σ, τ, T1, . . . , Tτ to get

≤b n2 eo(τ )N1/2

m1/2

(
4e4mσ 3

τ 3N
· exp

{
− mσ

3τN

})(τ−1)/2

.

So, if m0 = 100τN log(σ/τ )
σ

, then

N−4σ∑
m=m0

Pr(∃σ, τ, T1, . . . , Tτ : M1 + · · · + Mτ = m | M1 + · · · + Mσ = N )

≤b n2eo(τ )N5/2
N−4σ∑
m=m0

(
4e4mσ 3

τ 3N
· exp

{
− mσ

3τN

})(τ−1)/2

≤ n2eo(τ )N7/2

(
4e4m0σ

3

τ 3N
· exp

{
−m0σ

3τN

})(τ−1)/2

,
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since xe−Ax is decreasing for Ax ≥ 1,

= n2eo(τ )N7/2

(
4e4m0σ

τN
exp

{
−m0σ

6τN

}
× σ 2

τ 2
exp

{
−m0σ

6τN

})(τ−1)/2

≤ n2N7/2

(
400e4+o(1) log

(σ

τ

)
× e−50/3 × σ 2

τ 2

( τ

σ

)50/3
)(τ−1)/2

= O(n−K ),

for any constant K > 0.
Suppose now that N − 4σ ≤ m ≤ N − σ 1/3. Then we can bound (4.2) by

≤b

eo(τ )
(

2
τ

)(τ−1)/2
σ (σ−1)/2

(2N )(σ−1)/2
× m(τ−1)/2e4σ

≤
(

e8σ

2N

)(σ−τ )/2 (
e8σ

τ

)(τ−1)/2

.

We inflate this by n2
(2σ+1

τ

)
< n24σ to get

≤b n2

(
8e8σ

N

)(σ−τ )/2 (
16e8σ

τ

)(τ−1)/2

.

So,

N−σ 1/3∑
m=N−4σ

Pr(∃σ, τ, T1, . . . , Tσ : M1 + · · · + Mτ = m | M1 + · · · + Mσ = N )

≤b n2N2σ

(
8e8σ

N

)(σ−τ )/2 (
16e8σ

τ

)(τ−1)/2

= O(n−K ),

for any constant K > 0, since σ log N � τ log σ .
When m ≥ N − σ 1/3 we replace (4.1) by

≤b

(
1 + τ−1

2m

)m (
1 + 2m

τ−1

)(τ−1)/2
σN−mN1/2(

1 + σ−1
2N

)N (
1 + 2N

σ−1

)(σ−1)/2
(mσ )1/2

≤b

eτ/2+o(τ )
(

2m
τ

)(τ−1)/2
σN−mN1/2

eσ
(

2N
σ

)(σ−1)/2
m1/2

≤b

(
e1+o(1)σ

τ

)(τ−1)/2 ( σ

2N

)(σ−τ )/2
σσ 1/3

.

Inflating this by n24σ gives a bound of

≤b n2

(
16e1+o(1)σ

τ

)(τ−1)/2 (
8σ 1+o(1)

N

)(σ−τ )/2

= O(n−any constant).
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5. MODIFICATIONS OF THEOREM 1.1

Let λ = log3 n and partition [λ] into q = log n sets of size λ1 = log2 n. Now add n − λ

vertices to Tλ and let Mi denote the number of vertices that land in the ith part 
i of the
partition. Lemma 4.1 implies that q.s.

Mi ≤ Mmax =200n

log n
log log n, 1 ≤ i ≤ τ. (5.1)

Let

ω1(x) = logα/2 x (5.2)

for x ∈ R.
Let Li denote the length of the longest path in 
i . Suppose that Tn contains a path of

length at least n/ω1, ω1 = ω1(n) and let k be the number of i such that

Li ≥ 200n log log n

ω2
1 log n

≥ Mmax

logα(Mmax)
.

Then, as k ≤ q = log n we have

k
200n log log n

log n
+ (log n − k)

200n log log n

ω2
1 log n

≥ n

ω1
,

which implies that

k ≥ log n

201ω1 log log n
.

Theorem 1.1 with the bound on Mi given in (5.1) implies that the probability of this is at
most

1

n
+
(

log n
log n

201ω1 log log n

)(
1

logα(n/ log n)

) log n

201ω1 log log n

≤ 1

n
+
(

1

logα/3 n

) log n

201ω1 log log n

≤ 1

φ(n, ω1)
,

(5.3)
where

φ(x, y) = exp

{
log x

y log log x

}
.

The term 1/n accounts for the failure of the property in Lemma 4.1.
In summary, we have proved the following:

Lemma 5.1.

Pr
(

L(n) ≥ n

ω1(n)

)
≤ 1

φ(n, ω1)
. (5.4)
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We are using φ(x, y) in place of φ(x) because we will need to use ω1(x) for values of x

other than n.

Next consider Aσ and λ1 ≤ τ � σ and let T1, T2, . . . , Tτ be a set of τ triangular
faces of Aσ . Suppose that we add N � σ more vertices and let Nj be the number of
vertices that are placed in Tj , 1 ≤ j ≤ τ .

Next let


(x) = ex2
, (5.5)

where x ∈ R.
Now let

J = {
j : Nj ≥ 
0

}
, where 
0 = 
(ω1(n)). (5.6)

Let Lj denote the length of the longest path through the ApN defined by Tj and the Nj

vertices it contains, 1 ≤ j ≤ τ . For the remainder of the section let

ω0 = ω1(
0), φ0 = φ(
0, ω0) = exp

{
ω0

2 log ω0

}
, ω2 = φ0

ω0
. (5.7)

Then let

J1 =
{
j ∈ J : Lj ≥ Nj

ω1(Nj )

}
. (5.8)

We note that

log ω2 = log φ0 − log ω0 = log 
0

ω0 log log 

− log ω0

= ω2
0

(2 + o(1))ω0 log log ω0
− log ω0.

For j ∈ J , Nj ≥ 
0 (see (5.6)). It follows from Lemma 5.1 that the size of J1 is
stochastically dominated by Bin(τ, 1/φ0). Using the bound

Pr(Bin(n, p) ≥ αnp) ≤
( e

α

)αnp

,

we find that

Pr
(

|J1| ≥ ω2τ

φ0

)
≤
(

e

ω2

)ω2τ/φ0

. (5.9)

Using this we prove

Lemma 5.2. Suppose that

log
(σ

τ

)
≤ ω0

log ω0
.
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Then q.s., for all λ1 ≤ τ � σ � N and all collections T of τ faces of Aσ we find that
with J1 as defined in (5.8),

|J1| ≤ ω2τ

φ0
.

Proof. It follows from (5.9) that

Pr
(

∃τ, σ,N, T : |J1| ≥ ω2

τφ0

)

≤ n3

(
(2σ + 1)

τ

)(
e

ω2

)ω2τ/φ0

≤ n3

(
e(2σ + 1)

τ
·
(

e

ω2

)ω2/φ0
)τ

≤ exp

{
τ

(
3 log n

τ
+ 2 + log

(σ

τ

)
+ ω2

φ0
− ω2 log ω2

φ0

)}

≤ exp

{
τ

(
3 log n

τ
+ 2 + ω0

log ω0
+ − ω0

(2 + o(1)) log log ω0

)}

= O(n−anyconstant).

6. PROOF OF THEOREM 1.2

Fix a path P of An. Suppose that, after adding σ ≥ n1/2 vertices, we find that P visits

n1/2 ≥ τ ≥ λ1ω0 (6.1)

of the triangles T1, T2, . . . , Tτ of Aσ . Now consider adding N more vertices, where the
value of N is given in (6.4) below. Let σ ′ = σ + N and let τ ′ be the number of triangles of
Aσ ′ that are visited by P .

We assume that

α

2
log log n ≤ log

(σ

τ

)
≤ ω0

log ω0
. (6.2)

Let Mi be the number of vertices placed in Ti and let Ni be the number of these that are
visited by P . It follows from Lemma 4.1 that w.h.p.

τ∑
i=1

Mi ≤ 100τN

σ
log

(σ

τ

)
.
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Now w.h.p.,
τ∑

i=1

Ni ≤ τ
0 + 100ω2τN

φ0σ
log

(
σφ0

ω2τ

)
+ 100τN

σω0
log

(σ

τ

)
. (6.3)

To see (6.3), observe that τ
0 bounds the contribution from [τ ] \ J (see (5.6)). The second
term bounds the contribution from J1. Now |J1| < ω2τ/φ0 � τ as shown in Lemma 5.2.
We cannot apply Lemma 4.1 to bound the contribution of J1 unless we know that |J1| ≥ λ1.
We choose an arbitrary set of indices J2 ⊆ [τ ] \ J1 of size ω2τ/φ0 − |J1| and then the
middle term bounds the contribution of J1 ∪J2. Note that ω2τ/φ0 = τ/ω0 ≥ λ1 from (6.1).
The third term bounds the contribution from J \ J1. Here, we use ω1(Nj ) ≥ ω1(
0) = ω0;
see (5.8).

We now choose

N = 3σ
0. (6.4)

We observe that

ω2

φ0
log

(
σφ0

ω2τ

)
≤ 1

ω0

(
ω0

log ω0
+ 2 log ω0

)
= o(1).

1

ω0
log

(σ

τ

)
≤ 1

log ω0
= o(1).

Now, along with Lemma 3.1, this implies that

τ ′ ≤
τ∑

i=1

(Ni + 1) ≤ τ + τ
0 + o

(
τN

σ

)
.

Since σ ′ = σ + N , this implies that

τ ′

σ ′ ≤
(

1

3
+ o(1)

)
τ

σ
<

τ

2σ
.

It follows by repeated application of this argument that we can replace Theorem 1.1 by the
following lemma:

Lemma 6.1.

Pr
(

L(n) ≥ log n + 100 log n

eω0/ log ω0
n

)
= O

(
1

φ(n, ω1(n))

)
.

Proof. We add the vertices in rounds of size σ0 = n1/2, σ1, . . . , σm. Here, σi = 3σi−1
0

and m−1 ≥ (1−o(1)) log n

log 
0
= (1−o(1)) log n

ω1(n)2 = log1−2α n. We let P0, P1, P2, . . . , Pm = P

be a sequence of paths, where Pi is a path in Ai = Aσ0+···+σi
. Furthermore, Pi is obtained
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from Pi+1 in the same way that Q is obtained from P in Lemma 3.1. We let τi denote
the number of faces of Ai whose interior is visited by Pi . It follows from Lemma 3.1 and
Lemma 4.1 that the length of P is bounded by

m + τm−1

σm−1
σm log

(
σm−1

τm−1

)
,

since the second term is a bound on the number of points in the interior of triangles of
Am−1 visited by P .

We have w.h.p. that

σi

τi

≥

⎧⎪⎪⎨
⎪⎪⎩

2σi−1

τi−1

σi−1

τi−1
≤ eω0/ log ω0

σi−1

100τi−1 log(σi−1/τi−1)

σi−1

τi−1
> eω0/ log ω0

.

The second inequality here is from Lemma 4.1.

The result follows from 2log1−2α n ≥ eω0/ log ω0 .

To get Theorem 1.2, we repeat the argument in Sections 5 and 6, but we start with
ω1(x) = log1/3 x. The claim in Theorem 1.2 is then slightly weaker than the claim in
Lemma 6.1.

We note that subsequent to completion of this paper, Theorem 1.2 has been improved [2]
with a high probability upper bound of O(n1−ε) on L(n).
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