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Abstract Many networks, including the Internet, social networks, and biological relations, are
found to be naturally divided into communities of densely connected nodes, known as community
structure. Since Newman’s suggestion of using modularity as a measure to qualify the goodness
of community structures, many efficient methods to maximize modularity have been proposed
but without optimality guarantees. In this work we study exact and theoretically near-optimal
algorithms for maximizing modularity. In the first part, we investigate the complexity and
approximability of the problem on tree graphs. Somewhat surprisingly, the problem is still
NP-complete on trees. We then provide a polynomial time algorithm for uniform-weighted
trees and a pseudopolynomial time algorithm and a PTAS for trees with arbitrary weights.
In the second part, we present a family of compact linear programming formulations for the
problem in general graphs. These formulations exploit the graph connectivity structure and
reduce substantially the number of constraints, thus, they vastly improve the running time for
solving linear programming and integer programming. As a result, networks of thousands of
vertices can be solved in minutes, whereas the current largest instance solved with mathematical
programming has fewer than 250 vertices.

1. INTRODUCTION

Many complex systems of interest such as the Internet, social, networking, and biolog-
ical relations can be represented as networks consisting of sets of nodes that are connected
by edges between them. Research in a number of academic fields has uncovered unexpected
structural properties of complex networks, including small-world phenomena [29]; power-
law degree distribution [5]; and the existence of community structure [24] where in nodes
are naturally clustered into tightly connected modules, also known as communities, with
only sparser connections between them. Finding this community structure is a fundamental
but challenging problem in the study of network systems and is not yet satisfactorily solved,
despite the huge effort of a large interdisciplinary community of scientists over the past
few years [14].

The ability to detect such communities can be of significant practical importance,
providing insight into how network function and topology affect each other. For instance,
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communities within the World Wide Web may correspond to sets of webpages on related
topics; communities within mobile networks may correspond to sets of friends or col-
leagues; in computer networks communities may correspond to users in is peer-to-peer
traffic or botnet farms [31]. Detecting this special substructure is also extremely useful
in deriving social-based applications such as forwarding and routing strategies in com-
munication networks [12, 21, 26], Sybil defense [28, 30], worm containment on cellular
networks [26, 32], and sensor programming [27].

Newman–Girvan’s modularity that measures the “strength” of partition of a network
into modules (also called communities or clusters) [16] has rapidly become an essential
element of many community detection methods. Modularity is by far the most used and
best known quality function, particularly because of its success in many applications in
social and biological networks [16]. One can search for community structure precisely by
looking for the divisions of a network that have positive, and preferably large, values of
the modularity. This is the main motivation for numerous optimization methods that find
communities in the network via maximizing modularity as surveyed in [14]. Unfortunately,
Brandes et al. [7] have shown that modularity maximization is an NP-hard problem. Thus,
it is desirable to design algorithms maximizing modularity that provide lower bounds on
the modularity values.

In contrast to the vast amount of work on maximizing modularity, the only known
polynomial-time approach to find a good community structure with guarantees is due to
Agarwal and Kempe [1] who rounded the fractional solution of a linear programming (LP).
The value obtained by solving the LP gives an upper bound on the maximum achievable
modularity. The main drawback of the approach is the large LP formulation that consumes
both time and memory resources. As shown in their article, the approach can be used only
on the networks of up to 235 nodes. In addition, no approximation ratio was proven for the
proposed algorithms.

In this work, we study exact and approximation algorithms for maximizing modu-
larity. In the first part, we investigate the complexity and approximability of the problem
on tree graphs. Somewhat surprisingly, the problem is still NP-complete on trees. We then
provide a polynomial time algorithm for uniform-weighted trees, a pseudopolynomial time
algorithm, and a polynomial–time approximation scheme (PTAS) for trees with arbitrary
weights. In the second part, we address the main drawback of the rounding LP approach
by extending the sparse metric technique in [10]. We show both theoretically and experi-
mentally that the new formulation substantially reduces the time and memory requirements
without sacrificing the quality of the solution. The size of solved network instances rises
from hundreds to several thousand nodes and the running time on the medium instances
are accelerated from 10 to 150 times. In fact, the modularity values found by rounding LP
are optimal for many network instances.

Related Work. A vast number of methods to find community structure is surveyed
in [14]. Brandes et al. proves the NP-completeness for maximizing modularity, the first
hardness result for this problem. Dasgupta et al. recently showed that maximizing modu-
larity is APX-hard, i.e., it admits no PTAS [9].

Modularity has several known drawbacks. Fortunato and Barthelemy [13] have shown
that the resolution limit (i.e., maximizing modularity methods fails to detect commu-
nities smaller than a scale), appears only when the network is substantially large [23].
Another drawback is that modularities highly degenerate energy landscape [17], which
could lead to very different, yet equally high, modularity partitions. However, for small
and medium networks of several thousand nodes, the method proposed by Blondel
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et al. [6] to optimize modularity is one of the best performing algorithms according to
the Lancichinetti–Fortunato–Radicchi (LFR) benchmark [23]. Thus, our proposed method
is applicable whenever high–quality solutions for small and medium networks are desired.
Approximation algorithms for maximizing modularity are first studied in [11] for scale-free
networks and in [9] for d-regular networks.

In [10], we introduce the sparse metric technique to construct compact formulations
for the disruptor problem. The sparse metric helps reduce most redundant constraints and
significantly shortens the solving time. In this article, we further refine the technique to
reduce the number of constraints.

Organization. We present definitions and notations in Section 2. In Section 3, we
present the first part of our results on maximizing modularity over tree graphs, includ-
ing the NP-completeness, the polynomial-time algorithm for uniform-weighted trees, the
pseudopolynomial time algorithm, and a PTAS for general weighted trees. We present, in
Section 4 a sparse integer linear programming formulation for modularity maximization, by
extending the sparse metric technique in [10]. The exact algorithm on trees is presented in
Section 3. We show experimental results for the sparse formulation in Section 5 to illustrate
the time efficiency of our formulations over the previous approach.

2. PRELIMINARIES

We consider a network represented as an undirected graph G = (V,E) consisting of
n = |V | vertices and m = |E| edges. The adjacency matrix of G is denoted by A = (Aij ),
where Aij is the weight of edge (i, j ) and Aij = 0 if (i, j ) /∈ E. We also denote the
(weighted) degree of vertex i, the total weights of edges incident at i, by deg(i) or, in short,
di .

Community structure (CS) is a division of the vertices in V into a collection of
disjoint subsets of vertices C = {C1, C2, . . . , Cl} that the union gives back to V . Each
subset Ci ⊆ V is called a community and we wish to have more edges connecting vertices
in the same communities than edges that connect vertices in different communities. The
modularity [25] of C is defined as

Q(C) = 1

2M

∑
i,j∈V

(
Aij − didj

2M

)
δij , (2.1)

where di and dj are degree of nodes i and j , respectively, M is the total edge weights, and
the element δij of the membership matrix δ is defined as

δij =
{

1, if i and j are in the same community
0, otherwise.

.

The modularity values can be either positive or negative and the higher (positive) modularity
values indicate stronger community structure. The maximizing modularity problem asks to
find a division that maximizes the modularity value.

We also define the modularity matrix B [25] with entries Bij = Aij − didj

2M
. Then, the

modularity can conveniently be written in the matrix form as

Q(C) = 1

2M
trace(Bδ).
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Figure 1 Gadget for NP-hardness of maximizing modularity on trees.

Alternatively, the modularity can be equivalently defined as

Q(C) =
l∑

t=1

(
E(Ct )

M
− vol(Ct )2

4M2

)
, (2.2)

where E(Ct ) is the total weight of edges whose endpoints are in Ct and for an S ⊆ V we
define vol(S) = ∑

v∈S dv , the volume of S.

3. COMPLEXITY AND APPROXIMATION ALGORITHMS ON TREES

We first show that maximizing modularity is even NP-hard on tree graphs. Then we
propose a polynomial-time dynamic programming algorithm for the problem when the tree
has uniform weights and its extension into a pseudopolynomial time algorithm to solve
the problem on trees with arbitrary weights. The existence of the pseudopolynomial time
algorithm implies that maximizing modularity on trees is a weakly NP-complete problem.
Finally, we propose a PTAS for the problem that finds a CS with modularity at least (1 − ε)
the maximum modularity within time O(n1+1/ε).

3.1. NP-Completeness

It has been proved in [7] that maximizing modularity is hard for unweighted graphs.
We further prove that the decision version of maximizing modularity is still hard on
weighted trees, one of the simplest graph classes. Our proof is much simpler than the first
proof in [7], while implying the NP-hardness on a more restricted graph class.

Definition 3.1. (Modularity on Trees). Given a tree T = (V,E), weights c(e) ∈ Z
+ for

edges e ∈ E, and a number K , is there a community structure C of T , for which Q(C) ≥ K?

Our hardness result is based on a transformation from the following decision problem.

Definition 3.2. (SUBSET-SUM) . Given a set of k positive integers w1, w2, . . . , wk and
an integer S, does any nonempty subset sum to S?
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We show that an instance I = ({w1, w2, . . . , wk}; S) of SUBSET-SUM can be
transformed into an instance (TI (VI ,EI ), cI ,KI ) of maximizing modularity on the tree
TI such that TI has a community structure with modularity at least KI if and only if
there exists a subset of {w1, w2, . . . , wk} that sums to S. Because SUBSET-SUM is an
NP-hard problem [15], it follows that there is no polynomial-time algorithm to decide the
maximizing modularity problem on trees, unless P = NP .

The reduction is as follows: Given an instance I = ({w1, w2, . . . , wk}; S) of
SUBSET-SUM, construct a tree TI = (VI ,EI ) consisting of 3k + 2 vertices. For each
integer wi ∈ I , we introduce three vertices: a black vertex ci and two white vertices c′

i

and xi . We also add a special pair: a black vertex c0 and a white vertex c′
0. We connect

each xi to both ci and c0 with the weight wi , and connect c′
i to ci with weight W − wi for

all i = 1..n, where W = (2k + 1)
∑

i wi . The vertex c′
0 is connected to c0 with weight

W − W0 where W0 = S + 1/2
∑

i wi . Before specifying parameters KI , we characterize
the important properties of any maximum modularity CS in a general graph G = (V,E).

We summarize some known results of modularity maximization in the following
lemma.

Lemma 3.3. In a maximum modularity community structure of a graph G = (V, E),
the following properties hold.

1. There is no community with negative modularity.
2. Every nonisolated vertex is in the same community with at least one of its neigh-

bors.
3. Each community induces a connected subgraph in G.

The proof of (1) can be found in [12]. The proofs of (2) and (3) are similar to Lemma
3.3 and 3.4 in [7].

Lemma 3.4. In a maximum modularity community structure of TI , each community has
exactly one black vertex.

Proof. Consider a maximum modularity CS C. The proof consists of two parts: 1) There
is no community of C that has all white nodes; and (2) there is no community in C with
more than one black vertex.

For the first part, observe that none of the adjacent vertices have the same color. By
the second property of Lemma 3.3, if a community contains a vertex u, it also contains a
neighbor of u whose the color is different from u’s. Thus, every community must contain
both black and white vertices.

We prove the second part by contradiction. Assume that a community X ∈ C has
two black vertices. We show that c0 ∈ X. Assume not, let ci and cj be two black vertices
in X. Since c0 /∈ X, ci , and cj are disconnected within the subgraph induced by X in TI ,
contradicting the third property in Lemma 3.3. Hence, we assume w.l.o.g. that X contains
c0 and c1. We prove that dividing X into two communities X1 = {c1, c

′
1} and X2 = X \ X1

increases the modularity, which contradicts the optimality of C. That is, to show

�Q = −w1

M
+ 1

4M2
(vol(X)2 − vol(X1)2 − vol(X2)2) > 0, (3.1)
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where M = (k + 1)W +∑
i wi − W0 is the total weights of edges in TI and for a given a

subset R ⊆ V , vol(R) denotes the total weighted degree of the vertices in R.
Substitute vol(X) = vol(X1) + vol(X2) and simplify, we have

(3.1) ⇔ 4w1M < 2vol(X1)vol(X2). (3.2)

Since w1 <
∑

i wi = 1
2k+1W ,

4w1M <
2

2k + 1
W

(
k + 1 + 1

2k + 1

)
W < 2W 2. (3.3)

On the right-hand side of (3.2):

vol(X2) > 2W −
∑

i

wi = 2W − 1

2k + 1
W

vol(X1) > deg(c′
0) + deg(c0) = 2W − 2W0 +

∑
i

wi = 2W − 2S

> 2W − 2
∑

i

wi = 2W − 2

2k + 1
W.

When k ≥ 1, we have

2vol(X1)vol(X2) >

(
2 − 2

2k + 1

)(
2 − 1

2k + 1

)
W 2

=
(

4 − 6

2k + 1
+ 2

(2k + 1)2

)
W 2

> 2W 2. (3.4)

It follows from (3.3) and (3.4) that (3.2) holds, i.e., �Q > 0. This contradicts the maximum
modularity of C. Thus, each community in C must contain exactly one black vertex.

Theorem 3.5. Modularity maximization on trees is NP-complete.

Proof. It is clear that maximizing modularity is in NP. To prove the NP-hardness,
we reduce an instance I = ({w1, w2, . . . , wk}; S) of SUBSET-SUM to an instance
(TI (VI ,EI ), cI ,KI ) of maximizing modularity on the tree TI as presented.

Consider a maximum modularity CS C. From Lemma 3.4 and the third property of
Lemma 3.3, xi is in the same community with either c0 or ci (but not both). Let δi = 1 if
xi is in the same community with c0 and δi = 0, otherwise. In addition, let S0 = ∑

δi=1 wi

and WS = ∑k
i=1 wi = 1

2k+1W .
For 1 ≤ i ≤ k, exactly one of the two edges (xi, c0) or (xi, ci) will have two endpoints

in two different communities. This leads to an important property that the total weight of
edges whose endpoints belong to different communities is exactly

∑k
i=1 wi , we have:

Q(C) =
[

1 − WS

M

]
− 1

4M2

[
(2W − 2W0 + WS + 2S0)2
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+
∑
δi=0

(2W + wi)
2 +

∑
δi=1

(2W − wi)
2

]
.

To maximize Q(C), we need to minimize the second term that is

1

4M2

[
(2W − 2W0 + WS)2 + 4S2

0 + 4(2W − 2W0 + WS)S0

+
∑
δi=0

(4W 2 + 4Wwi + w2
i ) +

∑
δi=1

(4W 2 − 4Wwi + w2
i )

]

= 1

4M2

[
(2W − 2W0 + WS)2 + 4S2

0 + 4(2W − 2W0 + WS)S0

+ 4kW 2 + 4WWS − 8WS0 +
k∑

i=1

w2
i

]

= 1

4M2

[(
(2W − 2W0 + WS)2 + 4kW 2 + 4WWS +

k∑
i=1

w2
i

)

+ 4
(
S2

0 − (2W0 − WS)S0
)]

.

For a fixed value of W0, the above sum is minimized when S2
0 − (2W0 −WS)S0 is minimized

at S0 = 2W0−WS

2 = S (recall that we select W0 = S + WS/2). Hence, if we choose

KI =
[

1 − WS

M

]
− 1

4M2

[
(2W − 2S)2 + 4kW 2 + 4WWS +

k∑
i=1

w2
i ) − 4S2

]
,

there is a CS in TI with modularity at least KI if and only if there is a subset of wi

(corresponding to δi = 1) that sum to S.

3.2. Polynomial-Time Algorithm for Uniform-Weighted Trees

We present a polynomial-time algorithm for finding a maximum modularity CS on
trees with uniform edge weights. By characterizing the structure of a maximum modularity
CS, we reduce maximizing modularity on trees to the following problem.

Definition 3.6. (k-MSSV problem). Given a tree T = (V,E), find a set of k edges whose
removal minimizes the sum-of-squares of component volumes in the residual forest.

The relationship between maximizing modularity and k-MSSV is presented in the
following lemma.

Lemma 3.7. Let C be a maximum modularity CS of T = (V,E), k be the number of
communities in C, and F be the set of edges whose two endpoints belong to two different
communities. Then the following properties hold.
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1. For any two different communities, there is at most one edge that crosses between
them.

2. |F | = k − 1.
3. F is an optimal solution for (k − 1)-MSSV problem on T = (V,E).

Proof. By the first property in Lemma 3.3, each community induces a connected component.
Thus, we shall use the terms community and component interchangeably in the rest of this
section.

1. Assume that there are two different communities C1, C2 ∈ C and two different
edges (u1, v1) and (u2, v2) that satisfy u1, u2 ∈ C1 and v1, v2 ∈ C2. By the first
property in Lemma 3.3., there are paths between u1 and u2 within C1 and between
v1 and v2 within C2. Those two paths together with the edges (u1, v1) and (u2, v2)
form a cycle within the given tree T (contradiction).

2. Abstract each community in C into a single node, we obtain a new graph TA with
k abstract vertices. The set of edges in the new graph are identical to the edges in
F . Since T is connected and cycle-free, TA is also connected and cycle-free. Thus
TA is a tree with k vertices. It follows that TA has k − 1 edges and so does F .

3. By the second property, Q(C) = [1 − k−1
|V | ] − 1

4|E|2
∑

Ci∈C vol(Ci)2. Thus, Q(C)

is maximized when
∑

Ci∈C vol(Ci)2 is minimized and vice versa. Hence F is an
optimal solution for the (k − 1)-MSSV problem on T . �

Thus, a maximum modularity CS can be found by solving the k-MSSV problems with
all k ranging from 0 to |V |. We introduce, following, a dynamic programming algorithm
for maximizing modularity via solving the k-MSSV problem.

3.2.1. Dynamic Programming Algorithm. Given the tree T = (V,E) with
|V | = n, select a node r ∈ V as the root. Denote by T u = (V u,Eu) the subtree rooted
at u in T with the set of vertices V u and the set of edges Eu. Let u1, u2, . . . , ub(u) denote
the children of u, where t(u) = deg(u) if u = r and t(u) = deg(u) − 1 if u �= r . In our
dynamic programming algorithm, we define the following functions:

• Fu(k): The minimum sum-of-squares of component volumes in T u when k edges
are removed. Note that even after removing k edges, the component volumes are still
measured as the sum of the vertex degrees in T , not T u.

• Fu(k, ν): The minimum sum-of-squares of component volumes in T u when k edges
are removed and the component that contains u, called the cap component, has volume ν.
In addition, if it is not possible to remove k edges to satisfy the two mentioned conditions,
then Fu(k, ν) = ∞.

• Fu
i (k, ν): The minimum sum-of-squares of component volumes in T u

i = (V u
i , Eu

i ), the
partial subtree formed by u, T u1 , T u2 , . . . , T ui , when k edges are removed and the cap
component has volume ν. As with previous function, if it is not possible to remove k

edges to satisfy the two conditions, then Fu
i (k, ν) = ∞.

The maximum modularity value is given at the root r by

max
1≤k≤n−1,1≤ν≤2(n−1)

{
k

n
− F r (k, ν)

4(n − 1)2

}
. (3.5)

We compute Fu(k, ν) and Fu
i (k, ν) using the following recursions.
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Fu(k) = min
du≤ν≤vol(T u)

Fu(k, ν) ∀u ∈ V, k = 0..|Eu| (3.6)

Fu(k, ν) = Fu
t(u)(k, ν) ∀u ∈ V, k = 0..|Eu|, ν = du..vol(T u) (3.7)

Fu
i (k, ν) = min

⎧⎨
⎩

min
0≤l≤k−1

Fu
i−1(l, ν) + Fui (k − l − 1) (3.8.a)

min
0≤l≤k,0≤μ≤ν

F u
i−1(l, μ) + F

ui

i (k − l, ν − μ) + 2μ(ν − μ) (3.8.b)

∀u ∈ V, k = 1..|Eu
i |, i = 1..t(u), ν = 1..vol(T u) (3.8)

The basis cases are as follows.

Fu
i (0, ν) =

{
vol(T u

i )2 if ν = vol(T u
i )

∞ otherwise
(3.9)

∀u ∈ V, k = 1..|Eu
i |, i = 1..t(u), ν = 0..vol(T u)

Fu
0 (k, ν) =

{
d2

u if ν = du

∞ otherwise
(3.10)

∀u ∈ V, k = 0..|Eu
i |, ν = 0..vol(T u)

Fu
i (k, ν) = ∞ ∀u ∈ V, k = 0..|Eu

i |, i = 0..t(u), ν < du (3.11)

We explain the recursion from (3.6) to (3.8). In (3.6), we consider all possible ν, the
volume of the cap component, and assign Fu(k) the minimum values among Fu(k, ν). The
definition of Fu(k, ν) is straightforward as shown in (3.7). Finally, we compute Fu

i (k, ν) in
(3.8) as the minimum of the following two cases:

• If (u, ui) is removed (3.8a): We can remove at most k − 1 other edges. In addition, the
cap component in T u

i has the same volume ν with that of T u
i−1. For l = 0..k, we take

the sum of the optimal solution when removing l edges in T u
i−1 and the optimal solution

when removing k − l − 1 edges in Tui
and take the minimum as a possible value for

T u
i (k, ν).

• If (u, ui) is not removed (3.8b): We can remove l edges within T u
i−1 and k − l removed

edges within T ui for some 0 ≤ l ≤ k. In addition, if the cap component volume
of T u

i−1 is μ, then the cap component of T ui has volume ν − μ. The factor 2μ(ν −
μ) = ν2 − μ2 − (ν − μ)2 accounts for the increment of the total sum-of-squares
volumes.

The running time of the dynamic algorithm is stated in the following lemma.

Lemma 3.8. The recursions from (3.6) to (3.8) can be computed in O(n5).

Proof. There are at most n different sets of Fu
i (·) to compute. For each set Fu

i (·), there
are at most n × 2n pairs of (k, ν) and the time to compute each Fu

i (k, ν) is at most n × 2n

(3.8). Thus, the running time is bounded by O(n5).

We summarize the dynamic programming algorithm to maximize modularity in Algorithm
1 as follows.
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Algorithm 1. Dynamic Programming Algorithm for Uniform-weight Trees

1. for u ∈ V in postorder traversal from r do
2. for i = 0 to t(u) do
3. for k = 0 to |E(u)| do
4. for ν = 0 to vol(T u) do
5. Compute Fu

i (k, ν), F u(k, ν), and Fu(k) using (3.6)–(3.11).
6. Q = 0
7. for k = 0 to n do
8. for ν = 0 to vol(T ) do
9. Q = max{Q, k

n
− F r (k,ν)

4(n−1)2 }
10. return Q

Theorem 3.9. Algorithm 1 finds the maximum modularity in uniformly weighted trees in
O(n5).

3.3. Pseudopolynomial Time Algorithm

The above dynamic programming algorithm can be generalized to work for trees with
nonuniform integral weights. The recursion is similar to (3.6)–(3.8) with the differences in
the bounds for k and ν.

Fu(k) = min
du≤ν≤vol(T u)

Fu(k, ν) ∀u ∈ V, k = 0..vol(T u)/2 (3.12)

Fu(k, ν) = Fu
t(u)(k, ν) ∀u ∈ V, k = 0..Wu, ν = 0..vol(T u) (3.13)

Fu
i (k, ν) = min

⎧⎪⎨
⎪⎩

min
0≤l≤k

F u
i−1(l, ν) + Fui (k − l) (3.14.a)

min
0≤l≤k−1,0≤μ≤ν

F u
i−1(l, μ)

+F
ui

i (k − l − w(u, ui), ν − μ) + 2μ(ν − μ) (3.14.b)

(3.14)

∀u ∈ V, k = 0..vol(T u), i = 1..t(u), ν = 0..vol(T u
i ). (3.15)

The time complexity of the algorithm is a function of vol(T ), which can be exponen-
tially large in terms of the input size. Thus, the dynamic programming is a pseudopolynomial
time algorithm with the time complexity stated in the following theorem.

Theorem 3.10. The recursion (3.12)–(3.15) gives an O(n5W 4) pseudopolynomial time
algorithm for maximizing modularity on trees with integral weights, where W is the maxi-
mum edge weight.

Corollary 3.11. Modularity maximization on weighted trees is weakly NP-complete.

3.4. Polynomial Time Approximation Scheme (PTAS)

Given an ε > 0, we present an O(n1/ε+1) algorithm to find CS in T with modularity
at least (1 − ε)Qopt, where Qopt denotes the maximum modularity over all possible CS.
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On the one hand, the second property in Lemma 3.7 states that a CS with k commu-
nities has exactly k − 1 edges whose endpoints are in different communities. Thus there
is a one-on-one correspondence between a set of k − 1 edges in T and CS with exactly k

communities: removing k − 1 edges yields k connected components/communities. On the
other hand, the following lemma implies that CS with at most k communities approximates
closely the maximum modularity.

Lemma 3.12. [9, 11] Given a weighted graph G = (V,E), denote by Qk the maximum
modularity of a CS in G with at most k communities and by Qopt = Qn. We have

Qk ≥
(

1 − 1

k

)
Qopt.

Thus we have the following PTAS for maximizing modularity on trees.

Algorithm 2. PTAS for Maximizing Modularity on Trees

1. Given ε > 0, set k = �1/ε�.
2. Qk = 0, Ck = {V }
3. for each X ⊂ E and |X| < k do
4. Find connected component C1, C2, . . . , Ck in T ′ = (V,E \ X).
5. Let CS J = {C1, C2, . . . , Ck}
6. if Q(J ) > Qk then
7. Qk = Q(J )
8. Ck = J
9. Return Ck

Theorem 3.13. Algorithm 2 finds in O(n1+1/ε) time a CS with modularity value of at
least (1 − ε)Qopt on weighted trees.

Proof. By Lemma 3.12, the modularity of the found CS will be at least (1 − ε)Qopt. In
addition, for each of the nk−1 subsets, computing the modularity takes O(n). Thus, the total
time complexity is O(nk−1+1) = O(n1/ε+1).

While the existence of an FPTAS implies the existence of a pseudopolynomial time
algorithm, the reverse is not necessarily true. It is an open question whether or not an
FPTAS for maximizing modularity on trees exists.

4. LINEAR PROGRAMMING-BASED ALGORITHM

In this section, we first present the original linear program (LP) in [1]. Then we
present, in Subsection 4.2, our compact formulations that contain only a small fraction of
constraints found in the original LP.

4.1. The Linear Program and the Rounding

Let xij be an 0 − 1 integer that indicates whether nodes i and j are in different
communities, i.e., xij = 1 if i and j are in different communities, and xij = 0, otherwise.



192 DINH AND THAI

Note that xij is equivalent to 1 − δij in the Definition (3.1) of modularity. The modularity
maximization problem can be formulated as an integer linear programming (ILP) as shown
from (4.2) to (4.5) [1].

maximize
1

2M

∑
ij

Bij (1 − xij ) (4.1)

subject to xij + xjk − xik ≥ 0, ∀i < j < k (4.2)

xij − xjk + xik ≥ 0, ∀i < j < k (4.3)

−xij + xjk + xik ≥ 0, ∀i < j < k (4.4)

xij ∈ {0, 1}, i, j ∈ [1..n] (4.5)

For convenience, we denote this ILP by IPcl . Constraints (4.2), (4.3), and (4.4) are well-
known triangle inequalities that guarantee that the values of xij are consistent with each
other. They imply the following transitivity: if i and j are in the same community and j

and k are in the same community, then so are i and k. By definition, xii = 0 ∀i and can be
removed from the ILP for simplification.

We also refer to the relaxation of the IPcl , obtained by replacing the constraints
xij ∈ {0, 1} by xij ∈ [0, 1], as LPcl . If the optimal solution of this relaxation is an integral
solution, which is very often the case [2], we have a partition with the maximum modularity.
Otherwise, we resort to rounding the fractional solution and use the value of the objective
as an upperbound that enables us to lower bound the gap between the rounded solution and
the optimal integral solution.

Agarwal and Kempe [1] used a simple rounding algorithm, proposed by Charikar
et al. [8] for the correlation clustering problem [4], to obtain the community structure
from a fractional optimal solution. The values of xij are interpreted as a metric “distance”
between vertices. The algorithm repeatedly groups all vertices that are close to a vertex into
a community. The final community structures are then refined by a Kernighan–Lin [22]
local search method.

The modularity maximization formulation can also be expressed as a clique partition-
ing problem [18]. In [18], the authors proposed a row generation technique to incrementally
add the triangle inequalities constraints and solve the LP. In each iteration, the batch of
about 150 constraints is added and the nontight constraints are identified and removed from
the LP.

In [10], we first proposed the sparse metric technique for the disruptor problem.
The advantage of our sparse LP over the row generation method is that the sparse metric
technique excludes major “redundant” constraints even before solving the programming
formulation. Because the set of nontight constraints are known a priori, the LP is solved only
once and we do not have to examine the O(n3) constraints in each iteration. Nevertheless,
the two techniques are orthogonal and can be applied in parallel to improve the running
time. Regarding efforts to solve the IP exactly, cutting planes and polyhedral characteristics
for the clique partitioning and other clustering problems can be found in [2,19,20] and the
references therein.

4.2. Sparse Formulations for Modularity Maximization

Instead of using 3
(
n

3

)
triangle inequalities, we show that only a small subset of those

are sufficient to obtain the same optimal solutions.
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Our integer linear program, denoted by IPsp, is as follows:

maximize − 1

2M

∑
ij

Bij xij (4.6)

subject to xik + xkj ≥ xij k ∈ K(i, j ) ⊆ V \ {i, j} (4.7)

xij ∈ {0, 1}. (4.8)

First, since
∑

ij Bij = ∑
ij Aij − didj

2M
= 2M −

∑
i di

∑
j dj

2M
= 0, we simplify the objective

to − 1
2M

∑
ij Bij xij . Second, different selections of K(i, j ) give us different formulations.

For example, the IPcl can be obtained by choosing K(i, j ) = V \ {i, j}. However, not all
selections of K(i, j ) result in valid formulations for the maximizing modularity problem.

Notice that if we define a function d(i, j ) = xij , then the function should satisfy all
the following conditions of a pseudometric:

1. d(i, j ) ≥ 0 (nonnegativity),
2. d(i, i) = 0 (and possibly d(i, j ) = 0 for some distinct values i �= j ),
3. d(i, j ) = d(j, i) (symmetry), and
4. d(i, j ) ≤ d(i, k) + d(k, j ) (transitivity).

Therefore, K(i, j ) must be selected so that if x ∈ [0, 1](
n

2) is a feasible solution, then x

must induce a pseudometric.
We will prove in the next section (Theorems 4.3 and 4.4) that if K(i, j ) is a vertex

cut for two vertices i and j , then IPsp is a valid formulation for the maximizing modularity
problem. Here, a vertex cut of nodes i and j is a set of vertices whose removal from the
graph disconnects i and j (if i and j are adjacent, we assume the edge i and j is also
removed). Additionally, we show that the corresponding LP relaxation, called LPsp, will
have the same strength as the LPcl , i.e., they have the same optimal objective values. There
are many ways to select K(i, j ). One way is to select K(i, j ) as the minimum cardinality
set between the set of neighbors of i or j as we did in [10]. In this study, we selected K(i, j )
as the minimum cardinality vertex cut of i and j to minimize the number of constraints.
Then the cardinality of K(i, j ) is known as the vertex connectivity of i and j and is denoted
by κ(i, j ).

Lemma 4.1. If d1 ≤ d2 ≤ . . . ≤ dn is the sorted (unweighted) degree sequence of the
graph, then the number of constraints is upper bounded by the following quantities

(1)
n∑

i=1

(i − 1)di , (2) m(n − 1),

where m = |E| is the number of edges.

Proof. Since |K(i, j )| ≤ min{di, dj }, the number of constraints is, at most,∑
i<j min{di, dj } = ∑

i<j di = ∑n
i=1(i − 1)di . Also, since min{di, dj } ≤ 1/2(di + dj ),

the number of constraints is upper bounded by

∑
i<j

1

2
(di + dj ) = 1

2

n∑
i=1

(n − 1)di = m(n − 1).

This completes the proof.
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w v

u

Figure 2 Clique-expanding process.

Corollary 4.2. In sparse networks, where m = O(n), LPsp contains only O(n2) con-
straints.

Thus, for sparse networks, our new formulations substantially reduce time and mem-
ory requirements. For most real-world network instances, where n ≈ m, the number of
constraints is effectively reduced from �(n3) to O(n2). If we consider the time to solve a
linear program to be cubic times the number of constraints, the total time complexity for
sparse networks improves to O(n6) instead of O(n9) as in the original approach.

4.3. Validity and Strength of the Sparse Formulations

We show the equivalence between the sparse formulation and the complete formula-
tion when K(i, j ) is selected as a vertex cut of i and j . We prove in Theorems 4.3 and 4.4
the following statements, respectively.

• IPsp and IPcl have the same set of optimal integral solutions.
• The optimal fractional solutions of LPsp and LPcl have the same objective values, i.e.,

they provide the same upper bound on the maximum possible modularity.

Hence, solving LPsp indeed gives us an optimal solution of LPcl within only a small fraction
of time and the memory requirements of LPcl .

Theorem 4.3. Two integer programmings IPsp and IPcl have the same set of optimal
solutions.

Proof. We need to show that every optimal solution of IPcl is also a solution of IPsp and
vice versa. In one direction, because the constraints in IPsp are a subset of constraints in
IPcl , every optimal solution of IPcl will also be a solution of IPsp.

In the other direction, let xij be an optimal integral solution of IPsp. We shall prove
that xij must be a pseudometric that implies xij is also a feasible solution of IPcl . For
simplicity, we assume that the original graph G = (V,E) has no isolated vertices [25].
Construct a graph Gd = (V,Ed ) in which there is an edge (i, j ) ∈ Ed for every xij = 0.
Let Cd = {C1

d , C
2
d , . . . , C

l
d} be the set of connected components in Gd , where Ct

d is the set
of vertices in the t th connected component.

We first prove an important property of the optimal community structure: each com-
munity must induce a connected subgraph in the network.
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Claim: Every connected component Ct
d induces a connected subgraph in the graph

G = (V,E).

Proof. We prove by contradiction. Assume that the connected component Ct
d does not

induce a connected subgraph in G. Hence, we can partition Ct
d into two subsets S and T so

that there are no edges between S and T in G.
Construct a new solution x ′ from x by setting x ′

ij = 1 for every pair (i, j ) ∈ S × T

and x ′
ij = xij otherwise. For every pair (i, j ) ∈ S × T , since Aij = 0 , we have Bij =

Aij − didj

2M
< 0. Hence, setting x ′

ij = 1 ∀(i, j ) ∈ S×T can only increase the objective value.
In fact, because there must be at least one pair (i, j ) ∈ S × T with xij = 0 (or else Ct

d is
not a connected component in Gd ), doing so will strictly increase the objective. Moreover,
we can verify that x ′ also satisfies all constraints of IPsp. Thus, we have a feasible solution
with a higher objective than the optimal solution x (contradiction).

To prove that xij is a pseudometric, we prove an equivalent statement that if vertices i

and j belong to the same component Ct
d , then the distance xij = 0. We prove by repeatedly

growing a clique inside Ct
d . At each step, every pair of vertices in the clique are proven to

have distance 0. Then, we add one more vertex to the clique and prove that the new vertex
is also of distance zero from other vertices in the clique (see Figure 2).

Formally, we prove by induction that for all p ≤ |Ct
d |, there exists in Ct

d a clique �

of size p satisfying simultaneously the following conditions

1. xij = 0 ∀(i, j ) ∈ �, and
2. the subgraph induced by � in G is connected.

The basis. For p = 1, select an arbitrary vertex in Ct
d . The previous two conditions

hold trivially.
The inductive step. Assume that we have a clique � ⊂ Ct

d satisfying the two condi-
tions. If � = Ct

d , then we have completed the proof. Otherwise, there exist vertex u ∈ �

and vertex v ∈ Ct
d \ � so that (u, v) ∈ E(G) and xuv = 0. The existence of such an edge

(u, v) can be proven by contradiction. Assume not, then we can increase the distance of
all pairs in � × (Ct

d \ �) from 0 to 1 to increase the objective value while not violating
any constraints. This would imply that � is disconnected from the rest of Ct

d , which is
contradictory to the fact that Ct

d induces a connected subgraph. Now, consider an arbitrary
neighbor w of u in the subgraph induced by �. Because u is a common neighbor of w and
v, we have u ∈ K(w, v), i.e., the constraint xwu + xuv ≥ xwv must be in IPsp. Thus, we
have xwv = 0 since both xwu = 0 (w, u ∈ �) and xuv = 0.

We have proven that for every neighbor w of u, xwv = 0. Similarly, for all neighbor
w′ of w, xvw′ = 0, and so on. Because the clique induces a connected subgraph in G,
eventually ∀u′ ∈ �, we have xvu′ = 0. That is, we can extend the clique � to include v

and obtain a clique of size p + 1 that satisfies the two conditions. This completes the proof
of Theorem 4.3.

Theorem 4.4. LPsp and LPcl share the set of optimal solutions that are extreme points.

Proof. We need to show that every fractional optimal solution of LPcl is also a
fractional solution of LPsp and vice versa. Because the integrality constraints have
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been dropped in both LP relaxations, we need a different approach to the proof in
Theorem 4.3.3.

First, every fractional optimal solution of LPcl is also a fractional solution of LPsp.
For the other direction, let x be a fractional optimal solution of LPsp; we shall prove that x

is also a feasible solution of LPcl .
Associate a weight wij = xij for each edge (i, j ) ∈ E(G) (other edges are assigned

weights ∞). Let x ′
ij be the shortest distance between two vertices i and j within G = (V,E)

given the new edge weights. We shall prove the following statements:

1. x ′
ij = minn

k=1{x ′
ik + x ′

kj },
2. x ′

ij ≥ xij for all i, j and x ′
ij = xij ∀(i, j ) ∈ E.

The first statement is obvious by the definition of x ′
ij . We prove the second

statement by contradiction. Assume that there exist i and j such that x ′
ij < xij . Let

u0 = i, u1, . . . , ul = j be the vertices on the shortest path between i and j . We also assume
that among pairs of vertices (i, j ) satisfying x ′

ij < xij , we select the pair with minimum
value of l, the number of edges on the shortest path.

Because K(i, j ) is a vertex cut of i and j , there must be 0 < k < l such that
uk ∈ K(i, j ), i.e., the constraint xiuk

+ xukj ≥ xij > x ′
ij appears in the LPsp. From

the suboptimality of the shortest path, we have x ′
iuk

= xu0u1 + . . . + xuk−1uk
and x ′

ukj
=

xukuk+1 + . . . + xul−1ul
and x ′

ij = x ′
iuk

+ x ′
ukj

. Therefore,

xiuk
+ xukj ≥ xij > x ′

ij = x ′
iuk

+ x ′
ukj

,

which is either xiuk
> x ′

iuk
or xukj > x ′

ukj
. However, the lengths of the shortest

paths between i and uk and between uk and j are strictly less than l. We obtain
the contradiction to the minimal selection of l and complete the proof of the second
statement.

The two statements imply that x ′
ij is a pseudometric. However, x ′

ij may be no longer
be upper bounded by one. Thus, we define x∗

ij = min{x ′
ij , 1} which satisfies the following

properties:

• x∗
ij ≥ xij ∀i, j (by definition),

• x∗
ij = x ′

ij = xij ∀(i, j ) ∈ E, and
• x∗

ik + x∗
kj ≥ min{x ′

ik + x ′
kj , 1} ≥ min{x ′

ij , 1} = x∗
ij .

That is, x∗ is also a pseudometric.
Now, if xij = x∗

ij for all i, j , then x satisfies all triangle inequalities in LPcl and we
yield the proof. Otherwise, assume that xij < x∗

ij for some pair (i, j ). We show that x∗ is a
feasible solution of LPsp with a greater objective value that contradicts the hypothesis that
x is an optimal solution. Indeed, for all edges (i, j ) /∈ E(G), xij = x∗

ij , and for (i, j ) /∈ E,

we have (Bij < 0) ∧ (x∗
ij ≥ xij ). Hence, the objective − 1

2M

∑
ij Bij x

∗
ij > − 1

2M

∑
ij Bij xij

(contradiction).

5. COMPUTATIONAL EXPERIMENTS

We compare the running time and the number of constraints of our sparse metric
formulations and the original LP in [1]. In addition, we include in the comparison the
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Problem ID Name Vertices (n) Edges (m)

1 Zachary’s karate club 34 78
2 Dolphin’s social network 62 159
3 Les Miserables 77 254
4 Books about US politics 105 441
5 American College Football 115 613
6 US Airport 97 332 2126
7 Electronic Circuit (s838) 512 819
8 Scientific Collaboration 1589 2742

Table I Order and size of network instances.

modularity values of the most popular algorithms in the literature [1, 16, 25]. Also, we
include the state of the art, the Blondel method, [6]. Because the/method Blondel is a
randomized algorithm, we repeat the algorithm 10 times and report the best modularity
value found. The optimal modularity values are reported in [2] except for the largest test
case in which we use the GUROBI built-in, branch-and-cut algorithm to find the optimal
integral solution.

We perform the experiments on the standard datasets for community structure iden-
tification [1, 2], consisting of real-world networks. The datasets’ names together with their
sizes are listed in Table I. The largest network consists of 1580 vertices and 2742 edges.
All references on the datasets can be found in [1] and [2]. The LP solver is GUROBI 4.5,
running on a PC computer with Intel 2.93 Ghz processor and 12 GB of RAM.

Because the same rounding procedures are applied on the optimal fractional solutions,
both LPcl and LPsp yield the same modularity values. However, LPsp can run on much larger
network instances. The modularity of the rounding LP algorithms and other published
methods are shown in Table II. The rounding LP algorithm can find optimal solutions (or
within 0.1% of the optimal solutions) in all cases. Althought getting optimal modularity
values with exact algorithms is costprohibitive, rounding fractional solutions of our LPsp

takes less than 2 minutes for moderate-size networks.

ID n GN EIG Blondel VP LPcl LPsp OPT

1 34 0.401 0.419 0.420 0.420 0.420 0.420 0.420
2 62 0.520 — 0.524 0.526 0.529 0.529 0.529
3 77 0.540 — 0.560 0.560 0.560 0.560 0.560
4 105 — 0.526 0.527 0.527 0.527 0.527 0.527
5 115 0.601 — 0.605 0.605 0.605 0.605 0.605
6 332 — — — — — 0.368 0.368
7 512 — — 0.796 — — 0.819 0.819
8 1589 — — 0.955 — — 0.955 0.955

Table II The modularity obtained by previous published methods GN [16], EIG [25], Blondel (aka Louvain) [6],
VP [1], LPcl (complete LP) [1], our sparse formulation LPsp and the optimal modularity values OPT [2].
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ID n Constraint〈C〉 Constraint〈S〉 Time〈C〉 Time〈S〉

1 34 17,952 1,441 0.21 0.02
2 62 113,460 5,743 3.85 0.11
3 77 219,450 6,415 13.43 0.08
4 105 562,380 30,236 60.40 1.76
5 115 740,715 66,452 106.27 13.98
6 332 18,297,018 226,523 — 197.03
7 512 66,716,160 294,020 — 53.18
8 1589 2,002,263,942 159,423 — 2.94

Table III Number of constraints and running time in seconds of the formulations LPcl and LPsp . 〈C〉 stands for
complete and 〈S〉 stands for sparse.

Note that only our rounding LP method can work on the test case 6, where the
tested network is directed. The reason is that popular modularity optimization methods
such as GN, EIG, and Blondel cannot work with directed networks; and the previous LP
formulation [1] is too large to fit into the memory.

Finally, we compare the number of constraints of the LP formulation used in [1] and
our new formulation (LPsp) in Table III. Our new formulation contains substantially fewer
constraints, thus, it can be solved more effectively. The old LP formulation cannot be solved
within the time allowance (10,000 seconds) and the memory availability (12 GB) in cases of
the network instances 6 to 8. The largest instance of 1589 nodes is solved surprisingly fast,
taking under 3 seconds. The reason is due to the presence of leaves (nodes of degree one)
and other special motifs that can be efficiently preprocessed with the reduction techniques
in [3]. The size of solved network instances rises from hundreds to several thousand nodes,
whereas the running time on the medium instances are accelerated from 10 to 150 times.
Thus, our new formulation substantially reduces the time and memory requirements both
theoretically and experimentally without any trade-off on the solution quality.
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