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Abstract In the network creation game with n vertices, every vertex (player) creates an
(adjacent) edge and decides to which other vertices the created edge should go. Each created
edge costs a fixed amount α > 0. Each player aims to have a good connection with the rest of
the vertices and, at the same time, to pay as little as possible. Formally, the cost of each player
in the resulting (created) graph is defined as α times the number of edges created by the player
plus the sum of the distances to all other vertices. It has been conjectured that for α ≥ n, every
Nash equilibrium of this game is a tree and has been confirmed for every α ≥ 273 · n. We
improve on this bound and show that this is true for every α ≥ 65 · n. We also show that our
approach cannot be used to show the desired bound, but we conjecture that a slightly worse
bound α ≥ 1.3 · n can be achieved. Toward this conjecture, we show that if a Nash equilibrium
has a cycle of length at most 10, then indeed α < 1.3 · n. We investigate our approach for a
coalitional variant of a Nash equilibrium, which coalitions of two players cannot collectively
improve, and show that if α ≥ 41 · n, then every such Nash equilibrium is a tree.

1. INTRODUCTION

The network creation game was introduced by [9] as a formal model to study the
effects of strategic decisions of economically motivated agents in decentralized networks
such as the Internet. In such networks, local decisions, including those about infrastructure,
are decided by autonomous systems. Autonomous systems follow their own interest, and
as a result, their decisions may be suboptimal for the whole society. Network creation
games allow us to formally study the structure of networks created in such a manner, and
to compare them with potentially optimal networks (optimal with respect to the whole
society).

In the network creation game, there are n players V = {1, . . . , n}, each representing
a vertex of an undirected graph. A strategy si of a player i is a subset of all possible adjacent
edges of player i, i.e., si ⊆ {{i, j} | j ∈ V\{i}}. Chosen strategy si expresses that player i

creates all edges in si . Each created edge costs a fixed amount α > 0, which is a parameter
of the game. The played (chosen) strategies s = (s1, . . . , sn) collectively define an edge set
Es = ⋃

i si , and, thus, a graph Gs = (V,Es). The goal of every player is to minimize its
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cost ci(s), which is the amount paid for the edges (creation cost), plus the total distances
of the player to every other node of the resulting network G (usage cost), i.e.,

ci(s) := α · |si | +
n∑

j=1

ds(i, j ),

where ds(i, j ) denotes the distance between i and j in the resulting network Gs . If the
graph is disconnected and vertices i and j belong to different connected components, then
the distance between i and j is infinity. We sometimes omit the index s from ds(i, j ) if the
graph Gs and the respective strategy profile s are clear from the context.

A strategy vector s = (s1, . . . , sn) is a Nash equilibrium if no player i can change
the set si of created edges to another set s ′

i and lower its cost ci . Abusing the definition, the
resulting graph Gs itself is called a Nash equilibrium, too. The social cost c(s) of strategy
vector s is the sum of the individual costs, i.e., c(s) := ∑n

i=1 ci(s). It is a trivial observation
to see that in any Nash equilibrium Gs , no edge is bought more than once. Also note that any
Nash equilibrium graph is connected because, otherwise, the individual cost of each player
would be infinity, and any player would be willing to buy new edges toward disconnected
vertices and make his/her cost finite. From now on, we consider only such strategy vectors,
and observe, then, that

c(s) :=
n∑

i=1

ci(s) = α · |Es | +
n∑

i=1

n∑

j=1

ds(i, j ).

Considering only such strategy vectors s, we define the social cost of a graph Gs , denoted
by c(Gs), as the cost c(s), i.e., the cost of the corresponding strategy vector s.

A graph G = (V,E) can be created by many strategy vectors s (precisely in 2|E|

many ways, because every edge in E can be bought by exactly one of its two endpoints),
but each of such realizations has the same social cost.

In view of this, c(G) (which is equal to c(s) for any s such that G = Gs) can be
expressed as

c(G) = α · |E| +
n∑

i=1

n∑

j=1

dG(i, j ),

where dG(i, j ) is the distance between i and j in G.
We call graph G∗ = (V,E) an optimum graph, if it minimizes the social cost c(G).
Let N denote the set of all Nash equilibria of a network creation game on n vertices

and with an edge price α. The price of anarchy (PoA) of the network creation game is the
ratio

PoA = max
s∈N

c(Gs)

c(G∗)
.

PoA expresses the (worst-case) loss of the quality of an optimum network (that the society
could hypothetically build), if the society decides to create the network locally by self-
interested individuals.

In a series of articles [9, 1, 6, 11] it has been shown that the price of anarchy of
the network creation game is O(1), i.e., a constant independent of both n and α, for every
value α > 0 with the exception of the range n1−ε < α < 273 · n, where ε = �( 1

log n
). For

the value of α with n1−ε < α < 273 ·n, an upper bound of 2
n
√

log n on the price of anarchy is
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known (whereas no Nash equilibrium with a considerably large social cost is known). It is
conjectured, however, that the price of anarchy is constant also in this range of α. It remains
a major open problem to confirm or disprove this conjecture. It is certainly of interest to
note that there are several variants of the network creation game (see, e.g., [2, 4, 8, 3]),
but in none of these has the price of anarchy been shown to be constant; a study by [5],
however, shows an exception to the other works.

Recently, a more detailed study[10] of the exact constant hidden in the O(1) bound
on the price of anarchy showed that the price of anarchy converges to 1 for any constant
nonintegral α when n tends to infinity, and also provided a lower bound example of 3

2 for
integral α’s, which sounds intriguing and suggests that more needs to be learned about the
structure of Nash equilibria.

Understanding the structure of Nash equilibria has proven to be important in bounding
the price of anarchy. It was shown [9] that the social cost of any tree G in Nash equilibrium
is upper bounded by O(1) ·c(G∗). Therefore, the price of anarchy is O(1) for all values of α

for which every Nash equilibrium is a tree. It has been shown that every Nash equilibrium
is a tree for all values of α greater than n2, 12n log n, and 273n, respectively, in [9],[1], and
[11]. It has been conjectured that every Nash equilibrium is a tree for every α ≥ n. Since
for α = n/2, nontree Nash equilibria are known, this tree conjecture is asymptotically
tight.

In this study, we take steps to resolve the tree conjecture. We first tighten the tree
conjecture and provide a construction of a nontree Nash equilibrium for every α = n − 3
(thus, showing that, asymptotically, one cannot hope to show that every Nash equilibrium
is a tree for some value α ≥ q · n, q < 1 a fixed constant). We then apply a “linear-
programming-like” approach to show that, for α ≥ 65n, every Nash equilibrium is a tree.
To show this, we obtain new structural results on Nash equilibria and combine them with
the previous approach of [11]. In the end, we take further steps toward the conjecture.
We show that if α ≥ n, then there is no nontree Nash equilibrium containing exactly one
cycle. We then apply the linear-programming-like approach again to show that the girth
of every nontree Nash equilibrium (for any α ≥ n) is at least 8. Using the same ideas,
we show that if a nontree Nash equilibrium has girth at most 10, then α ≤ 1.3n. By
further experimental results, we conjecture that this holds for any girth, i.e., that nontree
Nash equilibria can appear only for α ≤ 1.3n. To the end, we investigate the developed
techniques for a coalitional variant of a Nash equilibrium, where coalitions of two players
cannot collectively improve, and show that if α ≥ 41 · n, then every such coalitional Nash
equilibrium is a tree.

Throughout this article, we will use standard graph-theoretic terms/concepts such as
a path, a cycle, a subgraph, a bridge, an articulation, etc. without defining them explicitly.
We refer the reader to standard graph-theory textbooks for details, e.g., [7]. We will often
denote the considered Nash equilibrium graph Gs = (V,Es) simply as G = (V,E), if there
is no danger of confusion. Even though the graph Gs is undirected, we will often direct
every edge in Gs to express the identity of the player that bought the edge in the strategy
vector s: An edge (u, v) directed from u to v denotes the fact that u bought/created the
edge in s. It is certainly instructive to note that the orientation of edges in the topology is
crucial and can have decisive influence on whether a given graph Gs is a Nash equilibrium.
To illustrate this, consider the example in Figure 1. It presents two strategy vectors s and
s ′ of the game with four players, resulting in the same graph Gs = Gs ′ being a path.
Interestingly, s is not a Nash equilibrium for any value of α; s ′ is a Nash equilibrium for
α = 2.
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Figure 1 A path on four vertices is realized by two strategy profiles: (a) s, which is not a Nash equilibrium,
because vertex 1 can improve its cost by “swapping” the edge (1, 2) for edge (1, 3); and (b) s′, which, to the
contrary, for α = 2, (b) is a Nash equilibrium.

2. PRELIMINARIES

Every nontree graph G contains a cycle. Let C be a shortest cycle of G, let c be its
length, and let a0, a1, . . . , ac−1 be the players that form C where {ai, ai+1} ∈ E for every
i = 0, 1, . . . , c−1 (where indices on vertices of the cycle are, throughout the whole article,
to be understood as modulo c). Observe the crucial property of the shortest cycle C: the
distance between ai and aj in the graph G is equal to the distance between ai and aj on the
cycle C. Moreover, for any vertex ak , even if we delete one or both of the adjacent edges
of ak in the cycle C (and in the whole graph G), the distance between any two vertices ai

and aj , other than ak in the modified graph G, is the distance between the two vertices on
the modified cycle C.

2.1. Main approach

If a Nash equilibrium s = (s1, . . . , sn) is not a tree, then it contains a cycle. Let
C be a shortest cycle in Gs . We will consider all the players on the cycle C and their
strategy changes that involve only the c edges of the cycle. For each considered strategy
change s ′

ai
of player ai , we obtain an inequality cai

(s) ≤ cai
(s1, . . . , s

′
ai
, . . . , sn) =: cai

(s ′)
stating simply the fact (definition) that in a Nash equilibrium s, player ai cannot improve by
changing its strategy. We will often express such an inequality in the form of “SAVINGS” ≤
“INCREASE,” where “SAVINGS” denotes the parts (and amount) of cai

(s) that decreased
their value in cai

(s ′), and “INCREASE” denotes the parts (and amount) of cai
(s) that

increased their value in cai
(s ′). For example, assume that ai buys the edge e = (ai, ai+1)

(i.e., e ∈ sai
), and let us consider the strategy change where ai deletes the edge e (i.e.,

s ′
ai

= sai
\{e}). Recall that cai

(s) = α · |sai
| + ∑

j d(ai, j ). Then, in such a strategy change,
the “SAVINGS” are clearly on the edge-creation side, i.e., the player ai saves α for not
paying for the edge e. At the same time, some distances of player ai may have increased;
the distance to a vertex v increases if in Gs every shortest path from ai to v uses the deleted
edge e. But the distance from ai to v could have increased by at most c−2 (because before,
ai needed to go to vertex ai+1 but now vertex ai+1 can be reached “around” the cycle,
making a detour of at most c − 1). Because of the Nash equilibrium property of s, we have
“SAVINGS” ≤ “INCREASE,” which implies α ≤ (c−2)(n−1) (as the distance to at most
n − 1 vertices could have increased).

2.2. Partitioning of vertices

In the following, we will use slightly more involved forms of the previously described
inequalities.
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Definition 2.1. Strategy s ′
ai

of player ai of a shortest cycle C is called a local strategy
change with respect to C and s, if

1. Every deleted edge e ∈ sai
\s ′

ai
belongs to C.

2. There is at most one newly created edge e, i.e., |s ′
ai
\sai

| ≤ 1, and this edge connects ai

with a vertex aj of the cycle C.
3. ai remains connected by at least one edge to a vertex aj , j 	= i.

We are interested in the changes of the distances from ai , i = 0, . . . , c − 1, i.e., in
the values �v := ds ′ (ai, v) − ds(ai, v), v ∈ V . For this reason, it does not matter what the
exact distance ds(ai, v) is, but rather what the relative difference is. This relative difference
lies, as we will see, between 0 and c−1 (because of the detour we can always make around
the cycle C).

Let v be an arbitrary vertex v ∈ V . Let G\C be the graph G without the c edges of
the cycle C. Let us denote the distances of v to the vertices a0, a1, . . . , ac−1 in G\C by the
vector d(v) = (d0, d1, . . . , dc−1), respectively, where di = ∞ if ai and v are disconnected
in G\C. Observe that for at least one i, di 	= ∞. We call di the outer distance of v to ai in
the Nash equilibrium G, and d the vector of outer distances of v in G.

Proposition 2.2. For any nontree Nash equilibrium s with a shortest cycle C, for any
ai ∈ C and any v ∈ V :

ds(ai, v) = min
j

(ds(ai, aj ) + dj ).

Furthermore, the distance ds(ai, aj ) is achievable via the edges of C only.

Proof. The distance between ai and v in Gs is equal to minj (ds(ai, aj )+dj ), because there
always is a shortest path from ai to v that first uses a part of the cycle C (until vertex aj ,
where aj can be ai), leaves C and never comes back to C (because, recall, C is a shortest
cycle of G).

For a strategy profile s ′ = (s1, . . . , s
′
i , . . . , sn), where s ′

i is a local strategy change
with respect to s and C, we have a similar property about the distances ds ′ (ai, v).

Proposition 2.3. For any nontree Nash equilibrium s with a shortest cycle C, for any
ai ∈ C and any v ∈ V , for any local strategy change s ′

i with respect to s and C:

ds ′ (ai, v) = min
j

(ds ′ (ai, aj ) + dj ).

Proof. Obviously, ds ′ (ai, v) = minj

(
ds ′ (ai, aj ) + ds ′ (aj , v)

)
. Observe also, because

s ′
i is a local strategy change, that the distance dj (i.e., the distance from aj to v in

Gs\C) does not change in Gs ′\C, i.e., dj := dGs\C(aj , v) = dGs′ \C(aj , v). Among all
j ∈ arg minj

(
ds ′ (ai, aj ) + ds ′ (aj , v)

)
, there needs to exist one j ∗ for which a shortest path

from aj∗ to v does not go via any of the a0, . . . , ac−1. For this j ∗ we have dj∗ = ds ′ (aj∗ , v)
and the claim follows.
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As a consequence of the two propositions, we obtain:

min
j

dj ≤ ds(ai, v) ≤ (c − 1) + min
j

dj ,

and

min
j

dj ≤ ds ′ (ai, v) ≤ (c − 1) + min
j

dj .

Because we are interested in the changes of the distances from ai , i.e., in the values
of �v = ds ′ (ai, v) − ds(ai, v), v ∈ V , we can normalize the vector d(v) by subtracting
minj dj from each of the elements d0, d1, . . . , dc−1 (which, according to Proposition 2.2
and Proposition 2.3 does not change the value of �v). Observe that after the normalization,
there is an entry di equal to zero. We will “normalize” the entries more further on. Because
we are interested in the value �v , we can handle all entries dj ≥ c − 1 in the same way:
they do not have any influence on �v at all. Indeed, observe that there is no shortest path,
neither in Gs nor in Gs ′ , from ai to v that goes via aj with dj > c − 1, because the vertex
aj∗ with dj∗ = 0 can be reached in at most c − 1 steps along the cycle C. Similarly, there
always is a shortest path from ai to v that does not go via aj with dj = c − 1. We will,
therefore, further modify the vector d by substituting every entry dj ≥ c − 1 with the value
c − 1 (with the meaning that a value dj = c − 1 is actually useless for considering shortest
paths from ai to v).

This gives partition of all vertices into groups Vd , where each group has associated
vectors of “normalized” outer distances d = (d0, · · · , dc−1), one of the distances is neces-
sarily equal to 0 and all the distances are upper bounded by c − 1. In this way, there are
t = cc − (c − 1)c groups. We denote the set of all “normalized” distance vectors by D.
Trivially, as Vd , d ∈ D, form a partition of V ,

∑
d∈D |Vd | = n.

3. BOUNDS ON α FOR EXISTENCE OF CYCLES

We first give in Figure 2 a construction of a nontree Nash equilibrium graph for
n = 2q + 3 vertices and α = 2q = n − 3, for any integer q. There are three vertices z1,
z2, and z3 in the middle. Each of these three vertices buys an edge toward L and an edge
toward R. Vertices z1, z2, and z3 have the same creation cost, and they are symmetric, thus
having the same usage cost. Furthermore, there are q − 1 vertices �2, �3, . . . , �q , to each
of which vertex L buys an edge. Similarly, there are q − 1 vertices r2, r3, . . . , rq , to each
of which vertex R buys an edge. The vertices li and ri , i = 2, . . . , q, do not buy any edge.
Thus, L and R are symmetric, having the same creation and usage costs. Similarly, all li
are symmetric, and all ri are symmetric, all having the same creation and usage cost. By an
extensive search for improving strategies for each player type, we can check that no player
wants to deviate from its strategy and therefore the graph is a Nash equilibrium. This thus
shows that the conjecture “for α ≥ n, all Nash equilibria are trees” cannot be improved to
“for α ≥ (1 − ε)n, all Nash equilibria are trees.”

Theorem 3.1. For any integer q, there is a nontree Nash equilibrium on n = 2q + 3
vertices for α = n − 3. In particular, for every constant ε, there is n and a nontree Nash
equilibrium on n vertices for α = (1 − ε)n.
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Figure 2 Nontree Nash equilibrium for n = 2q + 3 players and α = n − 3. An edge directed from a node u to a
node v denotes that u buys the edge.

We now proceed to show that for any α large enough, only tree Nash equilibria exist.
We first derive an auxiliary claim providing a lower bound on the length of a shortest cycle
in any Nash equilibrium.

Theorem 3.2. The length c of a shortest cycle C in any Nash equilibrium is at least
2α
n

+ 2.

Proof. We distinguish two cases. First, assume that there is a player, which buys both its
adjacent edges on the cycle C. Without loss of generality assume that this player is a0.
Consider the strategy change by which a0 deletes both these edges (a0, a1) and (a0, ac−1)
and buys an edge toward player ai on the cycle, i = 2, . . . , c − 2. The player cannot
improve by such a change, and therefore “SAVINGS” ≤ “INCREASE.” Here, the player
saves at least α (by buying one edge less). Let us denote the increase of distances of player
a0 to the players of the group Vd by ci,d . Then, we get that α ≤ ∑

d∈D δi,d |Vd |. Summing
up all the c − 3 inequalities, one for every i, we get (c − 3)α ≤ ∑c−2

i=2

∑
d δi,d |Vd |.

We now show that for every d, the coefficient
∑

i δi,d at |Vd | is at most (c−2)(c−3)/2.
Consider arbitrary d = (d0, d1, . . . , dc−1) of the outer distances of the vertices in Vd .
Clearly, the strategy change of a0 increases its distances to Vd iff every shortest path
from a0 to Vd goes through the deleted edges. Thus, we can assume (for the worst case
with respect to the coefficient

∑
d δi,d ) that d0 = c − 1. Assume that one shortest path

(in Gs) leaves the cycle at ae, e ∈ {1, . . . , c − 2}. In the new graph Gs ′ , player a0 can
always use the new edge (a0, ai) and then go to ae for the remainder of the cycle C.
Thus, the increase of distances δi,d is at most (1 + |i − e|) − 1 = |i − e|. In total, we
obtain

∑c−2
i=2 δi,d ≤ ∑

i |i − e| ≤ ∑
i(i − 1) = (c − 3)(c − 2)/2, as claimed. Now, since∑

d∈D |Vd | = n, we finally get that α ≤ (c−2)
2 n, which gives the claimed c ≥ 2α

n
+ 2.

Consider now the second case in which no player buys two of its adjacent edges in
C, i.e., every player buys exactly one edge. Without loss of generality assume that every
player ai buys the edge (ai, ai+1). For each player i, we consider the strategy change of
deleting the edge (ai, ai+1). Similarly to the previous case, we obtain α ≤ ∑

d∈D δi,d |Vd |.
Summing for every i, we get cα ≤ ∑c−1

i=0

∑
d δi,d |Vd |. We show this time that

∑c−1
i=0 δi,d , the

coefficient at |Vd |, is upper bounded by 1 + 2 + · · · + (c − 2) = (c − 2)(c − 1)/2. Consider
an arbitrary d = (d0, . . . , dc−1) ∈ D, and assume without loss of generality that d0 = 0.
For every player ai , δi,d is at most i − 1, because the worst-case increase in a distance
of player ai to vertices Vd happens when all shortest paths from ai used the deleted edge
(ai, ai+1). But because, after the deletion, there is an alternative path from ai to Vd using
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Figure 3 The 5-Neighborhood N5(u) of vertex u.

a0, the increase is at most i − 1. Thus, summing over all i, the total increase in distances to
Vd is at most 0 + 1 + 2 + · · · + (c − 2) = (c − 2)(c − 1)/2 as claimed. Plugging this into
our inequality, cα ≤ ∑

i

∑
d δi,d |Vd | and using the fact that

∑
d |Vd | = n, we obtain that

c > 2α
n

+ 2.

Let H be a nontrivial biconnected component of a nontree Nash equilibrium, i.e., an
induced subgraph of H of at least three vertices containing no articulation point (vertex
removal of which leaves the graph disconnected). For any vertex v ∈ H , let S(v) be the set
of vertices that do not belong to H , and that have v as the closest vertex among all vertices
in H . For any vertex u ∈ H , we define degH (u) to be the degree of vertex u in the graph
induced by H . Furthermore, we define Nk(u) to be the k-th neighborhood of u in H , i.e.,
Nk(u) := {w ∈ H | d(u,w) ≤ k}. The following lemma has been shown in [11]. We will
use it to prove the subsequent lemma.

Lemma 3.3. (From [11]) If u, v ∈ V (H ) are two vertices of a biconnected component H

of a Nash equilibrium graph G with d(u, v) ≥ 3 such that u buys the edge to its adjacent
vertex x in a shortest u − v-path and v buys the edge to its adjacent vertex y in that path,
then degH (x) ≥ 3 or degH (y) ≥ 3.

Lemma 3.4. If H is a biconnected component of G, then for any vertex u, its neighborhood
N5(u) in H contains a vertex v with degH (v) ≥ 3.

Proof. Assume that this is not true. Then the 5-neighborhood N5(u) of vertex u is formed
by two disjoint paths. (The case that the 5-neighborhood forms a cycle is excluded by
Theorem 3.2 for big enough α). We consider two cases. First, we will assume that at least
one of the two paths starting at u is directed away from u (see Figure 3(a)). In the second
case, in each of the two paths, there has to be a vertex that buys an edge toward u. It follows
from Lemma 3 that these two vertices are the two neighbors of u in N5(u) (see Figure 3(b)).

In the first case, there is a sequence of five edges directed away from u, with the
naming as in Figure 3(a)). Let su := |S(u)|, si = |S(i)| for 0 ≤ i ≤ 4. Then,

s0 ≥ s1 + s2 + s3 + s4, s1 ≥ s2 + s3 + s4, s2 ≥ s3 + s4, s3 ≥ s4, s4 ≥ k, (3.1)
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where k is the number of vertices that which are descendants of vertex 5 in the breadth-
first-search (BFS) tree rooted at vertex 3. We can obtain these inequalities by considering
the following strategy changes of the players u and i, 0 ≤ i ≤ 3: delete the edge directed
away from u and buy a new edge to the next vertex in the sequence; now simply apply the
“SAVINGS” ≤ “INCREASE” principle.

We first assume that vertex 5, the neighbor of vertex 4 in H , has degree at least 3 in
H (i.e., it has at least two children in the BFS tree rooted at vertex 3). The case when the
degree-3 vertex appears later along the path is easier and will be discussed later. We now
distinguish two cases. First, we assume that one of the children of vertex 5 in the considered
BFS tree buys an edge to vertex 5. Let us call it vertex 6. The other case is when vertex 5
buys all the edges to its children.

Consider the following strategy change: vertex 6 deletes an edge toward vertex 5
and buys a new edge toward vertex u. This decreases its distance cost, at least to vertices
in S(0) by 4, and to vertices in S(1) by 2, while it increases distances to vertices in the
set of descendants of 5 in the BFS tree rooted at 3 by at most 6, to the vertices in S(4)
by 4, and to the vertices in S(3) by 2. By this strategy change, distance from vertex 6 to
any other vertex is not increased, because vertex u is located deeper than vertex 6 in the
BFS tree rooted at vertex 3. But then, according to the chain of inequalities (3.1) we get
4s0 + 2s1 > 6k + 4s4 + 2s3, and thus, the player 6 can improve, which is a contradiction.

In the case where vertex 5 buys all edges toward its children, consider the following
strategy change of vertex 5: delete all the edges to its children (in the considered BFS tree)
and buy one edge to vertex u. By this, the “SAVINGS” are at least α. Furthermore, since
H is biconnected, the graph remains connected. Distances from vertex 5 are increased
only to vertices in the set K – the set of the vertices that are descendants of vertex 5
in the BFS tree rooted at vertex 3. This “INCREASE” is at most 2 · diam(H ), where
diam(H ) is the diameter of H . By the “SAVINGS” ≤ “INCREASE” principle, we get that
α ≤ 2 · diam(H )k. At the same time, α ≥ (rad(H ) − 1)s0, where rad(H ) is the radius of
H , because otherwise, a vertex at distance rad(H ) from vertex 0 could buy an edge toward
vertex 0 and decrease its cost. Combining these two inequalities with the inequality s0 ≥ 8k,
which is obtained from (3.1), we get that 8(rad(H ) − 1)k ≤ 2 · diam(H )k ≤ 4 · rad(H )k,
which is a contradiction.

The second case depicted in Figure 3(b) is analyzed in the very same way, the only
change is that, according to a new chain of inequalities, now the heaviest component in
the sense of the number of vertices is S(u) (in the previous case it was S(0)). The chain of
inequalities is similar to (3.1):

su ≥ s0 + s1 + s2 + s3, s1 ≥ s2 + s3 + s4, s2 ≥ s3 + s4, s3 ≥ s4, s4 ≥ k, (3.2)

where the notation is the same as in the first case. We obtain that su ≥ 7k, and subsequently,
arguing about the vertex at distance rad(H ) from u, we get a contradiction 7(rad(H ) −
1)k ≤ 2 · diam(H )k ≤ 4rad(H )k.

Finally, if there is a longer sequence of vertices with degree 2 than the considered
sequence of length 5 of edges directed away from u, then we can only consider the last 5
edges (all directed away from u) and apply the very same reasoning.

We can strengthen the result if we consider a stronger version of a Nash equilibrium
in which no coalition of two players can change their strategies and improve their overall
cost. We call such an equilibrium a 2-coalitional Nash equilibrium.
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Figure 4 The 3-neighborhood N3(u) of vertex u.

Lemma 3.3. The 3-neighborhood N3(u) of any vertex u of a biconnected component H

of a 2-coalitional Nash equilibrium has a vertex of degree at least 3.

Proof. Assume the converse. Similarly to the proof of Lemma 3.4, there are two different
cases of how the neighborhood of vertex u looks (see Figure 4(a) and (b); notation is also
the same as that in Lemma 3.4). In both cases, consider the coalition of players 0 and 2.
Consider the following strategy changes: player 0 deletes edge (0, 1) and instead buys edge
(0, 3); player 2 deletes edge (2, 3) and buys edge (2, 0). This strategy change does not change
the player coalition’s creation cost (in terms of α). Among the vertices S(0), S(1), S(2),
and S(u) this strategy change decreases the coalition’s usage cost by su + s0 + s2 and it
increases by s1. Other vertices are partitioned by their shortest distances to vertices 0 and 2;
lets assume that for any vertex v that does not belong to S(0), S(1), S(2), or S(u), shortest
distance to vertex 0 is x and the shortest distance to vertex 2 is y. Obviously, |x − y| ≤ 2.
If |x − y| > 0, then there is no increase in the usage cost of coalition toward vertex v by
this strategy change. The only possibility of increase is when x = y, but in that case v

is the descendant of vertex 3 in the BFS tree rooted at vertex 1. Similarly to Lemma 3.4,
we denote k to be the number of vertices that are descendants of vertex 3 in the BFS tree
rooted at vertex 1. Analogously to the proof of Lemma 3.4, the following inequalities hold
for the case depicted in Figure 4(a): s0 ≥ s1 + s2, s1 ≥ s2 and s2 ≥ k, whereas, for the
case depicted in Figure 4(b), we have su ≥ s0 + s1 + s2, s1 ≥ s2, s2 ≥ k. In both cases,
su + s0 + s2 > s1 + k, which results in a contradiction.

The following two lemmas are crucial for proving the main result of the paper. The
first lemma has been proven [11]. The second lemma strengthens a similar lemma from
[11]. Its proof uses the result of Theorem 3.2.

Lemma 3.4. (From [11]) If the t-neighborhood of every vertex of a biconnected component
H of a Nash equilibrium contains a vertex of degree at least 3, then the average degree of
H is at least 2 + 1

3t+1 .

Lemma 3.5. If α > n, then the average degree of a biconnected component H of a Nash
equilibrium graph is at most 2 + 4n

α−n
.
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Proof. Among all vertices of the equilibrium graph G, consider a vertex with the smallest
usage cost and let this vertex be v. Consider a BFS tree T rooted in v. Let T ′ = T ∩ H .
Then the average degree of H is deg(H ) = 2|E(T ′)|+2|E(H )\E(T ′)|

|V (T ′)| ≤ 2+ 2|E(H )\E(T ′)|
|V (T ′)| (note that

|V (H )| = |V (T ′)|). We now bound |E(H )\E(T ′)|. We consider vertices that buy an edge
in E(H )\E(T ′) and call them shopping vertices. It is easy to see that no shopping vertex
buys more than one edge, because if any of them buys two or more edges, it is better for it
to delete all of the edges and buy one new edge toward v: this decreases its creation cost
by at least α, whereas increases its usage cost increase by at most n. It is, thus, enough to
bound the number of shopping vertices. For this, we prove that the distance in the tree T ′

between any two shopping vertices is lower bounded by α−n
n

, which then implies that there
cannot be too many shopping vertices. In other words, the number of shopping vertices
is at most 2nV (T ′)

α−n
. Assigning every node from H to the closest shopping vertex according

to the distance in T ′ (breaking ties arbitrarily) forms a partition of H , wherein every part
contains exactly one shopping vertex. As the distance in T ′ between shopping vertices is
at least α−n

n
, the size of every part is at least α−n

2n
.

We assume for contradiction that there is a pair of shopping vertices u1 and u2 such
that dT ′(u1, u2) < α−n

n
. Let u1 = x1, · · · , xk = u2 be the unique path from u1 to u2 in T ′,

and (u1, v1) and (u2, v2) be the edges bought by u1 and u2 in E(H )\E(T ′). Observe first that
vertices v1 and v2 are not descendants of any vertex xi , otherwise paths vj − xi and xi − uj

together with an edge (uj , vj ) form a cycle of length at most 2(dT ′(u1, u2) + 1) < 2α
n

+ 2,
which contradicts Theorem 3.2. Thus, x0 := v1, x1, . . . , xk, xk+1 := v2 is a path. Since x1

buys edge (x0, x1), and xk buys edge (xk, xk+1), there is a vertex xi such that xi buys both
of its adjacent edges (xi−1, xi) and (xi, xi+1). Consider the following strategy change for
player xi : delete the two adjacent edges and buy a new edge to vertex v. In this way, xi

decreases its creation cost by α.
We now show that Unew(xi), the usage cost of xi in the new graph, is less than UG(xi),

the usage cost in the original graph, plus α, which gives a contradiction. It is easy to observe
that Unew(xi) ≤ n + Unew(v), because xi can always go through v in the new strategy to
any vertex. We now consider Unew(v). Note that only the vertices in the path u1 − u2 and
their descendants can increase their distance to v by the strategy change of xi . Let y be
any such vertex. If the closest ancestor of y on the path is xi , then dnew(v, y) ≤ dG(v, y),
so there is no increase. We assume, without loss of generality, that the closest ancestor
of y is xj with j < i. Then, the following chain of inequalities and equalities holds:
dnew(v, y) ≤ dnew(v, x0) + dnew(x0, xj ) + dnew(xj , y) = dG(v, x0) + dG(x0, xj ) + dG(xj , y)
(the inequality is a triangle inequality, and the equality holds because x0 is not a descendant
of any vertex on the path in the new graph). Since dG(v, y) = dG(v, xj ) + dG(xj , y),
the difference between new and initial distances is dnew(v, y) − dG(v, y) = dG(v, x0) +
dG(x0, xj ) − dG(v, xj ) ≤ 2dG(x0, xj ) ≤ dG(u1, u2) ≤ 2 · dT ′(u1, u2) ≤ 2(α−n)

n
(where the

latter inequality is implied by our assumption).
We need to bound the number of possible y’s. Path u1 −u2 does not go through vertex

v, so the number of possible y’s is bounded by the size of the subtree of T ′ of a child of v

that contains this path. We prove that the size of any subtree of a child of v in T is at most
n
2 .

Consider any child t of v in T , and consider the subtree of T rooted in t . Let b be
the number of vertices in this subtree, and let a be the number of other vertices of T . Let
c1 be the usage cost of t in the subtree, and let c2 be the usage cost of v in the other part of
the tree T ; see Figure 5. Then, the usage cost of t in G is upper bounded by c1 + a + c2,
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Figure 5 Sizes of the subtrees.

whereas the usage cost of v is exactly b + c1 + c2. Since v is the vertex with the minimal
usage cost, we have c1 + a + c2 ≥ b + c1 + c2. Since a + b = n, we get that b ≤ n

2 .
Note that y was chosen arbitrarily, so the increase of the usage cost for v is less than

n
2

2(α−n)
n

= α − n, and, therefore, Unew(v) < UG(v) + α − n, which is a contradiction.

Combining Lemmas 3.2 , 3.4 and 3.5 gives the main result.

Theorem 3.6. For α ≥ 65n, every Nash equilibrium graph is a tree.

Note that results obtained in Lemmas 3.4 and 3.5 hold for 2-coalitional Nash equilibrium
graphs as well, so combining Lemmas 3.3, 3.4 and 3.5 gives the following result.

Theorem 3.7. For α ≥ 41n, every 2-coalitional Nash equilibrium graph is a tree.

4. SMALL CYCLES AND EXPERIMENTAL RESULTS

In this section, we consider equilibrium graphs that have small girth c, and show that
they exist only for small values of α. We start with an observation that limits the girth of
equilibrium graphs containing exactly one cycle.

Proposition 4.1. Let G be a Nash equilibrium graph containing a k-cycle C =
{v0, v1, . . . , vk−1}, and F the graph where the edges of C are removed from G. If F

consists of k connected components, then k < 6.
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Proof. Assume for contradiction that k ≥ 6. For 0 ≤ i < k, let si > 0 denote the number
of vertices in the connected component of F that contains vi . If the edge (v0, vk−1) is bought
by the player v0, then it could replace (v0, vk−1) by (v0, vk−2). By doing this, the creation
cost will remain the same, the distances to sk−3 + sk−2 vertices decrease by 1, but the
distances to sk−1 vertices increase by 1. If the edge (v0, vk−1) is bought by the player vk−1,
this player could replace (vk−1, v0) by (vk−1, v1). By this change of strategy, the distances
to s0 vertices would increase, but distances could be decreased to s1 + s2 vertices.

Because we consider a Nash equilibrium, we deduce that sk−3 + sk−2 ≤ sk−1 or s0 ≥
s1 + s2. Applying this reasoning for every edge of C, we get that for every i,

si−3 + si−2 ≥ si−1 or si ≥ si+1 + si+2, (4.1)

where 0 ≤ i < k (recall that indexes are considered modulo c). The two inequalities
si ≥ si+1 + si+2 and si−1 + si ≤ si+1 cannot hold simultaneously. Yet, (4.1) forces one of
the inequalities si−1 + si ≤ si+1 or si+2 ≥ si+3 + si+4 to be true, so we have that inequality
si ≥ si+1 +si+2 implies si+2 ≥ si+3 +si+4 for any 0 ≤ i < k. Without loss of generality, we
can assume that the edge (vk−1, v0) was bought by v0. Then, we get the chain of inequalities
s2i ≥ s2i+1 + s2i+2 for every i, which is obviously a contradiction, because if we sum up
all these inequalities we get n ≥ 2n.

We now describe our computer-aided approach for upper bounding α in case of
the existence of small cycles in Nash equilibrium graphs. In our approach, we consider a
nontree Nash equilibrium whose smallest cycle has a fixed length c, and we construct a linear
program asking for a maximum α, while satisfying inequalities of the type “SAVINGS” ≤
“INCREASE,” which we create by considering various strategy changes of the players of
the cycle. The partition of vertices of a Nash equilibrium graph into vertices Vd , d ∈ D,
gives a variable |Vd | for every d. The number of variables is t = cc −(c−1)c. We enumerate
over all possible (meaningful) directions of the edges on the considered cycle and solve
the linear program, which gives us an upper bounds on α for every direction of edges. The
largest such value (among all directions) is then obviously an upper bound on α for any
direction, and thus, for any Nash equilibrium containing a cycle of the fixed size.

The number of all possible directions is equal to 2c, but this number can be decreased
to at most 2c−3 + 2 by simple observations that all hold without loss of generality. We can
assume that the number of right edges is at least the number of left edges, where an edge
(vi, vi+1) is called a right edge, and (vi+1, vi) is called a left edge. Furthermore, we can
also assume that the edge (v0, v1) is a right edge. If c is even, every considered cycle can be
made (by renaming arguments) to fall into one of the following three classes: (i) the edges
along the cycle alternate between right and left, or (ii) all edges are right edges, or (iii) the
first two edges are right edges and the last edge is a left edge. The same holds when c is
odd, with the exception of the alternating edges.

Our linear program contains all inequalities implied by the strategy changes described
in Theorem 3.2. We furthermore add inequalities for strategy changes of buying one extra
edge, and for swapping an edge of the cycle with a new edge toward a vertex of the cycle.
We add the equality

∑
d∈D |Vd | = 1 (which expresses the fact that the variables should sum

to n). Then, the value of a variable |Vd | expresses the fraction of all vertices (instead of the
absolute number of vertices).

We used the Gurobi linear-programming solver to maximize α for every generated
linear program. The largest such value, thus, gives an upper bound on α for which a cycle of
size c can exist. Due to the huge number of variables, we could not solve the linear program
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for c > 7, because already for c = 8, the number of variables was more than 107, and
while the number of constraints is �(c2). We have made further tweaks to the code, which
allowed us to speed up the computation. We observed that many variables had the same
coefficients in every generated constraint, and thus, at most one such variable is relevant for
obtaining the solution of the linear program. We have considered the variables one by one,
and added only those having unique coefficients in the considered constraints. To check for
uniqueness, we used hashing, because creating the matrix of the linear program was too
slow. The obtained compression of the number of variables was huge: for c = 10, instead
of nearly 1010 variables, we obtained only around 105.

The obtained upper bounds on α are quite close to n. For girth c ≤ 7, we obtain
α ≤ 1, which corresponds to α ≤ n if we required that

∑
d∈D |Vd | = n (instead of∑

d∈D |Vd | = 1). For girth c = 8, α is upper bounded by 191
185 for only one orientation of the

edges in the shortest cycle, for all the other directions, α is upper bounded by 1. Regarding
the girth c = 9, α is upper bounded by 13

12 , whereas for girth c = 10, α is bounded by 1.2.
It may seem that the upper bound on α grows with c. This, however, might not be the case,
as the following experiments suggest.

We have performed further experiments with larger values of c, but did not consider
all orientations of edges (this was out of our computational power). Furthermore, since the
number of variables is increasing superexponentially, instead of considering all variables,
for larger values of c we have considered only variables |Vd | that have only 0’s and (c−1)’s
as distances in vector d, that is, we have considered 2c variables. Additionally, we have
taken extra 2c random variables. We have checked all values of c up to 15. Upper bounds
for α obtained using only these variables are very close to the real bounds for c ≤ 10
(the difference for k ≤ 10 is between 0 and 0.01). The largest upper bound of 1.3n on α

appears for c = 13, and then only decreases, which is why we conjecture: the upperbound
of α ≤ 1.3n can be proved by the considered strategy changes.

Constructing lower bound examples is easy for c = 3 and c = 4, but already
complicated for c = 5; we managed to provide an example for one direction of edges
on the minimal cycle, which matches with the upper bound for α. Possible explanation
is that we care only about fractional parts of n in our linear program, but for the real
lower bound examples, even constants matter, which are assumed to be 0 by our linear
program. Regarding the minimal cycles with length at least 6, there is no example of a
Nash equilibrium graph having these, which tempts us to conjecture that it is impossible to
construct such an example.

5. CONCLUSIONS

In this article, we have described steps toward resolving the conjecture “Every Nash
equilibrium of a Network Creation Game with α ≥ n is a tree.” Previously, it has been
known that for every α ≥ 273 · n, every Nash equilibrium is a tree. We have improved this
bound and showed that for every α ≥ 65 · n, every Nash equilibrium is a tree. At the same
time, we have provided a construction of a nontree Nash equilibrium for every α = n − 3.
Previously, nontree Nash equilibria were known only for α ≤ n/2. We have also considered
a specific collaborative notion of a Nash equilibrium, and for these we have shown slightly
improved bounds on α for the existence of nontree Nash equilibria by a straightforward
adaptation of the techniques.

To gain an insight into the structure of the problem, we have considered Nash
equilibria with small cycles. We have shown that for α > n, there must be more than
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one cycle of size at most 6. Furthermore, using LP-solvers, we showed that for α > 1.2n,
the girth of a nontree Nash equilibrium is at least 11. To go beyond girth 10, we have
considered only several topologies and simplified the constraints by stripping off some of
the variables. These experiments suggest that with the increasing girth, the upper bound on
α that allows nontree Nash equilibria is not increasing. This, as well as the main considered
conjecture, remains to be formally proven.
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[3] D. Bilò, L. Gualà, and G. Proietti. “Bounded-Distance Network Creation Games.” In Proc.
8th International Workshop on Internet and Network Economics (WINE), pp. 72–85. Springer,
2012.

[4] M. Brautbar and M. Kearns. “A Clustering Coefficient Network Formation Game.” In Proc.
Fourth International Symposium on Algorithmic Game Theory (SAGT), pp. 224–235. Berlin,
Heidelberg: Springer, 2011.

[5] E. Demaine and M. Zadimoghaddam. “Constant Price of Anarchy in Network Creation Games
via Public Service Advertising.” In Proc. Seventh International Workshop on Algorithms and
Models for the Web-Graph (WAW), pp. 122–131. Berlin, Heidelberg: Springer, 2010.

[6] E. D. Demaine, M. Hajiaghayi, H. Mahini, and M. Zadimoghaddam. “The Price of Anarchy in
Network Creation Games.” ACM Trans. Algorithms, 8:2 (2012), 1–13.

[7] R. Diestel. Graph Theory. Graduate Texts in Mathematics, 4th edition, 173. Berlin: Springer,
2010.

[8] S. Ehsani, M. Fazli, A. Mehrabian, S. S. Sadeghabad, M. Safari, M. Saghafian, and S. S.
Fadaee. “On a Bounded Budget Network Creation Game.” In Proc. 23rd ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pp. 207–214. New York, NY: ACM, 2011.

[9] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker. “On a Network
Creation Game.” In Proc. 22nd Annual Symposium on Principles of Distributed Computing
(PODC), pp. 347–351. New York, NY, USA: ACM, 2003.

[10] R. L. Graham, L. Hamilton, A. Levavi, and P. S. Loh. “Anarchy is Free in Network Creation.”
In Proc. 10th International Workshop on Algorithms and Models for the Web Graph (WAW),
volume 8305 of LNCS, pp. 220–231. Berlin, Heidelberg: Springer, 2013.

[11] M. Mihalák and J. C. Schlegel. “The Price of Anarchy in Network Creation Games is (Mostly)
Constant.” Theory Comput. Syst. 53:1 (2013), 53–72.


