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Abstract We propose the definition of security of networks against the cascading failure
models of deliberate attacks. We propose a model of networks by the natural selection of
homophyly/kinship, randomness, and preferential attachment, referred to as the security model.
We show that the networks generated by the security model are provably secure against any
attacks of sizes poly(log n) under the cascading failure models, for which the principles of
natural selection and the combinatorial principles of the networks of the security model,
including a power law, a self-organizing principle, a small-diameter property, a local navigation
law, a degree-priority principle, an inclusion–exclusion principle, and an infection priority tree
principle, etc., are the underlying principles. Furthermore, we show that the networks generated
by the security model have an expander core. This property ensures that the networks of the
security model satisfy the requirement of global communications in engineering. Based on
our theory, we propose a security protocol for computer networks. Our theory demonstrates
that security of networks can be achieved by a merging of natural selection and combinatorial
principles, and that both natural selection principles, and combinatorial principles are essential
to security of networks.

1. INTRODUCTION

Real-world networks satisfy a number of statistical properties, including the well-
known power-law degree distributions, small-world property, high clustering coefficients,
hierarchical properties, and various centralities [14]. A number of network models have
been proposed to analytically understand these properties. In a long history of research
of complex systems, it has been assumed that complex networks are random, for which
the classic Erdös–Rényi (ER) [7, 15, 16] model serves as a generator. The ER model
generates graphs with small-diameters, predicting that the small-diameter property may be
shared by many networks. To explain the power-law degree distribution of some real-world
networks, [3, 4] proposed a model by introducing preferential attachment as an explicit
mechanism, referred to as (the PA) model. It was shown that PA networks do follow a
power law.

That the WWW graph is rich in bipartite cliques was discovered by [23]. Based on
this, [22] proposed the copying model by introducing a copying rule in random models
to generate power-law graphs in which there are rich bipartite cliques, interpreted as
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communities. The idea of copying edges was also used in other models such as the forest
fire model [25], random walk model, nearest neighbor model [46], and random-surfer
model [5]. Each of these models uses randomness and some local rules including the
copying mechanism. The forest fire model generates dense graphs with power law, for
which the graphs are claimed to have a community structure as a result of the copying
operation. The random walk model, the nearest neighbor model, and the random-surfer
model generate power-law graphs in which clustering coefficients are amplified due to the
creation of more triangles by copying. These models demonstrate that power-law graphs
may be generated by randomness together with some local rules rather than by PA. In
addition, the networks generated by the models with certain local rules inspired by the
copying actions could have interesting subgraphs, such as the connected union of k-cliques
for k ≥ 3 and bipartite cliques, etc. These features together with other properties have been
analyzed in [46].

The small-world phenomenon of networks consists of two properties: the first is the
small-diameter property, and the second is the clustering effect in the sense that two nodes
are more likely to be adjacent if they share common neighbors. To capture the clustering
effect, [48] proposed a simple model to add random edges to a grid graph or the like and [21]
introduced the model of adding edges with endpoints chosen with probability inversely
proportional to a power of the distances in the grid. Additionally, because randomness
is the unique mechanism of the ER model that leads to the small-diameter property, we
conjecture that randomness is the mechanism of small-diameter phenomenon for many
networks. The conjecture indicates that the small-diameter property of networks is simply
the result of randomness. This understanding regards randomness as a useful resource in
networking systems, leading to the motivation to fully explore the role of randomness in
networks.

A hierarchical model starting from a fixed initial module by iteratively and recursively
copying the module was proposed by [41]. This idea was extended to a model by using
Kronecker multiplication in [24]. Graphs generated from these models usually contain
densely connected subgraphs recursively generated from a fixed module to be interpreted
as communities. Each of these existing models explores specific features of real-world
networks and generates graphs that are rich in interesting subgraphs.

The hymophyly/kinship hypothesis that homophyly is the extension of Darwinian
selection of kinship, and that homophyly is the natural selection that controls the organiza-
tion and evolution of real-world, high-level networks from random variation was proposed
by [26], and the hypothesis was validated by experiments on some real-world networks.
Further, [27] proposed the notion of structure entropy of graphs and a greedy algorithm
minimizing the structure entropy of networks such that the algorithm identifies natural
communities of networks both model generated and naturally evolving networks in society.
The results in [26, 27] demonstrated that homophyly is the mechanism of natural com-
munity structures of networks, and that minimization of structure entropy or, equivalently,
minimization of the nondeterminism of structures, is both the principle of self-organization
of networks and the principle for detecting natural communities in networks.

The existing theoretical study on networks is largely devoted to the static theory of
networks such as the mechanisms, statistical properties, and combinatorics of networks. In
sharp contrast to the static research, there are few theoretical studies on the dynamics of
networks. However, dynamics of networks include a number of fundamental challenges such
as security and robustness of networks against attacks and the emergence of cooperation in
evolutionary games in networks. These issues are too important to allow them to fail.



A THEORY OF NETWORK SECURITY 147

Network security has been a fundamental issue from the very beginning of network
science. In the last few years, security of networks has become an urgent challenge in
network applications.

The issues of network security differ for different types of attacks. Typical attacks
include both physical attack of removal of nodes or edges and cascading failure models of
attacks, which are similar to viruses spreading.

The first type is the physical attack of removal of nodes, for which the goal is to
destroy the global connectivity of networks. In [1,11,37], it is shown that in the power-law
networks of the PA model, the overall network connectivity measured by the sizes of the
giant connected components and the diameters does not change significantly under random
removal of a small fraction of nodes, but is vulnerable to removal of a small fraction of
the high-degree nodes. This progress suggests an issue of security and robustness against
physical attacks or random errors of removal of nodes or edges.

The second type of attack is the cascading failure model, see for instance [2, 17, 36,
43,47]. This model captures the behaviors of spreading of information, viruses on computer
networks, news on the Internet, ideas on social networks, and of influence in economical
networks, etc. There are different definitions of diffusions in networks in the literature.
Here, we investigate the threshold cascading failure model, which was formulated in social
studies and used in simulating the epidemic spread in networks [19]. In this model, the
members have a binary decision and are influenced by their neighbors in the scenarios
of rumor spreading, disease spreading, voting, advertising, etc. This model of cascading
behavior has been studied in physics, sociology, biology, and economics [2,18,36,38,47].
In [40], it is shown that in the power-law networks of the PA model, even a weakly virulent
virus can spread. This research leads to the issue of security against cascading failures.

The algorithmic aspect of the threshold cascading failure model on regular graphs
of different patterns, particularly on cliques and trees, has been studied [6]. A (1 − 1

e
)-

approximation algorithm, which, for a given k, finds a set S of size k such that the influence
of S is at least a (1− 1

e
) fraction of that of the most influential k nodes, where the influence

of a set in a graph is the set of the nodes that are infected by the set is given in [20].
It has been experimentally shown that the edges among different communities are

more important than the high-degree nodes for influence spreading in social networks
[50]; and [42] experimentally showed that immunization interventions that targeted the
individuals bridging communities are more effective than those simply targeting highly
connected individuals; this demonstrates that community structures strongly affect disease
dynamics. This progress suggests that a strong community structure of a network allows
an effective way to control disease-spreading by controlling the edges of nodes between
different communities.

A strategy for network security and a security model of networks was proposed
by [29] and numerically verified the thesis of defensive stratagem of the Art of War [44]. In
the third of the 13 chapters of the Art of War [44] (published in 512 BC), by ancient Chinese
Sun Wu, the Chinese military strategist (535–?, BC), the proposed thesis is that the best
strategy is the attack that frustrates the enemy’s strategy–the attack of rules of networks; that
the second best strategy is the attack through diplomacy–the attack by cascading failure of
the virus; that the third best strategy is the attack of the enemy’s army–the physical attack of
deleting nodes or edges; and that the last strategy is to attack cities–to destroy the structures
of networks. Our theory in [29] and in the present article demonstrates that the thesis [44]
is perfectly correct, which can be proved both numerically and mathematically.
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In the present study, we establish the first network dynamics as a security theory
of networks. Our theory is a global theory of networks resolving the issue of security of
networks against deliberate attacks. We establish our theory by proving the experimental
results discovered in [29]. We organize the article as follows. In Section 2, we define the
infection and injury set of cascading failures and of physical attacks, respectively, and
verify that cascading failure is more serious than physical attacks, and that physical attack
could be a special case of cascading failure of attacks. In Section 3, we define the notion
of security of networks. In Section 4, we introduce five representative existing models of
networks and verified that none of the models generates secure networks. In Section 5, we
introduce our security model of networks. In Section 6, we introduce the theorems of the
security model. In Section 7, we prove the fundamental theorem of the networks generated
by the security model. In Section 8, we prove some combinatorial principles of the networks
of the security model, which are crucial to the proofs of our security theorems. In Section
9, we establish an infection priority tree principle. In Section 10, we prove our security
theorems. In Section 11, we establish an expander core theorem of the networks generated
by the security model. In Section 12, we propose a security protocol for computer networks
on the basis of analyses of the combinatorial principles of the networks of the security
model and the engineering networking of computer networks. At the end of the article, we
summarize our conclusions and discuss some future directions.

2. INFECTION SET AND INJURY SET

In this section, we introduce the basic definitions for us to quantitatively analyze the
security of networks.

We define the threshold cascading failure model as follows.

Definition 2.1. (Infection set.) Let G = (V,E) be a network. Suppose that for each node
v ∈ V , there is a threshold φ(v) associated with it. For an initial set S ⊂ V , the infection
set of S in G is defined by stages as follows:

Stage 0. Each node x ∈ S is called infected. Equivalently, we define a set I0 such
that I0 = S.

For i ≥ 0, suppose that Ii has been defined.
Stage i + 1. If there is a node v ∈ V \ Ii such that φ(v) fraction of v’s neighbors are

in Ii , then enumerate all such nodes v’s in Ii+1. Otherwise, then terminate with output Ii .
We call the output set Ii of the construction above the infection set of S in G, and

denote it by infG(S).

The cascading failure models depend on the choices of thresholds φ(v) for all v. We
consider two natural choices of the thresholds. The first is random threshold cascading, and
the second is uniform threshold cascading.

Definition 2.2. (Random threshold.) We say that a cascading failure model is random
if, for each node v, φ(v) is defined randomly and uniformly, that is, φ(v) = r/d, where d

is the degree of v in G, and r is chosen randomly and uniformly from {1, 2, . . . , d}.

Definition 2.3. (Uniform threshold.) We say that a cascading failure model is uniform
if, for each node v, φ(v) = φ for some fixed number φ.



A THEORY OF NETWORK SECURITY 149

Remark. The security of a network certainly depends on a threshold function φ : V →
(0, 1]. In the real-world networks, there are numerous choices for the threshold function
φ. Our theory is to explore the role of network structures in the security of networks.
For this purpose, we must assume the natural and most frequently appearing threshold
functions are φ’s. We argue that the random threshold and the uniform threshold functions
have been already very general and representative for a theory of network security. Recall
that, for a node v, the threshold φ(v) is the resistance of v from being infected from all
its neighbors. From this understanding, the random threshold function assumes that the
thresholds for all the nodes are randomly chosen. In computer networks, users usually
install certain softwares to protect their computers. However, the softwares chosen by
different users vary a great deal because the roles of the softwares are very much different.
Our random threshold function captures the type of cascading failure in computer networks.
For example, with regard to idea spreading in a social network, the threshold function φ

could be more like a random function, unless the idea is surprising or causing people to
be angry. For the biological virus spreading in human society, usually, most people have
the same or similar resistance to a virus. In this case, the uniform threshold function better
captures the cascading model of virus spreading. Many real-world cascading procedures
include either the random threshold function or the uniform threshold function. However,
there are cascading failures that are neither the random nor the uniform threshold function.
Considering a super virus for example, it infects all its neighbors immediately in one step,
just as the forest fire burns in a forest. In this case, the cascading procedure is not captured
by either the random threshold or the uniform threshold. However, we remark that the
random threshold function and uniform threshold function suffice for us to investigate the
principles of security of networks, and that these principles are essential or even sufficient
for us to solve the security of networks with an arbitrarily given threshold function.

To understand the relationship between the two strategies of physical attacks and
cascading failure models of attacks, we introduce the notion of injury set of physical
attacks.

Definition 2.4. (Injury set.) Let G = (V,E) be a network and S be a subset of V . The
physical attacks on S are to delete all nodes in S from G. We say that a node v is injured by
the physical attacks on S if v is not connected to the largest connected component of the
graph obtained from G by deleting all nodes in S.

We use injG(S) to denote the injury set of S in G.

In [29], it is shown that the infection sets are much larger than the injury sets of attacks
of the same sizes in the networks of the existing models, including our security model. In
fact, this phenomenon is the result of the thesis of [44]: that the second best strategy is the
attack through diplomacy–the attack by cascading failure of virus, and that the third best
strategy is the attack of the enemy’s army–the physical attack of deleting nodes or edges.

To understand this result, we introduce two experiments on the networks of the ER
model and the PA model.

The first model is the ER model [15, 16]. In this model, we construct a graph as
follows: Given n nodes 1, 2, . . . , n, and a number p for any pair i, j of nodes i and j , we
create an edge (i, j ) with probability p.

We depict the curves of sizes of the infection set and the injury set of attacks of
top-degree nodes of networks of the ER model in Figures 1(a) and b.
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Figure 1 Graphs (a) and (b) are the curves of fractions of sizes of infection sets and injury sets by attacks of the
top-degree nodes of small sizes, i.e., up to 5 log n, for networks of the ER model for n = 10, 000 and for d = 10
and 15, respectively. The sizes of the infection sets are the largest ones among 100 times of attacks under the
random threshold cascading failure model. The infection sets and injury sets correspond to the solid and dashed
curves, respectively.

The second is the PA model [4]. In this model, we construct a network by steps as
follows: At step 0, choose an initial graph G0. At step t > 0, we create a new node, v say,
and create d edges from v to nodes in Gt−1, chosen with probability proportional to the
degrees in Gt−1, where Gt−1 is the graph constructed at the end of step t − 1, and d is a
natural number.

We depict the comparisons of sizes of infection sets and injury sets of attacks of the
top-degree nodes of networks generated from the PA model in Figures 2(a) and 2(b).

Figures 1(a), 1(b), 2(a), and 2(b) show that for any network, G say, generated from
either the ER model or the PA model, the following properties hold:

(1) The infection sets are much larger than the corresponding injury sets.
This means that to build our theory, we need to consider only the attacks of

cascading failure models.
(2) The attacks of top-degree nodes of size as small as O(log n) could cause a constant

fraction of nodes of the network to be infected under the cascading failure models of
attacks.

This means that the networks of the ER and PA models are insecure for attacks
of sizes as small as O(log n).

Remarks: (i) We notice that this discovery is an observation of our experiments with
particular choice of parameters in Figures 1 and 2. The discovery is sufficient for us to
propose the correct definition of security of networks. Clearly, experimental proofs are
sufficient for the proof of insecurity of networks. From this result, we know that the
networks of the ER and the PA models are never secure. (ii) Our experiments in Figures 1
and 2 actually predict some general results of quantitative insecurity of the networks of the
models. However, we leave it as an open question here.

From Figures 1(a), 1(b), 2(a), and 2(b), we have the following results:
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Figure 2 Graphs (a) and (b) are the curves of fractions of sizes of infection sets and injury sets by attacks of the
top-degree nodes of small sizes, i.e., up to 5 log n, for networks of the PA model for n = 10, 000 and for d = 10
and 15, respectively. The sizes of the infection sets are the largest ones among 100 times of attacks under the
random threshold cascading failure model. The infection sets and injury sets correspond to the solid and dashed
curves, respectively.

(1) The main issue of network security is to resist the global failure of networks under
cascading failure models;

(2) For both theory and applications, it suffices to guarantee the security against attacks of
sizes polynomial in log n; and

(3) Topological structures of networks are essential to the security of the networks, observed
from the comparison of infection fractions between the ER and the PA models.

(1) and (3) are obvious. For (2), why is poly log n size of attacks sufficient for a
security theory? The reasons are: (i) the networks of the classical models are insecure for
attacks of O(log n) sizes, (ii) a security theory of resisting cascading failures of poly log n

attacks requires new ideas different from all the existing models, and (iii) in practice, the
number of nodes of a real-world network is bounded by a large constant, N say, in this
case, by appropriately choosing the exponent hidden in the poly log N , the security of the
network resisting cascading failures of the poly log N attacks is sufficient for us to guarantee
the security of the network in real-world applications.

3. DEFINITIONS OF SECURITY

As mentioned in Section 2, the main issue of network security is the security for
cascading failure models and for attacks of sizes polynomial in log n, i.e., of sizes logO(1) n,
where O(1) is a constant.1

We propose mathematical definitions for security networks based on the analysis in
Section 2.

1This is different from log n, a reader may not confuse. It allows O(1) to be an arbitrarily
chosen constant.
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Our goal here is to explore the principles of network security by constructing a
family of networks with various sizes such that sufficiently large networks in the family are
provably secure with probability arbitrarily close to 1.

We consider the security of a family of networks of all sizes, {Gn} say. We define
the security and robustness of networks under the threshold cascading failure model as
follows. Let G = Gn and n be the number of nodes of the network G. We first give
informal definitions of security and robustness.

Informal definition of security: With probability 1 − o(1),2 the following event
occurs: for any initial set S of size logO(1) n, S will not cause a global cascading failure,
that is, the size of the infection set of S in G is o(n).

Informal definition of robustness. With probability 1 − o(1), a small number, i.e.,
logO(1) n, of random choices of the initial set S will not cause a global cascading failure,
that is, the size of the infection set of S in G is o(n).

Let M be a model of networks. We investigate the security of networks constructed
from model M. We define the security of networks for attacks of cascading failure with
both random threshold and uniform threshold, respectively. Suppose that G is a network of
n nodes, constructed from model M, for large n.

Definition 3.1. (Random threshold security.) We say that the networks of model M are
secure resisting cascading failure with the random threshold function if, for every constant
c ≥ 1 and each small constant ε < 1, there is a natural number N such that for every
n > N for every network G of n nodes generated by model M, with probability 1− o(1),
the following holds:

For any set S of size bounded by logc n, the size of the infection set (or cascading
failure set) of S in G is less than or equal to ε · n.

Definition 3.2. (Uniform threshold security.) We say that the networks of model M are
secure resisting cascading failure with uniform threshold if, for an arbitrarily given small
number φ, i.e., φ = o(1), constant c, and small constant ε, there is a natural number N

such that for any n > N , and for any network G of size n generated by model M, with
probability 1− o(1), for any set S of size bounded by logc n, the size of the infection set of
S in G, written by infφ

G(S), is bounded by ε · n.

Definition 3.3. (Security of model M.) Let M be a model of networks. We say that
model M is secure if networks constructed from model M are secure for both random and
uniform threshold cascading failure models of attacks.

The notion of robustness can be established similarly, based on the informational
definition of robustness, with which a theory of robustness of networks maybe built.

In Definitions 3.1 and 3.2, the sizes of attacks or random errors are polynomial in
log n, the reasons for which are analyzed in Section 2.

In Definitions 3.1 and 3.2, we notice that both security and robustness of a family of
graphs depend on a threshold function {φ(v) | v ∈ V }.

2o(1) is a sequence, an say, such that lim
n→∞

an = 0 instead of a fixed number; o(n) is a function

f such that lim
n→∞

f (n)
n
= 0. The notations are standard in mathematics and are assumed throughout

the article.



A THEORY OF NETWORK SECURITY 153

Our notions in Definitions 3.1 and 3.2 consider the most natural distributions
{φ}v∈V , i.e., the random distribution and the uniform distribution. By using these def-
initions, we are able to fully explore the roles of network structures in the security of
networks.

A reader may wonder: Can we define the notions of “absolute" security of a graph
such that it is independent of any threshold function {φ(v)}v∈V ? To answer this question,
let us consider a special case. For a graph G = (V,E), for every v ∈ V , let φ(v) = 1

dv

where dv is the degree of v in G. In this case, we have:

(1) If G is connected, then an attack on any single node v will cause the infection of the
whole graph.

In this case, any infected node carries a super virus, which immediately infects
the whole network through all the links. Therefore, with the given threshold function,
the security of G is impossible to achieve.

(2) By (1), the only way to guarantee the security of G is to remove some nodes or edges
of G or impose some “controllers" on certain nodes so that the network consists of
small connected components, for which different connected components are isolated
among each other.

This observation implies that, in this case, the security strategy of G with the given
threshold function actually corresponds to a strategy of physical attacks or “physical
controlling.”

The results in (1) and (2) establish a relationship between physical attack and super
virus spreading. This means that physical attack corresponds to the controlling of super
virus spreading. However, in the present study, we focus on the security theory with the
random threshold and uniform threshold functions.

We remark that the security of networks by physical attacks and super virus spreading
is different from our theory and independently interesting. Although, we believe, our theory
has provided a foundation for solving the problems of security by physical attacks and super
virus attack.

In addition, we remark that it is interesting to study the security of networks with
other interesting threshold functions, such as for each v ∈ V , φ(v) = k

dv
for some

k > 1, where dv is the degree of v in G. For this question, combinatorial properties
of G might play more important roles in the security of G. Here, we leave it as an open
question.

4. EXISTING MODELS FAIL TO GENERATE SECURE NETWORKS

A reader may wonder, if there have already been a number of models of networks, in
which some of them may generate secure networks. We will verify that this is not the case.
For this, we briefly introduce the existing models. We have already studied the ER and the
PA models, so we study the other models here.

(1) The copying model:
Both linear growth copying and exponential growth copying models have been

proposed [22]. For simplicity, we will use only the linear growth copying model with



154 LI AND PAN

a slight modification3 for the first edge of a newly created node. The model has two
parameters: a copying factor α ∈ (0, 1, ), and a number d, which is the average number
of edges of the graphs generated by the model. At each step, one node v is created and
v is then given d out-links. Suppose that Gt is constructed. At step t + 1, we create a
new node and randomly and uniformly choose a node u in Gt , with which we create a
directed edge from v to u, and u is called the first out-going neighbor of v. For each
i ∈ {2, . . . , d}, with probability α, we randomly and uniformly choose a node xi in Gt ,
in which case, create a directed edge from u to xi , and xi is called the ith out-going
neighbor, otherwise, let yi be the ith outgoing neighbor of u, in which case, call yi the
ith outgoing neighbor of v, and create a directed edge from v to yi .

The directions are used to guide the construction of graphs. After the construction,
we regard the graph as undirected. By definition, a newly created node, v say, first links
to a randomly chosen node u, and then, with certain probability, links to the first group
of neighbors of u (i.e., the neighbors of u created at the same time when u was created).
This is the essential idea of the copying model, which makes sure that the generated
graphs are rich in interesting subgraphs such as connected union of k-cliques for k ≥ 3.

The most remarkable fact is that the copying model generates power-law graphs,
the same as the PA model. The reason is that PA does not appear explicitly in the
copying model. However, it does appear implicitly by randomness and local rules,
because a newly created node will have more links to the first group of neighbors of
its first random neighbor. The model demonstrates that randomness and local rules
generate power-law graphs, and that graphs generated by the copying model are rich
in interesting subgraphs, interpreted as communities.

Therefore, the copying model introduced the idea of copying, which is different
from the PA, and which has been used in many other models, including those we will
introduce following.

(2) Random walk model:
The random walk model [46] simulates the random walk behavior of friends

discovery in online social networks. Each new node performs a random walk starting
with a randomly chosen node and links to certain nodes appearing in the random path.
We will use a modified version of the model.

Our modified version proceeds by steps as follows. Suppose that Gt has been
defined. At step t +1, a new node, v say, is created, then randomly pick a node u1 from
Gt and create an edge between v and u1. For each i = 2, . . . , d. Suppose that uj is
defined, then perform one step from uj to uj+1, with probability puj+1 , create an edge
between v and uj+1, in which case, increase i by 1, otherwise, increase j by 1. In our
modification, we choose pu = 1

du
for all u’s, where du is the degree of u. Therefore,

the step from uj to uj+1 is a step of random walk with uniform distribution.
(3) Nearest neighbor model:

This model uses the clustering effect as rules in the creation of edges [46]. We
will use a modified version of the model. It proceeds as follows. Suppose that Gt is
defined. At step t + 1, we create a new node, v say, then randomly and uniformly
choose a node u in Gt and create an edge between v and u. In addition, we randomly
create d − 1 edges between the neighbors of u’s.

3The modification here and elsewhere for the other models is to make sure that the networks
generated by the different models can be compared. Of course, in each of the modifications, we kept
the essential idea of the different models so that the experimental results of the networks of the models
essentially represent the results of the networks of the models.
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(4) Random surfer model:
The random surfer model was proposed in [5]. It proceeds as follows. Given d

and a probability p, at step t + 1, create a new node, v say, and repeat the following
steps d times:

Step 1. Let u be a randomly and uniformly chosen node in Gt . Set x = u.
Step 2. With probability p, create an edge between v and x, and stop.
Step 3. Otherwise, perform a one-step random walk from x to a node y, set x ← y

and go back to Step 2).

(5) Duplication model: The model has a selection probability p. We use the version
described in [10]. It proceeds as follows. Suppose that Gt is defined. At step t + 1,
create a new node, v say, randomly and uniformly choose a node u in Gt , create an
edge between v and u, and for every neighbor w of u, with probability p, create an
edge between v and w.

We omitted a number of models. The model in [15] generates random graphs, which
was studied in Figures 1(a), 1(b). The small-world model [48] generates small-world graphs,
which are clearly insecure by simply attacking on a small number of consecutive nodes.
We omitted the following models:

(1) The forest fire model [25]:
This model uses the idea: copying edges to generate dense graphs. Because we

have the copying model, and we are concerned mainly with sparse graphs (anyway,
dense graphs are much less frequent in the real world).

(2) The model for social graphs in [45]:
This model was proposed to better capture the communities and high clustering

coefficients in social networks. The model is basically an extension of the copying
model such that a new node links to a randomly picked node and then links to a certain
number of nodes within a distance of two of the randomly chosen node. The graphs
generated from this model do have more nodes in a connected union of cliques and
triangles. We omitted it because the same ideas already appeared in the models we
selected.

(3) The Kronecker model [24]:
The Kronecker model is a recursive generator by using a tensor product, which

is specific and for which the difficulty is to choose the initial module for the tensor
products.

(4) The so-called dK-graphs [33]:
These so-called graphs simulate given graphs better and better with increasing

d, which is not suitable for us. Finally, we notice that it is only reasonable to compare
the networks with the same sizes and the same number of edges to explore exactly the
differences of structures. This is also the reason why we omitted some of the reasonable
models such as the forest fire model and the Kronecker model.

In Figure 3, we depict the curves of sizes of infection sets of attacks of log n top-degree
nodes on networks generated by the copying model, the random walk model, the nearest
neighbor model, the random surfer model, and the duplication model. All the networks
have average number of edges d = 5. The parameter α in the copying model is 0.3. The
networks have sizes ranging from 1, 000 to 10, 000. Each of the curves corresponds to the
largest infection sets among 100 times of attacks, for which each time, the thresholds φ(v)’s
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Figure 3 Security curves of networks of the copying model, the random walk model, the nearest neighbor model,
the random surfer model, the duplication model and our security model. In this figure, we consider the case of
random thresholds. It depicts the curves of the greatest size of the cascading failure sets of attacks of 100 times
of size log n for each n less than or equal to 10, 000. The curves describe the greatest sizes of the final cascading
failure sets among 100 times of attacks of the random thresholds. The sizes of the initial attacks are always log n,
where n is the number of nodes of the networks.

are randomly and uniformly distributed. By observing the curves of the existing models
except for our security model, in Figure 3, we have that for the random threshold cascading
failure model, networks of the nearest neighbor model have the best security performance,
the networks generated from the duplication model have the worst security performance,
and for each of the copying model, the random walk model, the nearest neighbor model, the
random surfer model, and the duplication model, it is possible to have a cascading failure
of constant fraction of nodes by attacking log n many nodes top-degree nodes.

From Figures 1(a), 1(b), 2(a), and 2(b), we know that nontrivial networks of the
existing models, including the ER model, the PA model, the copying model, the random walk
model, the nearest neighbor model, the random surfer model, and the duplication model,
are insecure.4 This poses fundamental questions such as: Are there networks with power-
law and -world properties that are secure by Definitions 3.1 and 3.2? What mechanisms
guarantee the security of networks? What are the principles of security of networks? In the
present work, we will answer these questions.

5. SECURITY MODEL OF NETWORKS

To establish the theory of network security, we first examine some high-level philo-
sophical questions: Can large-scale networks be secure? If the answer is yes, where can we
find the resources for the security of networks? To understand these questions, we observe

4For insecurity, experimental results are sufficient. We notice that the simple strategy of top-
degree attacks have already caused a significantly large number of cascading failures of the networks.
For better strategies of attacks, the cascading failure sets of the networks of the existing models may
be even larger. Therefore, the best possibility we can expect for the networks of the existing models
could only be the robustness of the networks, which we leave here as an open question.
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that real-world networks are naturally evolving interacting systems in which human be-
haviors are probably involved and that large-scale engineering networks are generated by
both human behaviors and human intelligence. More importantly, our theory is to provide
a foundation for guaranteed security of large-scale engineering networks. The arguments
indicate that the security of networks could be achieved by both the laws of nature evolving
and combinatorics, corresponding to human behaviors and human intelligence, respectively.
This can be intuitively understood as “nature secures its networks” and “human intelligence
secures networks.”5

According to these arguments, [29] proposed a security model of networks. It was
shown that the networks of the security model are much more secure than the networks
constructed from the ER and PA models. The security model reflects the best strategy of
the defensive stratagem of the thesis [44] (published in 512 BC); that is, the attack by
frustrating the enemy’s strategy–the attack of rules of networks, as pointed out in [29].

5.1. The Security Model

The starting point of our theory is the security model in [29], for which we introduce
definitions as follows.

Definition 5.1. (Security model, [29]) Given a homophyly exponent (also called as
affinity exponent6) a ≥ 0 and natural number d, we construct a network by stages.

1. Let G2 be the graph with two nodes and d multiedges such that each node has a distant
color and is called a seed.

(Notice that the initial graph G2 could be an arbitrarily given graph such that each
node has a distinct color and is called a seed. This will not change the principle of the
networks of the model.)

2. Let i > 2. Suppose that Gi−1 has been defined. Define pi = log−a i.
3. Create a new node v.7 With probability pi , v chooses a new color,8 c say. In this case,

(a) we say that v is the seed node of color c,
(b) (PA scheme) create one edge (v, u), such that u is chosen with probability proportional

to the degrees of nodes in the whole graph Gi−1,9 and (Notice that we are allowed to
create ONLY one edge (v, u) by the PA scheme, here. This property is essential to the
security proofs of the networks. In fact, even if the creation of two such edges might
cause the networks of the model to be insecure. This limitation of our model, here,
is harmless, because in real-world computer networks, there are no such even edges.

5It does not make sense, if a network security theory were built independently of both human
behaviors and military ideas.

6This is our key new idea. It allows us to quantitatively measure the power of homo-
phyly/kinship in naturally evolving networks.

7In Darwin’s theory [12], it is assumed that the resource is limited, allowing only constantly
many individuals’ survival to the adulthood. So we create only one node in a single step.

8In Darwin’s theory [12], any two individuals are distinct, so each individual is special, playing
different roles. This step reflects the fact that any two individuals are distinct, one of the facts of
Darwin’s natural selection.

9If all the newly created d edges linking from v to nodes in Gi−1 are chosen with probability
proportional to their degrees, then the model is the homophyly/kinship model [28], which fully
explores the principles of natural selection of homophyly/kinship in nature evolving.
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However, in social or biological networks, there do exist such edges. Allowing more
such edges creates a new type of reciprocity among different communities, which
are useful in other applications of networks such as in guaranteeing the emergence of
cooperation in evolutionary games in the networks generated by the modified model.
Therefore, we may allow more such edges in simulating naturally evolving networks.
The restriction of at most one such edge, here, is required only by the security of the
computer network. For other engineering networks such as networking computing
systems, or social media networks, such edges might even be very useful.)

(c) (Randomness) create d−1 edges (v, uj ), j = 1, 2, . . . , d−1, where uj ’s are chosen
randomly and uniformly among all seed nodes in Gi−1.10

4. (Homophyly11 and preferential attachment) otherwise. Then v chooses an old color, in
which case,

(a) let c be a color chosen randomly and uniformly among all colors in Gi−1,
(b) define the color of v to be c, and
(c) create d edges (v, uj ), for j = 1, 2, . . . , d, where uj ’s are chosen with probability

proportional to the degrees of nodes in the whole graph Gi−1 among all the nodes
that have the same color as v in Gi−1.

It is clear that Definition 5.1 is a dynamic model of networks for which homophyly,
randomness, and PA are the underlying mechanisms.

As shown in [29], networks constructed from the security model are much more
secure than those of the ER and PA models. To understand the intuition of the security
model, we use a figure from [29], Figure 4, here. It depicts three curves of the sizes of
the infection sets of attacks of top-degree nodes of sizes up to 5 · log n under the random
threshold cascading failure model on networks generated from the security model, the ER
model, and the PA model, respectively. The curves correspond to the largest infection set
among 100 times of attacks over random choices of thresholds of the networks. The figure
shows that networks of the security model are indeed much more secure than those of
both the ER and the PA models, even if we just take the homophyly exponent (or affinity
exponent) a > 1 in the security model.12

Figure 3 shows that the networks generated by our security model are more secure
than the networks generated by all the existing models.

10This step ensures that the induced subgraph of all the seed nodes of a network of the model is
an expander, allowing easy and quick interacting among the nodes of the whole network. Therefore,
this step determines a very nice global property of the networks of the model.

11In Darwin’s theory [12], kinship is the means of individual fitness and the intrinsic mechanism
of social groups in the evolution of species. Our notion of homophyly is an extension of the idea of
Darwin’s kinship. It simulates the formation of social groups in Darwin’s evolution of species, and it
determines the local structures or natural communities of the networks of the model.

12This experiment shows that the security model generates networks of practical scales with
better performance for the security of networks. It also indicates that there is much room for research
on the effect and roles of changing the affinity exponent a for the networks of the security model.
Research on the roles of changing a could explore new principles such as the principle of self-
organization of individuals in nature and society, the principle of natural community structure of
networks, the practical principle and criteria for security and robustness of networks, the principle
for the emergence of cooperation in evolutionary games in networks, and the principle of social
morphogenesis.
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Figure 4 The curves are cascading failures of networks of the ER model, the PA model, and the security model
for n = 10, 000, d = 15 and a = 1.5.

5.2. Basic Observations of the Networks of the Security Model

The experiments in [29] verified the following properties of the networks generated
by our security model:

(1) The mechanisms of homophyly, randomness, and PA ensure that the networks of the
security model satisfy a number of structural properties such as

(a) (Small-community phenomenon) A network, G say, is rich in quality communities
of small sizes.

In fact, let S be a maximal homochromatic set of G. Then, the induced
subgraph of S, written by GS , is highly connected, and the conductance of S,
written by �(S), is bounded by a number inversely proportional to a constant
power of the size of the community, i.e., less than or equal to, O( 1

|S|β ), for some
constant β, where |S| is the size of S.

(b) (Internal centrality) Each community is the induced subgraph of nodes of the same
color, which follows a preferential attachment, and hence has only a few nodes
dominating the internal links of the community.

This shows a remarkable local heterogeneity of the networks.
We call the induced subgraph of a maximal homochromatic set of G a natural

community of G.
(c) (External decentrality) For a natural community X, the set of external neighbors of

nodes of X are homogenously distributed among different natural communities.

(2) (Power law) The networks follow a power law.
(3) (Small-world property) The networks have small diameters.
(4) (Robustness) Most nodes in a natural community have neighbors only within their own

community.
(5) (Stability) For a node v, either seed or nonseed, the degree of v is contributed largely

by nodes of v’s own community.
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(6) (Inclusion/exclusion property) There are no edges between the nonseed nodes of distinct
natural communities.

(7) A nonseed node x in a community GX, created at time step t can be infected by nodes
in a distinct community GY , only if the seed node y0 of GY is created at a time step
s > t and an edge (y0, x) is created at step s by 3(b) of Definition 5.1.

The structural properties in (1) allow us to develop a methodology of community
analysis of networks; (2) and (3) show that the networks constructed from the security
model have the most important properties of usual networks; (4) and (5) ensure that nodes
in a natural community are difficult to infect by the external neighbors of the community,
so that almost all the natural communities are strong; and (6) and (7) ensure that infections
among different communities are hard. These observations intuitively explain the reason
why networks constructed from the security model show much better security than that of
the classic ER and PA models.

The arguments in the list imply that the small-community phenomenon, local het-
erogeneity, global homogeneity, and global randomness are essential to the security of
networks with power law and small-world property.

In this study, we will show that the security model is provably secure by Definition 3.3.
The key idea of the proofs is a merging of some principles of the natural selection of
homophyly and combinatorics.
Remarks: (i) As mentioned, the security model of networks uses the ideas from both
Darwin’s natural selection and combinatorics. (ii) Engineering networking involves the
laws of both nature evolving and human intelligence. (iii) Security is only one of the many
important requirements of real networks, although it is extremely important. (iv) In the real
world, an engineering network must be built such that it is secure, and such that people
are comfortable, easy, and quick to use the network. (v) As a new engine, an engineering
network must satisfy many engineering requirements together with the security requirement
to prompt production. This poses new issues for engineering networks.

5.3. The Security Model Truthfully Reflects Naturally Evolving

Networks

The security model assumes that homophyly/kinship is the mechanism of social
groups of the networks. This truthfully reflects Darwin’s idea that kinship is the individual
fitness for cooperation in social groups, which is essential to the survival of the species
in the evolution of species. This observation indicates that the security model actually
simulates many of the networking systems in nature and society. It was verified [26, 27]
that homophyly is indeed the mechanism of natural communities in real-world networks,
for which the security model provides the theoretical resources for analyzing the natural
communities of real-world networks. Furthermore, [32] proposed the notion of structure
entropy of networks to quantitatively measure the nondeterminism of interactions and
communications in networks, and proposed greedy algorithms to find the partitions and
partitioning trees of networks by minimizing the two- and three-dimensional structure
entropy of networks. By using these algorithms with the cell sample networks of five
cancers constructed from the gene expression profiles, we found the tumor modules and
submodules such that (i) a module or submodule found by our algorithms is a type or subtype
defined in cancer biology, and (ii) each module or submodule found by our algorithms is
defined by a unique gene expression pattern, giving rise to a three-dimensional, high-



A THEORY OF NETWORK SECURITY 161

definition gene map of cancer types, for the first time. More importantly, clinical data
analyses demonstrate that the patients of a submodule found by our algorithms share
similar survival times, survival indicators, and International Prognostic Index (IPI) scores,
and that patients of distinct submodules found by our algorithms are remarkably different
in overall survival times, survival ratios, and IPI scores. Our definition of tumor subtypes
is purely the output of our algorithms. Our classifications of tumor types are the first such
results with interpretable and distinguishable clinical performances. We remark that such
kind of cancer classifications had never been achieved in existing biotechnology.

From such progress, we know that homophyly is the semantical principle of natural
communities in networks, which our security model has fully explored, and that structure
entropy minimization is the syntactic principle of natural communities and natural hier-
archical structures of networks, for which a theory of structure entropy of graphs may be
established. Our results also indicate that the minimization of nondeterminism of structures
of a network is the principle of self-organization of the individuals of the network, which
would be a fundamental principle for network analysis.

Therefore, our security model not only generates secure networks, but also truthfully
reflects some of the fundamental principles of naturally evolving networks.

6. THE MAIN THEOREMS AND OVERALL IDEAS

We use S(n, a, d) to denote the set of random graphs of n nodes constructed by the
security model with homophyly exponent a and average number of edges d.13

Let G be a network constructed from the security model. We have that each node is
assigned a color. This new dimension of colors allows us to characterize the structures of
the networks. In our security model, every node has its own characteristics from the very
beginning of its birth. This feature is remarkably different from the classic models such
as the ER and the PA models. Anyway, the extra dimension of colors is essential to our
understanding of security of networks.

We call a maximal set of nodes of the same color, κ say, a homochromatic set, written
by Sκ . We call a homochromatic set or the induced subgraph of a homochromatic set of G

a natural community of G.
We say that an edge is a local edge if two of its endpoints share the same color, and

global edge, otherwise.
First, we prove some structural properties of networks of the security model.

Theorem 6.1. (Fundamental theorem of the security model.) Let a > 1 be the
homophyly exponent and d ≥ 4 be a natural number. Let G = (V,E) be a network
constructed by S(n, a, d).

Then, with probability 1− o(1), the following properties hold:

(1) (Basic properties):

(i) (The number of seed nodes is large) The number of seed nodes is bounded in the
interval [ n

2 loga n
, 2n

loga n
].

13In both the PA model and the security model in Definition 5.1, we consider d as a constant.
Thus, in all notations of O(·), o(·),�(·), and ω(·) throughout the article, d is always absorbed.
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(ii) (Natural communities are small) Each homochromatic set has a size bounded by
O(loga+1 n).

(2) (Self-organizing law or holographic law) For degree distributions, we have

(i) (Internal centrality) The degrees of the induced subgraph of a homochromatic set
follow a power law.

(ii) The degrees of nodes of a homochromatic set follow a power law.
(iii) (Power law) Degrees of nodes in V follow a power law, that is, there is a constant

β, such that the number of degree k nodes in the network is proportional to 1
kβ .

(iv) The power exponent of the power laws in (i)–(iii) are all the same.

(3) For node-to-node distances, we have
(i) (Local-communication law) The induced subgraph of a homochromatic set has a

diameter bounded by O(log log n).
(ii) (Small-world phenomenon) The average node-to-node distance of G is bounded

by O(log n).
(iii) (Algorithmic small-world phenomenon) There is an algorithm to find a short path

between two arbitrarily given nodes in time O(log n).
(4) (Small-community phenomenon [30, 31]) There are 1 − o(1) fraction of nodes of G,

each of which belongs to a homochromatic set, W say, such that the size of W is
bounded by O(loga+1 n), and the conductance of W , �(W ), is bounded by O( 1

|W |β ) for

β = a−1
4(a+1) .
This shows that the network is rich in quality communities of small sizes.

Theorem 6.1 explores an interesting topology of a network G: (i) G consists of a
local structure and a global structure, (ii) the local structure of G is determined by the
small communities that have a number of local properties, and (iii) the global structure of
G follows its own laws. The network is rich in quality communities of small sizes, which
compose the interpretable local structures of the network. To the contrary, there is a global
structure of the network that ensures that the whole network is highly connected, with
a power-law distribution and a small-diameter property. Communications in G have two
types: (i) local communications within the small communities of length O(log log n), and
(ii) global ones, which make the whole network to be highly connected in length O(log n).
More importantly, there exists a local algorithm running in time O(log n) to navigate
in the whole network. Most of the communications are local ones having length within
O(log log n), and the rest of the communications are global ones with length bounded by
O(log n). The construction of a network with explicit marks of local and global structures
by Definition 5.1 allows local algorithms of time complexity O(log n) to find useful in-
formation in the whole network. This suggests a new algorithmic problem, that is, to find
network algorithms of time complexity polynomial in log n for finding useful information.

Theorem 6.1 ensures that all the communities are small. This guarantees that even if
a single node in a small community infects the whole community, the cascading failure is
still a local cost. However, it is not intuitive to understand from Theorem 6.1 the reason why
networks of the security model are secure. In fact, to prove the security theorems, we need
to develop some combinatorial properties of the networks. In [29], the authors analyzed
experimentally some of these properties.

Suppose that G = (V,E) is a network constructed from the security model. For a
subset X ⊂ V , we always use GX to denote the induced subgraph of X in G.
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For a set of nodes S, we define C(S) to be the set of colors that appear in S. For a
node v, we use N (v) to denote the set of neighbors of v. Given a node v, we define the
length of degrees of v to be the number of colors associated with the neighbors of v, i.e.,
|C(N (v))|, written by l(v).

Suppose that N1, N2, . . . , Nl are the sets of all the neighbors of v such that nodes in
each Ni share the same color, and that nodes in different Ni’s have different colors. Let di

be the size of Ni , for each i ∈ {1, 2, . . . , l}. Suppose that d1 ≥ d2 ≥ · · · ≥ dl(v) (ties break
arbitrarily). In this case, we say that di is the ith degree of v, and the color of nodes in Ni

is the ith color of neighbors of v, for all i ∈ {1, 2, . . . , l}.
The length of degrees, the ith degree and the ith color of neighbors of vertices have

some interesting properties, including those validated by experiments in [29]: (i) the length
of degrees of a vertex is always bounded by O(log n), (ii) the first degrees d1’s are large,
(iii) the second degrees are always as small as constants, and (iv) for a vertex v, if the length
of degrees of v is l(v) > 1, then for any i > 1, the ith color of neighbors of v is distributed
homogenously. These properties are essential to the experimental analysis of security of
the networks in [29].

To theoretically prove the results, we define some useful notations.

Definition 6.2. Let G = (V,E) be a network constructed from the security model. Given
a node v ∈ V :

1. For every j , we define the j th degree of v at the end of time step t to be the number of
the j th largest set of homochromatic neighbors of v at the end of time step t , written as
dj (v)[t].

2. We define the j th degree of v to be the j th degree of v at the end of the construction of
network G, written as dj (v).

3. We define the length of degrees of v at the end of time step t to be the number of colors
associated with neighbors of v at the end of time step t , written as l(v)[t].

4. We define the length of degrees of v to be the length of degrees of v at the end of the
construction of G, written as l(v).

In sharp contrast to classic graph theory, for a network constructed from our security
model, G say, and a vertex v of G, v has a degree priority. This new feature is certainly
universal in real networks in the following sense: a natural community is an interpretable
group of nodes of a network such that nodes of the same community share common
attributes. In this case, a vertex v may have its own community and may link to some
neighbor communities by some priority ordering. In our model, a node v more likely
contacts nodes with which it shares the same color (or feature), and has not much contact
to nodes outside its own community.

Definition 6.3. (Degree Priority.) Let v be a node of G constructed from the security
model created at time step t0, and t ≥ t0.

1. Suppose that N1, N2, . . . , Nl are all the homochromatic neighbors of v at the end of
time step t listed decreasingly by the sizes of the sets Nj . For dj = |Nj | for each j , we
say that (d1, d2, . . . , dl) is the degree priority of v at the end of time step t , written as
�dv[t] = (d1, d2, . . . , dl).
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2. We define the degree priority of v in G to be the degree priority of v at the end of the
construction of G, written as �dv .

The degree priority of nodes in G satisfies some nice probabilistic and combinatorial
properties.

Theorem 6.4. (Degree Priority Theorem.) Let G be a network constructed from the
security model with d ≥ 2, and a > 1. Then, with probability 1 − o(1), for a randomly
chosen node v, the following properties hold:

(1) The length of degrees of v is bounded by O(log n), which is an upper bound independent
of a.

(2) The first degree of v is the number of neighbors that share the same color as v.
This means that the first degree of v is contributed by v’s own community.

(3) The second degree of v is bounded by O(1), so that for any possible j > 1, the j th
degree of v is O(1).

(4) If v is a seed node, then the first degree of v is lower bounded by �(log
a+1

4 n).

By (2), (3), and (4) of Theorem 6.4, we understand that for a community GX induced
by a homochromatic set X, the seed node, x0 say, of X has a large first degree and constant
second degree, so that it is unlikely to be infected by all the nodes in a single neighbor
community, GY say. Combining with (1), this ensures that for properly chosen a, the seed
node x0 of GX is resistant to infection by the collection of all its neighbors outside its own
community. Such a community is regarded as a strong community. Theorem 6.1 ensures
that, for a properly chosen a, almost all of the communities are strong, so that each of them
is resistant to infection by the collection of all its neighbors outside its own community.

Combining Theorem 6.1 and Theorem 6.4 gives us a better understanding of the
reasons why networks of the security model are secure. However, to prove the security
theorems, we have to understand the cascading behaviors of attacks in the networks.

We say that a community, GX say, is created at time step t if the seed node x0 of X

is created at time step t .
To understand the cascading behaviors, we provide the following definition

Definition 6.5. Let x and y be two nodes of G, and Y be a set of nodes such as x 	∈ Y .

(i) We say that x injures y, if the infection of x contributes to the probability that y

becomes infected, or equivalently, there is an edge between x and y. Otherwise, we
say that x fails to injure y.

(ii) We define the injury of x from y to be the number of edges between x and y.
(iii) We define the injury of x from Y to be the number of edges between x and the nodes

in Y .

We will show that the infection of a community from a neighbor community satisfies
a number of combinatorial properties.
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Theorem 6.6. (Infection-Inclusion Theorem.) Suppose that X and Y are two maximal
homochromatic sets, and that GX and GY are two communities. Let x0, and y0 be the seed
nodes of X and Y , respectively. Suppose that x0 and y0 are created at time step s and t ,
respectively. Then the injury of GY from community GX satisfies the following properties:

(1) If s < t , then

(i) The community GX fails to injure any nonseed node in the community GY .
(ii) The injury of the seed node y0 of GY from the whole community GX is bounded by

a constant O(1).

(2) If s > t , then

(i) All the nonseed nodes in GX fail to injure any node in the community GY .
(ii) The injury of the seed node y0 of GY from the community GX is bounded by 1.

(iii) The injury of a nonseed node in the community GY from the seed node x0 of GX

follows the edge created by Step 3(b) of Definition 5.1.

(3) The seed node y0 of GY can be injured only by

(i) Communities created at time step < t .
(ii) The seed nodes of communities created at time step > t .

(4) A nonseed node y of GY can be injured only by seed nodes created at time step > t

through the edge created by 3(b) of Definition 5.1.

(1), (2), and (3) of Theorem 6.6, together with Theorem 6.4, show, furthermore, that a
seed node, v say, of G is strong against infections from the collection of all the communities
other than its own community.

Suppose that X, Y , and Z are three maximal homochromatic sets created at time steps
t1, t2, and t3, respectively. Let x0, y0, and z0 be the seed nodes of X, Y , and Z, respectively.
It is possible that x0 infects a nonseed node y1 of Y , y1 infects all nodes in Y , including y0,
and y0 infects a nonseed node z1 of Z. Theorem 6.6(4) ensures that t1 > t2 > t3, and that
the edges (x0, y1) and (y0, z1) must be created by 3(b) of Definition 5.1. The key point is
that the edges (x0, y1) and (y0, z1) must be embedded in a tree of height O(log n), which
we will call the infection priority tree T of G.

Precisely, we have:

Definition 6.7. (Infection priority tree T .) Let G be a network constructed by Defini-
tion 5.1. We define the infection priority tree T to be a directed graph as follows:

1. Let H be the graph obtained from G by deleting all the edges constructed by 3(c) of
Definition 5.1, keeping the directions in G.

2. Let T be the directed graph obtained from H by merging each of the maximal ho-
mochromatic sets into a single node.

For the infection priority tree T of G, we have the following theorem.

Theorem 6.8. (Infection Priority Tree Principle.) With probability 1 − o(1), the fol-
lowing hold:
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1. The infection priority tree T is a directed tree.
2. The height of the infection priority tree T is O(log n).

Given a network G generated by the security model, let X be a natural community.
Suppose that φ is a threshold function of the vertices of G. We say that X is a strong
community if d ′(x0)

d(x0) < φ(x0) holds, where x0 is the seed node of X, d ′(x0) is the number
of edges between x0 and the nodes outside X, d(x0) is the degree of x0, and φ(x0) is the
threshold of x0.

Therefore, if X is a natural community with seed x0 and is a strong community, then
x0 cannot be infected by the nodes outside its own community X alone in the sense that if
there is no node in X that has been infected, then x0 cannot be infected by the collection of
its neighbors outside X.

By appropriately choosing the affinity exponent a, we are able to show that for a
network G of the security model, almost all the natural communities of G are strong
communities.

We will see that Theorem 6.6 ensures that the infection of a strong community from a
strong community is directed along a path in the infection priority tree, and pointing to the
root of the infection priority tree; that Theorem 6.8 ensures that the height of the infection
priority tree is almost surely bounded by O(log n), which is short; and that Theorems 6.1
and 6.4 ensure that almost all the natural communities are strong.

Therefore, Theorems 6.1, 6.4, 6.6, and 6.8 allow us to establish some security theo-
rems of the networks of our security model.

The framework of proofs of our security theorems is as follows. By Theorem 6.8, a
targeted or infected strong community triggers at most O(log n) many strong communities
to be infected. By Theorem 6.1, each community has size at most O(loga+1 n). For any
initial set of attacks S of size polynomial in log n, suppose that every community that is
not strong has already been infected by attacks on S, automatically. Let K be the number
of communities that are not strong. Then there are at most |S| + K strong communities
that trigger infections in the infection priority tree T . This shows that there are at most
O((|S| + K) · log n) communities, in each of which there is at least one node infected
by attacks on S. In this case, again by Theorem 6.1, even if all the nodes in an infected
community are infected, the total number of infected nodes is a negligible number compared
with the size of the network. This sketch depends on an estimation of K , the number of
communities that are not strong, which will be given in the full proofs in later sections.

Therefore (1), (2), and (4) of Theorem 6.6 ensure that the infection of a nonseed
node, v say, is always oneway from a seed node created late than v, following an edge in
the infection priority tree. By modulo the injury among the seed nodes, we are able to show
that the infections of nonseed nodes can proceed only in the infection priority tree of height
O(log n).

Now we fully understand that the combination of Theorems 6.1, 6.4, 6.6, and 6.8
does allow us to prove some security theorems of the security model. This also explores
the following security principle of networks.

Security Principle:

1. Small community phenomenon (by Theorem 6.1)
2. The number of seed nodes or hubs is large (by Theorem 6.1)
3. Almost all seed nodes (or hubs) are strong against infections from the collection of all

their neighbor communities alone (by Theorem 6.4)
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4. There exists an infection priority tree T of G such that infection of nonseed nodes of
a community from a neighbor community can only be triggered by seed nodes of the
neighbor community through edges in the infection priority tree T of G (by Theorem
6.6)

5. The infection priority tree T of G has height O(log n) (Theorem 6.8)

Now we are ready to state our security theorems.
By applying Theorems 6.1, 6.4, 6.6, and 6.8, we are able to prove that networks

constructed from the security model are secure against any attacks of small sizes under
both uniform and random threshold cascading failure models.

For the uniform threshold cascading failure model, we have:

Theorem 6.9. (Uniform threshold security theorem.) Let G be a graph constructed
from S(n, a, d) with pi = log−a i for homophyly exponent a > 4 and for d ≥ 4. Let the
uniform threshold φ = O( 1

logb n
) for b = a

2 − 2− ε for arbitrarily small ε > 0.
Then, with probability 1− o(1) (over the construction of G), there is no initial set of

polylogarithmic size that causes a cascading failure set of nonnegligible size. Precisely, we
have that for any constant c > 0,

Pr
G∈RS(n,a,d), G=(V,E)

[
∀S ⊆ V, |S| = 
logc n�, |infφ

G(S)| = o(n)
]
= 1− o(1),

where infφ

G(S) is the infection set of S in G with uniform threshold φ.

By Theorem 6.9, if a > 4 and d ≥ 4, then for φ = O(1/
√

logb n), networks
constructed by the security model S(n, a, d) are φ-secure. Here, φ is arbitrarily close to 0,
i.e., φ = o(1). Therefore, by Definition 3.2, for a > 4 and d ≥ 4, networks in S(n, a, d)
are secure under the uniform threshold cascading failure model of attacks.

For the random threshold cascading failure model, each node v picks randomly,
uniformly, and independently a number r from 1, 2, . . . , dv , and defines its threshold
φ(v) = r

dv
, where dv is the degree of v in G. Let infR

G(S) be the infection set of attacks on
S in G. We show that graphs generated by S(n, a, d) are secure.

Theorem 6.10. (Random threshold security theorem.) Let a > 6 be the homophyly
exponent, and d ≥ 4. Suppose that G is a graph generated from S(n, a, d).

Then, with probability 1− o(1) (over the construction of G), there is no initial set of
polylogarithmic size that causes a cascading failure set of nonnegligible size. Formally, we
have that for any constant c > 0,

Pr
G∈RS(n,a,d), G=(V,E)

[∀S ⊆ V, |S| = 
logc n�, |infR
G(S)| = o(n)

] = 1− o(1).

Theorems 6.9 and 6.10 show that for appropriately chosen parameters, networks
constructed from the security model are provably secure for any attacks of small sizes
under both uniform and random threshold cascading failure models. By Definitions 3.2,
3.1, 3.3, and by Theorems 6.9 and 6.10, the security model in Definition 5.1 is secure.

Finally, we show that the networks of the security model are not only provably secure,
but they also satisfy the engineering requirement of communication networks.
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Theorem 6.11. (Expander core theorem.) For a > 0, d ≥ 3, let G be a network of the
security model with the given parameters, and let K be the induced subgraph of all the seed
nodes of G in G. Then, for any constants c > 0 and 0 < α < min{ d−2

2 − c+1
4 ,

(d−2) ln 2−1/e

2+ln 4(d−1) },
with probability 1− o(|K|−c), the conductance of K is �(K) ≥ α

2d+α
.

Theorem 6.11 indicates that, almost surely, the induced subgraph K of the seed
nodes of a network G of the security model is an expander, that is, the conductance of K

is �(K) ≥ β for some constant β.
The remaining sections are devoted to proofs of Theorems 6.1, 6.4, 6.6, 6.8, 6.9,

and 6.10. In Section 7, we prove Theorem 6.1. In Section 8, we prove Theorems 6.4, and
6.6. In Section 9, we establish Theorem 6.8. In Section 10, we prove Theorems 6.9, and
6.10 by using Theorems 6.1, 6.4, 6.6, and 6.8. In Section 11, we prove the expander core
theorem, i.e., Theorem 6.11. In Section 12, we analyze the structural principles of security
of networks and propose a protocol for secure computer network based on the security
model of networks. In Section 13, we summarize the conclusions and discuss some future
directions.

7. THE FUNDAMENTAL THEOREM OF THE SECURITY MODEL

In this section, we prove Theorem 6.1.
Before proving the theorem, we state the Chernoff bound, which will be frequently

used in our proofs.

Lemma 7.1. (Chernoff bound, [9].) Let X1, . . . , Xn be independent random variables
with Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi . Denote the sum by X = ∑n

i=1 Xi with
expectation E(X) =∑n

i=1 pi . Then we have

Pr[X ≤ E(X)− λ] ≤ exp

(
− λ2

2E(X)

)
,

Pr[X ≥ E(X)+ λ] ≤ exp

(
− λ2

2(E(X)+ λ/3)

)
.

Let G be a network constructed from the security model. We now prove Theorem
6.1. We will prove (1), (2), (3), and (4) of Theorem 6.1 in Subsections 7.1, 7.2, 7.3, and
7.4, respectively.

7.1. Basic Properties

In this subsection, we prove Theorem 6.1(1). It consists of two results, the first is the
estimation of the number of seed nodes, and the second is the upper bound of sizes of the
homochromatic sets.

Proof. (Proof of (1) of Theorem 6.1) We use G[t] to denote the graph constructed at the
end of time step t of the construction of G. Let T1 = loga+1 n and Ct be the set of all colors
appearing in G[t].

For (i). It suffices to show that the size of Ct is bounded as desired. For this, we have
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Lemma 7.2. With probability 1− o(1), for all t ≥ T1, t
2 loga t

≤ |Ct | ≤ 2t
loga t

.

Proof. The expectation of |Ct | is

E[|Ct |] = 2+
t∑

i=3

1

loga i
.

Let t0 be an integer such that 1/ loga t0 ≥ 6a/ loga+1 t0, so for all t ≥ t0, 1/ logt ≥
6a/ loga+1 t . By the indefinite integral∫ (

1

loga x
− a

loga+1 x

)
dx = x

loga x
+ C,

we know that

t∑
i=3

1

loga i
≤ 1+

∫ t

2

1

loga x
dx

≤
∫ t0

2

1

loga x
dx +

∫ t

t0

1

loga x
dx

≤
∫ t0

2

1

loga x
dx +

∫ t

t0

6

5

(
1

loga x
− a

loga+1 x

)
dx

=
∫ t0

2

1

loga x
dx + 6

5

(
t

loga t
− t0

loga t0

)
.

Because
∫ t0

2
1

loga x
dx − 6

5 · t0
loga t0

is finite, we have that, for large enough t ,

t∑
i=3

1

loga i
≤ 4t

3 loga t
.

Similarly, we can show that

t∑
i=3

1

loga i
≥ 3t

4 loga t
.

By the Chernoff bound and the fact that t ≥ T1 = loga+1 n, with probability 1 −
exp(−�( t

loga t
)) = 1− o(n−1), we have t

2 loga t
≤ |Ct | ≤ 2t

loga t
. By the union bound, such an

inequality holds for all t ≥ T1 with probability 1− o(n−1) · n = 1− o(1).

So, (i) follows from Lemma 7.2.
Lemma 7.2 depends on only the probability pi = 1/(log i)a with which the node

created at time step i chooses a new color. It is a useful fact throughout the proofs, from
which we define the following:

Definition 7.3. We define E to be the event that |Ct | is bounded in the interval[
t

2 loga t
, 2t

loga t

]
.
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By Lemma 7.2, almost surely, the event E holds for all t ≥ T1.
For (ii). We estimate the size of all the homochromatic sets.

Lemma 7.4. With probability 1− o(1), the following properties hold:

(1) Every community has size bounded by O(loga+1 n), and
(2) For every t ≥ T1, every community at the end of time step t has size bounded by

O(loga+1 t).

Proof. For (1). It suffices to show that with probability 1− o(n−1), the homochromatic set
of the first color κ has size O(loga+1 n).

We define an indicator random variable Yt for the event that the vertex created at time
t chooses color κ . We also define {Zt } to be the independent Bernoulli trails such that

Pr[Zt = 1] =
(

1− 1

loga n

)
2 loga t

t
.

Conditioned on the event E , we know that Y := ∑n
t=1 Yt is stochastically dominated by

Z :=∑n
t=1 Zt . The latter has an expectation

E[Z] ≤
n∑

t=1

2 loga t

t
≤ 2 loga+1 n.

By the Chernoff bound,

Pr[Z > 4 loga+1 n] ≤ n−1.

Therefore, with probability 1− n−1, the size of Sκ is Y ≤ 4 loga+1 n; (1) follows.
For (2). This follows from the proof of (1); (2) holds.
Lemma 7.4 follows.

So, (ii) holds.
This proves (1) of Theorem 6.1.

7.2. Power Law and Holographic Law

In this subsection, we prove (2) of Theorem 6.1, consisting of power law of the
induced subgraph of communities, of the degree distributions of the homochromatic sets,
and of the whole network G.

Before proving the results, we first prove both a lower and an upper bound for the
sizes of well-evolved communities.

Recall that T1 = loga+1 n. Let T2 = (1− δ1)n, for δ1 = 10
loga−1 n

. We have

Lemma 7.5. With probability 1− o(1), both (1) and (2) below hold in G:

(1) For a community created at a time step ≤ T2, it has size at least log n;
(2) For a community created at a time step > T2, it has size at most 30 log n.



A THEORY OF NETWORK SECURITY 171

Proof. For (1). We need to prove only that, on the condition of event E in Definition 7.3,
any homochromatic set Sκ created before time step T2 + 1 has size at least log n with
probability 1− o(n−1).

For every t > T2, let Yt be the indicator random variable that the vertex, v say, created
at time step t and that chooses old color κ . For t > T2, let {Zt } be the independent Bernoulli
trails such that

Pr[Zt = 1] =
(

1− 1

loga(1− δ1)n

)
loga t

2t
. (7.1)

Conditioned on the event E , we know that Y :=∑n
t≥T2+1 Yt stochastically dominates

Z :=∑n
t≥T1+1 Zt , which has expectation

E[Z] ≥
n∑

t=T2+1

loga t

2t
≥ δ1

2
loga(1− δ1)n ≥ 4 log n.

By the Chernoff bound,

Pr[Z < log n] ≤ e−
32 log n

2×4 = n−
9
8 .

Thus, with probability 1− o(n−1), the size of Sκ is at least log n.
For (2). The proof is similar to that of (1). We need to prove only that, on the

condition of event E , any homochromatic set Sκ created after T2 has size at most 30 log n

with probability 1− o(n−1). For t > T2, we consider the Bernoulli random variables {Zt }
defined by

Pr[Zt = 1] =
(

1− 1

loga n

)
2 loga t

t
. (7.2)

Note that

E[Z] ≤
n∑

t=T2+1

2 loga t

t
≤ 2δ1

1− δ1
loga n.

By a similar analysis to that in (1), we know that with probability 1 − o(n−1), the size of
Sκ is at most 30 log n.

The proof of Lemma 7.5 depends on both the probability 1−pi with which the newly
created node chooses an old color, and the randomness and uniformity of the choice of the
old color at time step i for all i’s.

By Lemma 7.5, we know that each of the communities born before time step T2 + 1
has expected size ω(1), and that all the communities born at time steps ≤ T2 account for
(1− o(1)) of all the communities. Therefore, we prove the power-law distribution only for
the communities born at time steps ≤ T2.

For both (i) and (ii) of Theorem 6.1(2). Now we turn to prove two results:

(a) For each homochromatic set X, the degrees of nodes in X follow a power law, and
(b) For each homochromatic set X, the induced subgraph GX of X follow a power law.
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We prove both (a) and (b) together. We consider only the nontrivial homochromatic
sets, i.e., the well-evolved communities, by ignoring the few most recently created com-
munities.

By (4) of Definition 5.1, each community basically follows the classical PA model;
we are able to give explicit expressions for the expected numbers of nodes of degree k for all
k, for each of the homochromatic sets and for the induced subgraphs of the homochromatic
sets.

In fact, as we will show following, the contribution to the degrees of a homochro-
matic set from the global edges is much smaller than that from the local edges of the
homochromatic set. This is the key point to our proofs of the power law of almost all the
communities.

We use X to denote a homochromatic set of a fixed color, κ say. Let T0 be the time
step at which X is created.

For positive integers s and k, we define As,k to be the number of nodes of degree k in
X when |X| reaches s, Bs,k to be the number of nodes of degree k in the induced subgraph
of X when |X| reaches s, and gs,k to be the number of global edges associated with the
nodes in X of degree k in the induced subgraph of X when |X| reaches s. By the initial
condition of the definition, we have A1,d = 1 and A1,k = 0 for all k > d, and B1,k = 0 for
all k. Then we establish the recurrence formula for the expectations of both As,k and Bs,k .

First, we define some notations associated with X and its size |X|:
� we use T (s) (or T , for simplicity) to denote the time step at which the size of X becomes

s,
� we use s1 to denote the number of global edges connecting to X in the case that |X| = s.

We consider the time interval (T (s − 1), T (s)). Then, the number of times that a
global edge is created and linked to a node in X of degree k at some time step in the interval
(T (s − 1), T (s)) is expected to be �( 1

loga T
· k·As,k

2dT
/

loga T

T
) = �( k·As,k

log2a T
). Denote �(log2a T )

by s2.
Then, for s > 1 and k > d, we have

E(As,k) = As−1,k

(
1− kd

2d(s − 1)+ s1
− k

s2

)

+As−1,k−1 ·
(

(k − 1)d

2d(s − 1)+ s1
+ k − 1

s2

)
+O

(
1

s2

)
.

Taking expectations on both sides, we have

E(As,k) = E(As−1,k)

(
1−

(
1

2(s − 1)+ s1/d
− 1

s2

)
k

)

+E(As−1,k−1)

(
1

2(s − 1)+ s1/d
+ 1

s2

)
(k − 1)+O

(
1

s2

)
. (7.3)

If k = d, then

E(As,d ) = E(As−1,d )

(
1−

(
1

2(s − 1)+ s1/d
− 1

s2

)
d

)
+ 1+O

(
1

s2

)
. (7.4)
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Similarly, for s > 1 and k > d,

E(Bs,k) = Bs−1,k − d · (kBs−1,k + gs−1,k)

2d(s − 1)+ s1
+ d · ((k − 1)Bs−1,k−1 + gs−1,k−1)

2d(s − 1)+ t1
+O

(
1

s2

)
.

Taking expectations on both sides, we have

E(Bs,k) = E(Bs−1,k)

(
1− kd

2d(s − 1)+ s1

)
+ E(Bs−1,k−1) · (k − 1)d

2d(s − 1)+ s1

+E(gs−1,k−1 − gs−1,k)

2d(s − 1)+ s1
+O(

1

s2
). (7.5)

If k = d, then

E(Bs,d ) = Bs−1,d − d · (dBs−1,d + gs−1,d )

2d(s − 1)+ s1
+ 1+O

(
1

s2

)

= Bs−1,d

(
1− d

2(s − 1)+ s1/d

)
+
(

1− gs−1,d

2d(s − 1)+ s1

)
, (7.6)

and

E(Bs,d ) = E(Bs−1,d )

(
1− d

2(s − 1)+ s1/d

)
+
(

1− E(gs−1,d )

2d(s − 1)+ s1

)
.

To solve the recurrences, we invoke the following lemma.

Lemma 7.6. (Lemma 3.1 [10].) Suppose that a sequence {as} satisfies the recurrence
relation

as+1 =
(

1− bs

s + s1

)
as + cs for s ≥ s0,

where the sequences {bs}, {cs} satisfy lims→∞ bs = b > 0 and lims→∞ cs = c respectively.
Then the limitation of as

s
exists and

lim
s→∞

as

s
= c

1+ b
.

For the recurrence of E(As,k), by Lemma 7.5, as n goes to infinity, t = ω(1) also
goes to infinity. By the definition of s2, s2 = �(log2a T ) = ω(s).

To deal with s1, we give an upper bound for the expected volume of X at time T ,
denoted by VT , as follows.

E(VT ) ≤
T∑

i=2

[(
1− 1

loga i

)
· 2d

|Ci | +
1

loga i
· dVi−1

2di

]

≤
T∑

i=2

2d

|Ci | = O

(
T∑

i=2

4d loga i

i

)
= O(loga T ).



174 LI AND PAN

So, it is easy to observe that s1
t
= O

(
1

loga T
· VT

2dT
/

loga T

T

)
= O

(
1

loga−1 T

)
goes to zero

as s approaches to infinity.
For the recurrence of E(Bs,k), we show that as s goes to infinity, both E(gs−1,k−1−gs−1,k )

2d(s−1)+s1

and E(gs−1,d )
2d(s−1)+s1

approach to 0. Define gs =
∑

i gs,i to be the total number of global edges
associated to X when |X| reaches s. We only have to show that E( gs

s
)→ 0 as s →∞.

Suppose that the seed node of X is created at time T0.

E(gs) = O

⎛
⎝T (s)∑

i=T0

1

loga i
· Vi

2di

⎞
⎠ = O

⎛
⎝T (s)∑

i=T0

log i

2di

⎞
⎠ = O(log2 T (s)− log2 T0).

Note that when we consider the size of X at time step t > T0, we have

E(|X|) =
t∑

i=T0

(
1− 1

loga i
· 1

|Ci |
)
= �

⎛
⎝ t∑

i=T0

loga i

2i

⎞
⎠

= �

(∫ t

T0

loga x

2x
dx

)
= �(loga+1 t − loga+1 T0).

Thus, at time step T (s), by the Chernoff bound, with probability 1 − o(1), s =
�(loga+1 T (s)− loga+1 T0). Therefore, E(gs) = o(s), that is, E( gs

s
)→ 0 as s →∞.

Then, we turn to consider the recurrences of E(As,k) and E(Bs,k). The terms s1/d and
1
s2

in equalities (7.3) and (7.4) are comparatively negligible. The terms E(gs−1,k−1−gs−1,k )
2d(s−1)+s1

and
E(gs−1,d )

2d(s−1)+s1
in equalities (7.5) and (7.6), respectively, are also comparatively negligible. By

Lemma 7.6, E(As,k )
s

and E(Bs,k)
s

must have the same limit as t goes to infinity. Next, we will
give the proof only of the power-law distribution for E(As,k), which also holds for E(Bs,k).

Denote by Sk = limt→∞
E(As,k)

s
for k ≥ d. In the case of k = d, we apply Lemma 7.6

with bs = d
2 , cs = 1+O( 1

s2 ), s1 = −1, and get

Sd = lim
s→∞

E(As,d )

t
= 1

1+ d
2

= 2

2+ d
.

For k > d, assume that we already have Sk−1 = limt→∞
E(As,k−1)

t
. Applying Lemma 7.6

again with bs = k
2 , cs = E(As−1,k−1)

s−1 · k−1
2 , s1 = −1, we get

Sk = lim
t→∞

E(As,k)

s
= Sk−1 · k−1

2

1+ k
2

= Sk−1 · k − 1

k + 2
.

Thus, recurrently, we have

Sk = Sd · (d + 2)!(k − 1)!

(d − 1)!(k + 2)!
= 2d(d + 1)

k(k + 1)(k + 2)
. (7.7)

This implies

|E(As,k)− Sk · s| = o(s),
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and, thus,

E(As,k) = (1+ o(1))k−3s.

Because s = ω(1) goes to infinity as n → ∞, E(As,k) ∝ k−3. For the same reason,
E(Bs,k) ∝ k−3. This proves (a) and (b), and also completes the proofs of both (i) and (ii) of
Theorem 6.1(2).

For (iii). For the whole network, a key observation is that the union of several power-
law distributions is also a power-law distribution if the powers are equal. We will give the
same explicit expression of the expectation of the number of degree k nodes by combining
those for the homochromatic sets, leading to a similar power-law distribution.

To prove the power-law degree distribution of the whole graph, we take the union of
distributions of all homochromatic sets. We will show that, with overwhelming probability,
almost all nodes belong to some large homochromatic sets, so that the role of small
homochromatic sets is negligible.

Suppose that G has m homochromatic sets of size at least log n. For i = 1, . . . , m,
let Mi be the size of the ith homochromatic set and N

(i)
s,k denote the number of nodes of

degree k when the ith set has size s. For each i, we have

lim
n→∞

E(N (i)
Mi,k

)

Mi

= Sk.

Hence,

lim
n→∞

E(
∑m

i=1 N
(i)
Mi,k

)∑m
i=1 Mi

= Sk.

Let M0 denote the size of the union of all other homochromatic sets of size less than
log n, and N

(0)
s,k denote the number of nodes of degree k in this union when it has size s.

By Lemma 7.5, with probability 1− o(1), all these sets are created after time T2, and thus,
M0 ≤ n− T2 = 10n

loga−1 n
= o(n).

Define Nt,k to be the number of nodes of degree k in Gt , that is, the graph obtained
after time step t . Then we have

lim
n→∞

E(Nn,k)

n
= lim

n→∞
E(
∑m

i=0 N
(i)
Mi,k

)∑m
i=0 Mi

.

For M0, we have that

lim
n→∞

M0∑m
i=1 Mi

= lim
n→∞

M0

n−M0
= 0

and

lim
n→∞

E(N (0)
M0,k

)

n
≤ lim

n→∞
M0

n
= 0

hold with probability 1− o(1). So,

lim
n→∞

E(Nn,k)

n
= lim

n→∞
E(
∑m

i=1 N
(i)
Mi,k

)∑m
i=1 Mi

= Sk.
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This implies

|E(Nn,k)− Sk · n| = o(n),

and thus,

E(Nn,k) = (1+ o(1))k−3n,

and E(Nn,k) ∝ k−3. (iii) follows.
For (iv). It follows from the proofs of (i)–(iii).
This completes the proof Theorem 6.1 (2).

7.3. Small World Property

For Theorem 6.1(3). Now we turn to prove the properties of small diameters of each
homochromatic set and the small-world phenomenon of the networks of the security model.

For (i). The diameter of the standard PA model is well-known [8,13], for which it has
been shown that with probability 1−O( 1

log2 n
), a graph generated by the PA model, written

G(n, d), has a diameter O(log n).
So, (i) follows immediately from Theorem 6.1(1)(ii).
For (ii). Now we prove the small-world phenomenon. We adjust the parameters in the

proof of the PA model in [8] to get a weaker bound on diameters but a tighter probability.
In so doing, we have the following lemma.

Lemma 7.7. For any constant a′ > 2, there is a constant K such that with probability
1 − 1

na′+1 , a randomly constructed graph G from the PA model P(n, d) has a diameter

Kn1/(a′+1).

Proof. By a standard argument as that in the proof of the small-diameter property of
networks of the preferential attachment [8].

Moreover, to estimate the distances among seed nodes, we recall a known conclusion
on random recursive trees. A random recursive tree is constructed by stages as follows:
at each stage, we create a new node, v say, and create an edge from v to a node chosen
randomly and uniformly among all the nodes in the existing graph. A graph generated by
this model is called a uniform recursive tree [33, 34].

It was shown [39] that, with high probability, the height of a uniform recursive tree
of size n is O(log n). We will use this result in our proofs.

Lemma 7.8. ( [39].) With probability 1− o(1), the height of a uniform recursive tree of
size n is asymptotic to e log n, where e is the natural logarithm.

To estimate the average node-to-node distance of G, we assume that there are m

homochromatic sets of size at most log n. Choose a′ in Lemma 7.7 to be the homophyly
exponent a, and then we have a corresponding K .

Given a homochromatic set S, we say that S is bad, if the diameter of S is larger than
K|S|1/(a+1).
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We define an indicator XS of the event that S is bad. Since log n ≤ |S| = O(loga+1 n),
by Lemma 7.7, we have

Pr[XS = 1] ≤ 1

loga+1 n
.

By Lemma 7.2, the expected number of bad sets is at most 2n
loga n
· 1

loga+1 n
= 2n

log2a+1 n
. By

the Chernoff bound, with probability 1−O(n−2), the number of bad sets is at most 3n

log2a+1 n
.

Thus the total number of nodes belonging to some bad set is at most 3n
loga n

. However, for

any large set S that is not bad, its diameter is at most K|S|1/(a+1) = O(log n).
Given two nodes u and v with distinct colors, suppose that c0 and c1 are the colors of

u and v, respectively, that X and Y are the sets of nodes of colors c0 and c1, respectively,
and that u0 and v0 are the seed nodes in X and Y, respectively. We consider a path from u

to v as follows: (i) the first part is a path from u to u0 within the induced subgraph of X, (ii)
the second part is a path from u0 to v0 consisting of only global edges, and (iii) the third part
is a path from v0 to v, consisting of edges in the induced subgraph of Y . By the argument
above, the number of the union of all bad homochromatic sets is bounded by O( n

loga n
). By

Definition 5.1, the giant connected component of all the seed nodes can be interpreted as
a union of d uniform recursive trees. By Lemma 7.8, with probability 1 − o(1), there is a
path from u0 to v0 in the induced subgraph of all seed nodes with length at most O(log n).
Combining the three paths in (a), (b), and (c), we know that the average node-to-node

distance in G is at most O(
2n2

loga n
·loga+1 n+n2·log n

n2 ) = O(log n). Theorem 6.1(3)(ii) follows.
For (iii). Suppose that G is a network constructed from the security model. We

interpret G as a directed graph as follows: For an edge (u, v) in G, if u and v are created at
time steps i, j , respectively, then for i > j , we identify the edge (u, v) as a directed edge
(i, j ).

We give an algorithm as follows: For any two nodes u, v in G,

1. Following the direction of time order in G (that is, an edge (x, y) means that y is created
earlier than x) to find the seed nodes of the homochromatic sets of u and v, u0 and v0

say, respectively.
2. Take random walks from u0 and v0 in a directed uniform recursive tree of all the seed

nodes created in 3(c) of Definition 5.1, until the two random walks cross.

By (i), Step 1 runs in time O(log log n), by Lemma 7.8, Step 2 runs in time O(log n);
(iii) follows.

This completes the proof of Theorem 6.1(3).

7.4. Small-Community Phenomenon

Before proving (4) of Theorem 6.1, we introduce some notations.
Let X be a homochromatic set, and x0 be the seed node of X. We say that X is created

at time step t , if the seed node x0 of X is created at time step t . For t ≥ t0, we use X[t] to
denote the set of all nodes sharing the same color as that created at time step t0 at the end
of time step t . That is, we use X[t] to denote a homochromatic set at the end of time step t .

We prove the small-community phenomenon stated in Theorem 6.1(4).
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Intuitively speaking, we will show that the homochromatic sets created not too early
or too late are good communities, with high probability. Then, the conclusion follows from
the fact that the number of nodes in the remaining homochromatic sets takes up only a o(1)
fraction of the network.

We focus on the homochromatic sets created in time interval [T3, T4], where T3 =
n

loga+2 n
, T4 =

(
1− 1

log(a−1)/2 n

)
n.

Given a homochromatic set S, we use tS to denote the time step at which S is created.
Let S be a homochromatic set with tS ∈ [T3, T4], and let s be the seed node of S. For

any t ≥ tS , we use ∂(S)[t] to denote the set of edges from S[t] to S[t], the complement of
S[t]. By Definition 5.1, ∂(S)[t] consists of two types of edges:

1. The edges from the seed node of S[t] to earlier nodes, i.e., the edges of the form (tS, j )
for some j < tS , and

2. The edges from the seed nodes created after time step tS to nodes in S[t]

By Definition 5.1, the number of edges of type 1 is d.
We need to bound the number of edges of only the second type. For this, we first

make an estimation on the total degrees of nodes in S[t] at any given time step t > tS .
For each t ≥ tS , we use D(S)[t] to denote the total degree of nodes in S[t] at the end

of time step t of Definition 5.1. We have the following lemma.

Lemma 7.9. For any homochromatic set S created at time tS ≥ T3, D(S)[n] =
O(loga+1 n) holds with probability 1− o(1).

Proof. We need only to show that for any t ≥ T3, if S is a homochromatic set created at
time step t , then Dn(S)[n] = O(loga+1 n) holds with probability 1− o(n−1). Without loss
of generality, assume that S is created at time step tS = T3. The recurrence on D(S)[t] can
be written as

E[D(S)[t] | D(S)[t − 1]] = D(S)[t − 1]+ 1

loga t

[
D(S)[t − 1]

2d(t − 1)
+ (d − 1) · 1

|Ct−1|
]

+
(

1− 1

loga t

)
· 2d

|Ct−1| .

We suppose again the event E that for all t ≥ T1 = loga+1 n, t
2 loga t

≤ |Ct | ≤ 2t
loga t

,
which almost surely happens by Lemma 7.2. It holds also for t ≥ T3. On this condition,

E[D(S)[t] | D(S)[t − 1], E]

≤ D(S)[t − 1]

[
1+ 1

loga t

1

2d(t − 1)

]
+ 2d

|Ct−1|

≤ D(S)[t − 1]

[
1+ 1

loga t

1

2d(t − 1)

]
+ 4d loga t

t
. (7.8)

Then we use the submartingale concentration inequality (see [10], Chapter 2, for
information on martingales) to show that D(S)[t] is small, with high probability.
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Because

8d loga+1(t + 1)− 8d

(
1+ 1

log t

1

2d(t − 1)

)
· loga+1 t

≥ 8d loga t

(
log

t + 1

t

)
− 8d loga t

2d(t − 1)

≥ 8d loga t

t + 1
− 8d loga t

2d(t − 1)

≥ 4d loga t

t
,

applying it to inequality (7.8), we have

E[D(S)[t] | D(S)[t − 1], E]− 8d loga+1(t + 1)

≤ (1+ 1

log t

1

2d(t − 1)
)(D(S)[t − 1]− 8d loga+1 t).

For t ≥ T3, define θt = �t
i=T3+1(1+ 1

log i
1

2d(i−1) ) and X[t] = D(S)[t]−8d loga+1(t+1)
θt

. Then,

E[X[t] | X[t − 1], E] ≤ X[t − 1].

Note that

X[t]− E[X[t] | X[t − 1], E] = D(S)[t]− E [D(S)[t] | D(S)[t − 1], E]

θt

≤ 2d.

Because

D(S)[t]−D(S)[t − 1] ≤ 2d,

we have

Var[X[t] | X[t − 1], E] = E[(X[t]− E(X[t]|X[t − 1], E))2]

= 1

θ2
t

E[(D(S)[t]− E(D(S)[t] | D(S)[t − 1], E))2]

≤ 1

θ2
t

E[(D(S)[t]−D(S)[t − 1])2|D(S)[t − 1], E]

≤ 2d

θ2
t

E[D(S)[t]−D(S)[t − 1] | D(S)[t − 1], E]

≤ 2d

θ2
t

[
4d loga t

t
+ 1

loga t
· D(S)[t − 1]

2d(t − 1)

]

= 8d2 loga t

tθ2
t

+ 1

(t − 1)θt loga t
· D(S)[t − 1]

θt

≤ 8d2 loga t

tθ2
t

+ 8d loga+1 t

(t − 1)θ2
t loga t

+ X[t − 1]

(t − 1)θt loga t

≤ 9d2 loga t

tθ2
t

+ X[t − 1]

2d(t − 1)θt loga t
.
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Note that θt can be bounded as

θt ∼ e
∑t

i=T3+1
1

2d(i−1) log i ∈
[(

t

T3

) 1
2d log n

,

(
t

T3

) 1
2d log T3

]
.

Then,

t∑
i=T3+1

9d2 loga i

iθ2
i

≤ 9d2 loga n

∫ t

T3

1

i
·
(

T3

i

) 1
d log n

di ≤ 9d2 loga n · log n = 9d2 loga+1 n,

and

t∑
i=T3+1

1

2d(i − 1)θi loga i
≤ 1

d loga T3

∫ t

T3

T
1

2d log n

3

i · i 1
2d log n

di ≤ log n

d loga T3
.

Here, we can safely assume that X[t] is nonnegative, which means that D(S)[t] ≥
8 loga+1(t + 1), because otherwise, the conclusion follows immediately. Let λ =
10 loga+1 n. By the submartingale inequality ( [10], Theorem 2.40),

Pr[X[t] = ω(loga+1 n)] ≤ Pr[X[t] ≥ X[T3]+ λ]

≤ exp

(
− λ2

2(9d3 loga+1 n+ 10 loga+1 n+ dλ/3)

)
+O(n−2) = O(n−2).

This implies that D(S)[n] = O(loga+1 n) holds, with probability 1−O(n−2).

Let S be a homochromatic set created at some time tS < T4. Let s be the seed node
of S. We consider the edges from seed nodes created after time step tS to nodes in S. For
t > tS , if a seed node, v say, is created at time step t , then there are two types of edges from
v to nodes in S[t − 1], they are:

1. (First-type edges) An edge (v, u) for some u ∈ S[t−1] created by Step 3(b) of Definition
5.1.

We call these edges the first-type edges.
2. (Second-type edges) Some edges (v, s) for the seed node s ∈ S[t − 1] created by Step

3(c) of Definition 5.1.
We call these edges the second-type edges.

We will bound the numbers of these two types of edges, respectively.
By a similar proof to that in Lemma 7.5(1), we are able to show that, with probability

1 − o(1), S = S[n] has a size �(log
a+1

2 n), and so a volume �(log
a+1

2 n). We suppose
the event, denoted by F , that for any t ≥ TS , D(S)[t] = O(loga+1 n), which holds with
probability 1 − o(1) by Lemma 7.9. For each t ≥ TS , we define a 0, 1 random indicator
variable Xt , which indicates the event that the first-type edge connects to S at time t and
satisfies

Pr[Xt = 1|F] = 1

loga t

D(S)[t − 1]

2d(t − 1)
≤ log1+ε n

2d(t − 1)
,
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for arbitrarily small positive ε, i.e., 0 < ε < a−1
4 . Then,

E

[
n∑

t=tS

Xt

]
≤ log1+ε n

n∑
t=tS

1

2d(t − 1)
≤ (log1+ε n)(log log n).

By the Chernoff bound,

Pr

[
n∑

t=tS

Xt ≥ 2(log1+ε n)(log log n)

]
≤ n−2.

That is, with probability at least 1−n−2, the total number of edges of the first type is upper
bounded by 2(log1+ε n)(log log n).

For the second type of edges, conditioned on the event E , this number is expected to
be at most

n∑
t=T3

1

loga t
· 1

|Ct | · (d − 1) ≤ O

⎛
⎝ n∑

t=T3

1

loga t
· 2 loga t

t

⎞
⎠ = O(log log n).

So, by the Chernoff bound, with probability 1 − o(1), the number of edges of the second
type is upper bounded by O(log n).

Hence, with probability 1− o(1), the conductance of S is

�(S) = O

(
2(log1+ε n)(log log n)+ log n

log(a+1)/2 n

)
≤ O

(
log−

a−1
4 n

)
≤ O

(
|S|− a−1

4(a+1)

)
.

The total number of nodes belonging to the homochromatic sets that appear before
time T3 or after time T4 is at most loga+1 n · n

loga+2 n
+ n

log(a−1)/2 n
= o(n) for any constant

a > 1. Therefore, 1−o(1) fraction of nodes of G belongs to a subset W of nodes, which has
a size bounded by O(loga+1 n) and a conductance bounded by O(|W |− a−1

4(a+1) ). This proves
Theorem 6.1(4).

This completes the proof of Theorem 6.1.

8. COMBINATORIAL PRINCIPLES

Theorem 6.1 provides the necessary structural properties for proving Theorems 6.9,
and 6.10. In this section, we prove the necessary probabilistic and combinatorial principles
for the proofs of the security theorems, that is, Theorem 6.4, and Theorem 6.6.

8.1. Degree Priority Theorem

First, we establish a basic property of the expectation of the degrees of nodes of a
network generated by the PA model.

Lemma 8.1. Suppose that G is a network generated from the PA model. Let vi be the ith
vertex in G. Then we have that the degree of vi is expected to be

√
n
i
· d.

Proof. Let si be the expected degree of vi . Fix i, and for j ≥ i, let ai(j ) be the expected
degree contributed by vj to vi and Ti(j ) be the expected degree of vi at the end of step j .
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So for each i, ai(i) = Ti(i) = d, Ti(n) = si , and Ti(j ) =∑j

k=i ai(k). Note that the volume
of the whole graph at step j is 2dj . For j ≥ i, ai(j + 1) = Ti (j )

2dj
· d = Ti (j )

2j
, and hence,

Ti(j + 1) = Ti(j )+ Ti (j )
2j

. By this recurrence equation, we have

Ti(n) =
n−1∏
j=i

(
1+ 1

2j

)
· Ti(i).

Define a function f (m) =∏m−1
j=1 (1+ 1

2j
). So, Ti(n) = f (n)

f (i) · d. Since f (n) = (2n−1)!
22(n−1)[(n−1)!]2 ,

by the Stirling formula, when n is large enough, f (n) = 2√
π
·√n. Thus, si = Ti(n) = √ n

i
·d.

We turn to the proof of Theorem 6.4.

Proof. (Proof of Theorem 6.4) For (1). To bound the expected length of degrees for all
nodes, we consider the following two cases.

Case 1. v is a nondeed node created at step t0.
For every t > t0, if a seed node u is created at step t , then the probability that an edge

between v and u is created and is d(v)[t]
2dt

, where d(v)[t] is the degree of v in the graph at the
beginning of step t . Let X[t] be set of the the natural community of v at the end of step
t . By Theorem 6.1(1)(ii), the size of X[t] is |X| = O(loga+1 t). By Lemma 8.1, for every
t > t0, d(v)[t] = O(log

a+1
2 t). By the construction of G in Definition 5.1, at step t > t0, the

probability that the newly born node is a seed, is 1
loga n

, so the expectation of the increment

of the length of v at step t is d(v)[t]
2dt
· 1

loga t
, which is O( 1

t
) if the affinity exponent a ≥ 1.

Therefore, for a ≥ 1, the expected number of seed nodes created after time step t0
and linked to v by step 3(b) of Definition 5.1 is at most

E[l(v)] = O

(
n∑

t=t0

1

t

)
= O(log n).

Case 2. v is a seed node created at time t0.
By the proof in Case 1, the length of v contributed by step 3(b) of Definition 5.1 is

O(log n).
By Lemma 7.2, for each t , |Ct | is expected to be �( t

loga t
). Thus, the expected number

of seed nodes created after time t0 and linked to v by step 3(c) of Definition 5.1 is at most
d · 1

loga t
· 1
|Ct | = O( 1

t
). This shows that

E[l(v)] = O

(
n∑

t=1

1

t

)
= O(log n).

Therefore, the expectation of the length of v is O(log n).
(1) follows.
For (2), (3), and (4). We prove (2)–(4) together by considering two cases:
Case 1. v is a nonseed node.
Suppose that v is created at time step t0. We use D(v) to denote the degree of v

contributed by nodes of the same color as v, and F (v) to denote the maximal degree of
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v contributed by nodes that share the same color other than the color of v. By (4) of
Definition 5.1, D(v)[t0] = d, and F (v)[t0] = 0.

For t+1 > t0, let u be the node created at time step t+1. If u is a seed node, then by (3)
of Definition 5.1, we have that D(v)[t + 1] = D(v)[t], and F (v)[t + 1] ≤ max{F (v)[t], 1}.
If u is a nonseed node, then either u has the same color as that of v, or u chooses an old
color different from that of v; in either case, we have that D(v)[t + 1] ≥ D(v)[t] and
F (v)[t + 1] = F (v)[t].

Therefore, we have that the first degree of v, d1(v) is always contributed by the
neighbors of v that share the same color as v, that is, D(v), and that the second degree
d2(v) ≤ 1.

Case 2. v is a seed node.
Let v be a node created at time step t0. We use F (v)[t] to denote the largest number

of homochromatic neighbors having different color from v at the end of time step t .
By step (3) of Definition 5.1, F (v)[t0] ≤ d. For every t ≥ t0, we consider time step

t + 1. Let u be the node created at time step t + 1. If u is a seed node, then by (3) of
Definition 5.1, we have that F (v)[t + 1] ≤ max{F (v)[t], d}. If u is a nonseed node, then
by (4) of Definition 5.1, F (v)[t + 1] = F (v)[t].

Therefore, we have that F (v)[n] ≤ d = O(1).
Next we consider the degree of v contributed by the neighbors of the same color

as v. Note that a seed node has a degree at least d contributed by local edges, unless the
homochromatic set of the seed node is too small. This kind of seed node is likely to be
created too late. We choose an appropriate time stamp T and show that there are only a
negligible number of seed nodes born after T , and all the seed nodes born before T + 1
are contained in homochromatic sets of nonnegligible size and, thus, have a large degree
contributed by local edges.

Here we choose the time step T = T4, defined in Subsection 7.4.
By the proof of Lemma 7.5, the homochromatic sets created at time step ≤ T4 has

size at least �(log
a+1

2 n), with probability 1− o(1). The next lemma guarantees that a seed
node of a homochromatic set of size �(log

a+1
2 n) has degree �(log

a+1
4 n) contributed by

local edges.
By Definition 5.1(4), the induced subgraph of a homochromatic set basically follows

the PA scheme, so it suffices to prove a result for networks of the PA model.
So by step (3) of Definition 5.1, and by Lemma 8.1, with probability 1 − o(1), a

homochromatic set of size at least �(log
a+1

2 n) has a seed node of degree at least �(log
a+1

4 n)
contributed by local edges. So, the seed nodes created at time step ≤ T4 have their first
degrees contributed by local edges with probability 1− o(1).

By the proof in Subsection 7.4, the number of seed nodes created after time step T4

is negligible.
Therefore, with probability 1−o(1), a randomly picked seed node has its first degree

contributed by its neighbors sharing the same color as the seed node.
All (2), (3), and (4) follow from Cases 1 and 2.
This completes the proof of Theorem 6.4.

8.2. Inclusion-Exclusion Theorem

In this subsection, we prove Theorem 6.6. At first, we give a basic definition of
communities, targeted communities, and infected communities.
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Definition 8.2. Let G be a network constructed from the security model.

(1) A community of G is the induced subgraph of a homochromatic set of G.
(2) We say that a community, GX say, is created at time step t , if the seed node of GX is

created at time step t .
(3) We say that a community, GX say, is targeted, if there is a node in X that is targeted by

an attack, and nontargeted, otherwise.
(4) We say that a community GX is infected, if there is a node in X that has been either

targeted or infected, and noninfected, otherwise.

Proof. (Proof of Theorem 6.6) For (1). We consider two cases:
For (i). The infection of GY from a nonseed node x1 in GX.
By Definition 5.1, there are no edges between nonseed nodes in GX and nonseed

nodes in GY , and there is no edge between the seed node of GX and nonseed nodes in GY .
Therefore, there is no injury from GX to any nonseed node in GY . Hence, the only

possible node in GY that might be injured by GX is the seed node y0 of GY . (i) follows.
For (ii). The injury of the seed node in GY from GX.
By Theorem 6.4, the number of neighbors of the seed node y0 (of GY ) in GX is less

than or equal to the second degree of y0, which is at most a constant.
For (2). Suppose that x1 and y1 are nonseed nodes in X and Y , respectively.
For (i). The injury of GY from the nonseed node x1.
This fails to occur because at the stage at which x1 is created, it links to nodes only

in GX.
For (ii). The injury of the seed node y0 of GY from the whole community GX.
In this subcase, the possible neighbors of y0 in GX is only the seed x0 of GX, and y0

is a seed node of GY . Therefore, the injury of y0 from GX is bounded by 1.
For (iii). The injury of a nonseed node y1 from GX.
The same as that in (i) and (ii), the only possible neighbor of y1 in GX is the seed node

x0 of GX. In this case, by Definition 5.1, the only possibility that there is a link between x0

and and a nonseed node y of GY is that y is the unique node chosen by the PA scheme in
step 3(b) of Definition 5.1 at the time step at which x0 is created.

Theorem 6.6(3) and (4) follow from (1) and (2).
This completes the proof of Theorem 6.6.

9. INFECTION PRIORITY TREE PRINCIPLE

In this section, we define the infection priority tree, and prove the infection priority
tree principle, i.e., Theorem 6.8.

At first, we introduce a notation of injury between nodes and communities.

Definition 9.1. (Injury.) Let x and y be two nodes, and GX and GY be two natural
communities.

(1) We define the injury of x from y to be the number of edges between x and y.
(2) We define the injury of x from GY to be the number of edges between x and the nodes

in GY .
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(3) We define the injury of GX from GY to be the number of edges between nodes in GX

and the nodes in GY .

Then, we have that

Lemma 9.2. (Injury Lemma.) For any communities GX and GY , the injury of GY from
the whole community GX satisfies:

1. For the seed node y0 of GY , the injury of y0 from GX is bounded by O(1).
2. For a nonseed node y ∈ Y , GX injures y, only if the following occurs:

� y is injured only by the seed node x0 of GX,
� y is created before the creation of the seed x0 of GX, and
� At the time step at which x0 is created, 3(b) of Definition 5.1 occurs, which creates an

edge (x0, y).

Proof. By Theorem 6.6.

By Theorem 6.1(2)(i), every community has size bounded by O(loga+1 n), it is
harmless even if a targeted or infected node causes the infection of the whole community
of the node. Therefore, we consider only the infections among different communities. By
Lemma 9.2, we only consider two types of injuries among two communities.

Definition 9.3. (Injury Type.) We define:

1. (First type) The first type of injury is the injury of a seed node.
2. (Second type) The second type is an injury following an edge created by 3(b) of

Definition 5.1.

To deal with the first type of injury, we introduce the notion of strong communities.

Definition 9.4. Given a homochromatic set X, suppose that x0 is the seed node of X and
that GX is the community induced by X.

We say that GX is a strong community if the seed node x0 ∈ X will never be infected,
unless there is a node x ∈ X that has already been infected. Precisely, X is strong if
d ′(x0)
d(x0) < φ(x0), where d ′(x0) is the number of edges from x0 to nodes outside X, and d(x0)
is the degree of x0 in G. If X is not strong, we say that GX is a vulnerable community.

By Theorem 6.4, for every seed node x0 of a community GX, the length of degrees of
x0 is bounded by O(log n), and the second degree of x0 is bounded by O(1), therefore the
injury of the seed node x0 from the collection of all the communities other than GX itself
can be bounded by O(log n). Notice that this upper bound of O(log n) is rather loose, and
more importantly that the upper bound O(log n) is independent of the homophyly exponent
a. However, by Theorem 6.4, the first degree of a seed node is lower bounded by �(log

a+1
4 ),

which is large if the homophyly exponent a is appropriately large. This allows us to show
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that almost surely, for any set of attacks of polylogarithmic sizes, there is a huge number
of strong communities.

By Lemma 9.2, the injury among strong communities is the second type. The infec-
tions among the strong communities is determined by the infection priority tree T of G by
modulo the small communities from the network.

Definition 9.5. (Infection of a strong community from a strong community.) Suppose
that X and Y are two natural communities. Let x0 and y0 be the seed nodes of X and Y ,
respectively. Let φ(x0) and φ(y0) be the thresholds of x0 and y0, respectively. Suppose that
both X and Y are strong. We say that X is infected from Y , if there is an edge from y0 to a
nonseed node x ∈ X.

This means that the seed node x0 ∈ X cannot be infected by the nodes in Y . Hence,
the only way that a node in X is infected by Y is that some nonseed node x ∈ X is infected
by Y , which occurs only through an edge between the seed node y0 of Y to the nonseed
node x ∈ X.

By the infection priority tree T in Definition 6.7, and by Definition 9.5, we have that

Lemma 9.6. Any infection from a strong community to a strong community must be
triggered by a directed edge in the infection priority tree T .

Proof. By Definition 6.7, Definitions 9.4, 9.5, and Theorem 6.6.

Lemma 9.6 shows that the cascading behavior in the infection priority tree T is always
directed from a seed node to an old nonseed node created by 3(b) of Definition 5.1.

Now the key to our proofs is that the cascading procedure in T must terminate shortly,
that is, after O(log n) many steps.

Proof. (Proof of Theorem 6.8) By Definition 5.1 and Definition 6.7, T can be regarded
as a graph constructed by a PA scheme with d = 1 such that whenever a new node is
created, it links to a node chosen with probability proportional to the weights of nodes
while the weights of nodes are increasing uniformly and randomly. Precisely, we restate
the construction of T as follows:

(i) Take H2 to be a graph with two nodes 1, 2, one directed edge (2, 1) such that each
node has a weight w(i) = d for i = 1, 2.

For i+ 1 > 2, let pi = 1/(log i)a , and let Hi be the graph constructed at the end
of time step i.

(ii) With probability pi , we create a new node, v say, in which case,
(a) let u0 be a node chosen with probability proportional to the weights of nodes in

Hi ; create a directed edge (v, u0),
(b) let u1, u2, . . . , ud−1 be nodes chosen randomly and uniformly in Hi ,
(c) for each j = 0, 1, . . . , d − 1, set w(u)← old w(u)+ 1, and
(d) set w(v)[i + 1] = d.

(iii) Otherwise, then choose randomly and uniformly a node, u say, in Hi , set w(u)[i+1] =
w(u)[i]+ 2d.

Then T is the directed graph obtained from H by ignoring the weights of nodes.
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For (1). Clearly, it is true that T is a tree, because whenever one new node is created,
there is only one new edge added, and the graph is connected; (1) holds.

For (2). By definition of T , the height of T is between a graph of the preferential
attachment model with d = 1 and a uniform recursive tree of the same number of nodes.
By Lemma 7.8, with probability 1 − o(1), a uniform recursive tree of nodes n has height
bounded by O(log n). By this construction, T has height stochastically dominated by that of
a uniform recursive tree of the same number of nodes. Therefore, with probability 1−o(1),
the height of T is bounded by O(log n); (2) holds.

By Lemma 9.6 and Theorem 6.8, T exactly captures the cascading behaviors among
strong communities, which is the key to our proofs.

Now we know that the proofs of both Theorem 6.9 and Theorem 6.10 consist of the
following steps:

(1) To prove that for any attack of polylogarithmic size, almost surely, there is a huge
number of strong communities.

(2) Any infection among the strong communities must be triggered by an edge in the
infection priority tree of G, which goes at most O(log n) many steps, by Theorem 6.8.

Step (2) has been guaranteed by Lemma 9.6 and Theorem 6.8. So, the main issue
for the proofs of Theorem 6.9 and Theorem 6.10 is actually Step (1) above, which will be
given in Subsections 10.1 and 10.2.

10. SECURITY THEOREMS OF THE SECURITY MODEL

In this section, we will prove the security theorems of the security model, i.e.,
Theorems 6.9 and 6.10, by applying the fundamental theorem, i.e., Theorem 6.1, the
probabilistic and combinatorial principles in Theorems 6.4, and 6.6, and the infection
priority tree principle in Theorem 6.8.

10.1. Uniform Threshold Security Theorem

In this subsection, we prove Theorem 6.9.
Let G be a network constructed by the security model. Consider a deliberate attack

by targeting an initial set S of size poly(log n). Note that the size of S, poly(log n), is much
smaller than the number of communities, i.e., �(n/ loga n), by (1)(i) of Theorem 6.1.

Proof. (Proof of Theorem 6.9) Set time T0 = (1− δ)n, where δ = log−b0 n, where b0 will
be determined later. We will show that with high probability, all the communities created
before time step T0 are both large and strong.

Lemma 10.1. Let 2 < b1 < a−b0. Then, with probability 1−o(1), every homochromatic
set created before time step T0 has a size �(logb1 n).

Proof. It is sufficient to show that, with probability 1− n−1, for every homochromatic set
Sκ created before T0, Sκ has a size �(logb1 n).
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Suppose that Sκ is the set with color κ , and that it is created at time step t0 ≤ T0 for
some t0. For any t ≥ t0, define an indicator random variable Yt to be the event that the node
created at time step t chooses color κ .

Define {Zt } to be the independent Bernoulli trails such that

Pr[Zt = 1] =
(

1− 1

loga(1− δ)n

)
loga t

2t
.

Conditioned on the event E in Definition 7.3, we have that random variable Y :=∑n
t=t ′ Yt stochastically dominates Z :=∑n

t=t ′ Zt for any t ′ ≤ T0.
By definition, Z has an expectation

E[Z] ≥
(

1− 1

loga(1− δ)n

) n∑
t=T0+1

loga t

2t
≥ δn

2n
loga(1− δ)n = �(loga−b0 n).

Because 2 < b1 < a − b0, by the Chernoff bound,

Pr
[
Z = O(logb1 n)

] ≤ n−1.

Therefore, with probability 1− n−1, the size of Sκ is at least Y = �(logb1 n).

Second, we show that every seed node created before T0 probably has a large degree.

Lemma 10.2. With probability 1− o(1), every seed node created before time step T0 has
degree at least �(logb1/2 n).

Proof. Let v be a seed node created at a time step ≤ T0. Suppose that v has color κ . Let
S be the set of all nodes sharing color κ . Then the community GS is the induced subgraph
of S in G. The degree of the seed node v in G is contributed by both local edges and
global edges. By the construction, GS truthfully follows a power law, by Lemma 8.1, the
degree of v contributed by local edges is expected to be at least

√|S|. By Lemma 10.1,
with probability 1 − o(1), each S has a size �(logb1 n). The degree of v has an expected
degree of at least �(logb1/2 n). Because b1 > 2, by the Chernoff bound, with probability
1−o(n−1), v’s degree is at least �(logb1/2 n). The lemma follows immediately by the union
bound.

Now we are able to estimate the number of strong communities.

Lemma 10.3. Let b0 = 2 + ε and b1 = a − b0 − ε
2 , where ε is that defined in Theorem

6.9. With probability 1− o(1), all the communities created before time T0 are strong.

Proof. By Theorem 6.4, the length of degrees of a seed node is bounded by O(log n), and
the second degree of a seed node is bounded by O(1). By Chernoff bound, we have that,
with probability 1 − o(1), for every seed node v, the degree of v contributed by global
edges is bounded by O(log n). By Lemma 10.2, almost surely, for each seed node v, the
fraction of v’s degree contributed by global edges is less than or equal to O(log1−b1/2 n).

Recall that the threshold parameter φ = �
(

1
logb n

)
for b = a

2 − 2− ε for arbitrary ε > 0.

By the choices of b0 and b1, 1− b1/2 = − ( a
2 − 2− 3ε

4

)
< −b. The lemma follows.
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For the total number of vulnerable communities, we have

Lemma 10.4. Let b2 = a + b0. With probability 1 − o(1), the number of vulnerable
communities is at most 2n

logb2 n
.

Proof. By Lemma 10.3, we need to bound only the number of communities created after
time step T0. Because at time step t , a new color is created with probability pt = log−a t ,
the number of colors created after time step T0, denoted by Nvul is expected to be

E[Nvul] =
n∑

t=T0+1

1

loga t
.

When n is large enough, by a simple integral computation, E[Nvul] is upper bounded by
3δn

2 loga n
. By the Chernoff bound, with probability 1 − o(1), Nvul is at most 2δn

loga n
= 2n

logb2 n
.

The lemma follows.

Now we are ready for the proof of Theorem 6.9.
Suppose that S is the initially targeted set of size 
logc n�. Choose b0 = 2 + ε,

b1 = a − b0 − ε
2 and b2 = a + b0.

By Lemma 10.4, with probability 1 − o(1), the number of vulnerable communities
is at most 2n

logb2 n
. By Theorem 6.8, the height of infection priority tree T is h = O(log n).

By Lemma 9.6, infections among strong communities must be triggered by an edge in the
infection priority tree T . Therefore, the number of infected communities by attacks on S is
at most

(
|S| + 2n

logb2 n

)
· h = O

((

logc n� + 2n

logb2 n

)
· log n

)
.

By Theorem 6.1(1), with probability 1 − o(1), the largest community has a size
O(loga+1 n). So, the number of infected nodes in G by attacks on S is at most

O

((

logc n� + 2n

logb2 n

)
· log n · loga+1 n

)
= o(n).

This completes the proof of Theorem 6.9.

The proof of Theorem 6.9 is essentially a methodology of community analysis of
networks of the security model. The key ideas of the methodology are those in Theorems 6.1,
6.4, and Theorem 6.6, Definition 9.4, Definition 6.7, Lemma 9.6, and Theorem 6.8.

The method allows us to divide all the communities into two classes, the first is the
strong communities, and the second is the vulnerable ones. The two types of communities
are distinguished by a time step T0. This time stamp T0 is determined by both parameter δ,
and essentially by the power b. Then we show that communities created before time step
T0 are strong, and that the number of communities created after time step T0 is small.

Theorem 6.9 shows that the power-law distribution in Theorem 6.1 is never an obsta-
cle for security of networks. Our proof of the security theorem show that the community
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structure of the networks isolates the vulnerable nodes in a large number of small communi-
ties, that the homogeneity and randomness among the seed nodes or “hubs" guarantee that
most communities are strong, and that the infection priority tree ensures that the cascading
procedure among strong communities cannot be too long.

10.2. Random Threshold Security Theorem

In this subsection, we prove Theorem 6.10. The proof has the same framework
as before. By Lemma 9.6, Theorem 6.8, infections among strong communities must be
triggered by edges in the infection priority tree T , and infections in T are directed and
terminate by O(log n) many steps.

Therefore, the only issue is to prove that the number of vulnerable communities is
small.

Proof. Let T0 = (1 − δ)n, where δ = 100 log−b0 n and b0 to be determined later. Let
T ′0 = n/100.

By a similar proof to that of Lemma 10.1, for every b1 ∈ (1, a − b0], we have that,
with probability 1− o(1), the following hold:

� Every community created at a time step t ≤ T ′0 has a size �(loga n), and
� Every community created at a time step t ∈ [T ′0, T0] has a size �(logb1 n).

By the proof of Lemma 10.2, we have that, with probability 1− o(1),

1. A seed node created at a time step t ≤ T ′0 has degree �(loga/2 n), and
2. A seed node created at a time step t ∈ [T ′0, T0] has degree �(logb1/2 n).

Then, we show that the number of vulnerable communities created before time step
T0 is small.

Lemma 10.5. Let b0 = a
2 − 1 and b1 = a

2 + 1. With probability 1− o(1), there are only

O
(

n

loga+(b1/2) n

)
communities created before time step T0 that are vulnerable.

Proof. By the Chernoff bound, with probability 1− o(1):
(i) By Theorem 6.4, every seed node created before time step T ′0 has a degree at most

O(log n) contributed by global edges, and
(ii) All but O(log n) seed nodes created in time interval [T ′0, T0] have a degree O(1)

contributed by global edges.
Note that the threshold of each node is chosen randomly and uniformly. Then, the

communities that are created in these two time slots and satisfy the above conditions are
vulnerable with probability O(log1−(a/2) n) and O(log−b1/2 n), respectively.

By Theorem 6.1(1), with probability 1 − o(1), there are at most O
(

2n
loga n

)
commu-

nities. By the choice of a > 6, −b1/2 > 1− (a/2) holds. Therefore, the expected number

of vulnerable communities created before time step T0 is O
(

n

loga+(b1/2) n

)
.

Noting the independence of choice of threshold for each node, by using the Chernoff
bound again, the lemma follows.
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By the proof of Lemma 10.4, there are only O
(

n

loga+b0 n

)
communities born after

T0. So the total number of vulnerable communities in G is O
(

n

loga+b0 n
+ n

loga+(b1/2) n

)
=

O
(

n

loga+b0 n

)
.

Consider the infection priority tree T again. For any initial targeted set S of size

logc n�, the size of infU

H (S) is at most

O

((

logc n� + 2n

loga+b0 n

)
· log n · loga+1 n

)
= o(n).

This completes the proof of Theorem 6.10.

11. EXPANDER CORE THEOREM

In this section, we establish Theorem 6.11.

Proof. (Proof of Theorem 6.11.) Suppose that K = (VK,EK ) is the induced subgraph of
all the seed nodes of G. Then, VK is the set of all the seed nodes of G, and EK is the set
of all the edges among the seed nodes of G. As in the proof of Theorem 6.1, EK consists
of two types of edges. The first-type edges are those created by Step 3(b) of Definition
5.1, and the second-type edges are those created by Step 3(c) of Definition 5.1. Clearly, the
number of the first-type edges is small.

To prove our theorem, we will reduce the problem of bounding the conductance to
the problem of bounding edge expansions, which is usually relatively easy.

Let N = |VK | be the size of K , and index by i (1 ≤ i ≤ N ) the ith seed node
generated in K . For a subset S ⊆ VK , denote by �(S) the edge expansion of S, that is,
�(S) = |∂(S)|/|S|, where ∂(S) denotes the set of edges that have exactly one endpoint in
S.

We rearrange the set S with the ordering as the time order of the creation of the nodes.
There are two scenarios:
Case 1. Newly born node v is assigned to S.

In this case, the volume of S, denoted by vol(S), increases by at most 2d, because
there are at most d edges that are created between v and the existing nodes in K .
Case 2. Newly born node v is outside of S.

In this case, the increment of vol(S), the volume of S in K , is counted in ∂(S).
Therefore, in any case, we have that

vol(S) ≤ 2d · |S| + ∂(S).

According to this argument, the conductance of S in K satisfies

�(S) = |∂(S)|
vol(S)

≥ |∂(S)|
2d|S| + |∂(S)| =

�(S)

2d +�(S)
. (11.1)

Recall that for an arbitrarily given graph G = (V,E), the edge expansion �(G) and
the conductance �(G) of graph G are defined as follows:

�(G) = min
S: |S|≤|V |/2

�(S),
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and

�(G) = min
S: vol(S)≤vol(G)/2

�(S).

Consider a subset S of nodes in K whose volume is at most vol(K)/2. If |S| ≤ N/2,
then �(S) ≥ �(S)/[2d + �(S)]. So, if �(S) ≥ α, then �(S) ≥ α

2d+α
. Otherwise, |S| >

N/2, and so the complement of S, denoted by S = VK \ S, has a size less than N/2, but
a volume at least vol(K)/2. In this case, because ∂(S) = ∂(S), we have �(S) ≥ �(S).
Because (11.1) holds for every S regardless of its size, if �(S) ≥ α, then both �(S) and
�(S) are at least α

2d+α
. Thus, we need to show only that for any S of size at most N/2, its

edge expansion �(S) ≥ α.
To prove the edge expansion result of K , we further simplify the problem.
Let K2 = (VK,E2) be the graph obtained from K by deleting all the edges of the

first type. Then, it is easy to see that

�K (S) ≥ �K2 (S)

holds for every set S ⊂ VK , where �H (S) is the edge expansion of S in graph H .
The result follows easily from the construction of K and K2.
Clearly, K2 is a network constructed by the following uniform attachment model:

whenever a seed node v ∈ K is created, we create d − 1 edges from v to the existing nodes
in K , each of which is randomly and uniformly selected.

Therefore, it suffices to use a constant lower bound for the edge expansion of the
graph K2. We will show that there is a constant β such that with probability 1− o(1), for a
graph H constructed from the uniform attachment model, �(H ) ≥ β.

To prove our result, we recall a closely related result: [35] have shown that the
networks of the preferential attachment model have a constant lower bound for the edge
expansion of the networks. Our theorem shows the same lower bound for the networks of
the uniform attachment model. We prove our theorem by following the approach in [35].

However, for our proofs, we consider a uniform recursive tree TdN of size dN

constructed as follows. We will use the idea of minivertices introduced in [35].
We define Tk to be the tree at the end of time step k in which the vertices of the tree

are called minivertices. At time step 1, the tree is a single minivertex, and at time step k for
2 ≤ k ≤ dN , a minivertex with a single edge arrives and attaches randomly to a uniformly
chosen minivertex in Tk−1.

Define a graph K ′ by first constructing the tree TdN and then, for 1 ≤ i ≤ N ,
contracting minivertices di − j for 0 ≤ j ≤ d − 1, in which self-loops and multiedges are
preserved. Comparing K ′ with K , the only difference is that self-loops in K ′ are permitted
whereas there are not self-loops in K; K is equivalent to the case that, in the construction
of K ′, when minivertex k (k > d) arrives, the minivertex to which it attaches is uniformly
chosen among those from 1 to d · �k/d� and the self-loops on the first node are deleted. It
is easy to observe that the edge expansion of K is at least that of K ′ because self-loops can
only make the edge expansion smaller. So, we have to show only that �(K ′) ≥ α.

To this end, we will show that for any fixed integer s ≤ N/2 and fixed subset S ⊆ [N ]
of size s, the probability that �(S) < α is small and the lemma follows from the union
bound of all choices of S. For each subset S ⊆ [N ] and minivertex k ∈ [d]N , we say that
k is associated with S if and only if k = di − j for some 1 ≤ i ≤ N , 0 ≤ j ≤ d − 1
and i ∈ S. Fix a subset S of size s ≤ N/2. We say that a minivertex is good if the edge
created with its arrival belongs to ∂(S). Otherwise, it is bad. That is, a minivertex is good
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if and only if its edge contributes to the cut (S, S) and, thus, to the edge expansion of S. To
prove that the probability that �(S) < α is small, we will show that for any fixed subset
A ⊆ [dN] of minivertices with size |A| ≤ αs, the probability is small that all minivertices
associated with A are good and all those associated with A = [dN \A] are bad. Then, the
union bound leads to the result. Formally, we prove the following lemma:

Lemma 11.1. For any fixed S ⊆ [N ] and A ⊆ [dN] with |S| = s and |A| ≤ αs,
the probability that all minivertices in A are good and all those in A are bad is at most(
ds

αs

)
/
(
dN−αs

ds−αs

)
.

Proof. Let A = A1 ∪ A2, where A1 is the set of minivertices associated with S, and A2

is the set of minivertices associated with S. Let |A1| = k1 and |A2| = k2. Then we divide
the minivertices in A into two parts according to their associations with S and S. Note that
|A| = dN − k1 − k2. Let x1 < x2 < · · · < xds−k1

be the minivertices in A that associated
with S and x ′1 < x ′2 < · · · < x ′

dN−ds−k2
be the minivertices in A that associated with

S. For 1 ≤ i ≤ ds − k1, let yi be the number of minivertices in A that arrived prior to
xi and zi be the number of minivertices in A that arrived prior to xi . Symmetrically, for
1 ≤ i ≤ dN − ds − k2, let y ′i be the number of minivertices in A that arrived prior to x ′i
and z′i be the number of minivertices in A that arrived prior to x ′i . So, xi = yi + zi + 1
and x ′i = y ′i + z′i + 1. When xi arrives, suppose that, at this stage, all minivertices in A are
good and all those in A are bad. Note that the size of the tree at this stage is xi − 1 and the
number of minivertices associated with S is at most i − 1+ yi because x1, . . . , xi−1 are all
bad minivertices associated with S and at most yi good minivertices are associated with S.
Thus, because yi ≤ |A|, we have

Pr[xi is bad] ≤ i − 1+ yi

xi − 1
≤ i − 1+ yi

zi + yi

≤ i + |A|
zi + 1+ |A| .

For the same reason, when x ′i arrives,

Pr[x ′i is bad] ≤ i − 1+ y ′i
x ′i − 1

≤ i − 1+ y ′i
z′i + y ′i

≤ i + |A|
z′i + 1+ |A| .

Recall that zi (resp. z′i) represents the number of minivertices in A that arrived prior to xi

(resp. x ′i) and xi (resp. x ′i) is also in A, the union of {zi+1}1≤i≤ds−k1
and {z′i+1}1≤i≤dN−ds−k2

is exactly {1, 2, . . . , |A|} = [dN − |A|]. We have that the probability, denoted by P , that
all minivertices associated with A are good and all those associated with A are bad satisfies

P ≤
ds−k1∏
i=1

i + |A|
zi + 1+ |A| ·

dN−ds−k2∏
i=1

i + |A|
z′i + 1+ |A|

=
∏ds−k1

i=1 (i + |A|) ·∏dN−ds−k2
i=1 (i + |A|)∏dN−|A|

i=1 (i + |A|)

= (ds − k1 + |A|)! · (dN − ds − k2 + |A|)!
(dN)! · |A|!
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= (ds + k2)! · (dN − ds + k1)!

(dN)! · |A|!

= (ds)! · (dN − ds)!

(dN − |A|)! · |A|! ·
k1∏

i=1

dN − ds + i

dN − |A| + i
·

k2∏
i=1

ds + i

dN − k2 + i
.

Because |A| ≤ αs ≤ ds, we have dN − ds+ i ≤ dN − |A| + i. Because k2 = |A2|, where
A2 is the set of minivertices in A associated with S, and dN − ds = d|S| ≥ k2, we have
ds + i ≤ dN − k2 + i. Thus,

P ≤ (ds)! · (dN − ds)!

(dN − |A|)! · |A|!

= (ds)!

(ds − |A|)! · |A|! ·
(ds − |A|)! · (dN − ds)!

(dN − |A|)!

=
(

ds

|A|
)

/

(
dN − |A|
ds − |A|

)
.

Because |A| ≤ αs and d ≥ 2, we have P ≤ (ds

αs

)
/
(
dN−αs

ds−αs

)
. Lemma 11.1 follows.

Lemma 11.1 means that for any fixed subset S of nodes of size s and any fixed subset
A of edges of size at most αs in K ′, the probability (over the construction of K ′) that the

cut (S, S) is exactly A is at most
(
ds

αs

)
/
(
dN−αs

ds−αs

)
. Because there are

(
N

s

)
choices for S and at

most αs · (dN

αs

)
choices for A when S is fixed, the probability that �(K ′) ≤ α is given by

the following union bound.

Pr[�(K ′) ≤ α] ≤
N/2∑
s=1

(
N

s

)
· αs ·

(
dN

αs

)
·

(
ds

αs

)
(
dN−αs

ds−αs

)
≤

N/2∑
s=1

αs ·
(

dN

αs

)
·

(
ds

αs

)
((d−1)N−αs

(d−1)s−αs

)

≤
N/2∑
s=1

αs ·
(

eN

s

)αs

·
(

ed

α

)αs

·
(

(d − 1)s − αs

(d − 1)N − αs

)(d−1)s−αs

≤
N/2∑
s=1

αs ·
(

N

s

)αs

·
(

d

α

)αs

· e2αs ·
( s

n

)(d−1)s−αs

=
N/2∑
s=1

αs ·
(

e2d

α

)αs

·
( s

n

)(d−1−2α)s
.

Next, we have to show only that the function f (s) = αs ·
(

e2d
α

)αs

· ( s
n

)(d−1−2α)s
is of

order o(N−(c+1)) for any 2 ≤ s ≤ N/2. Then, the above probability is o(N−c) and Theorem
6.11 follows.
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Let

f1(s) = αs,

f2(s) =
(

e2d

α

)αs

and

f3(s) =
( s

n

)(d−1−2α)s
.

So, f (s) = f1(s)f2(s)f3(s). Then the first derivative of f (s) is

f ′(s) = f ′1(s)f2(s)f3(s)+ f1(s)f ′2(s)f3(s)+ f1(s)f2(s)f ′3(s)

= αf2(s)f3(s) ·
[

1+ αs ln
e2d

α
+ s(d − 1− 2α)

(
1+ ln

s

N

)]
.

Note that f2(s) and f3(s) are positive. Define function g(s) = 1+ αs ln e2d
α
+ s(d −

1 − 2α)
(
1+ ln s

N

)
. It is easy to calculate that for sufficiently large N , g(2) < 0 and

g(N/2) > 0. So f (s) decreases at s = 2 and increases at s = N/2. Because the second
derivative of g(s) is g′′(s) = (d − 1 − 2α)/s > (c + 1)/2 > 0, g′(s) is increasing and
g(s) is convex, which means that there is exactly one root for g(s), denoted by s = s0, in
the interval [2, N/2], and thus, f (s) is monotonically decreasing in the interval [2, s0] and
monotonically increasing in the interval [s0, N/2]. So, the maximum value of f (s) in the
interval [2, N/2] is determined by the maximum of f (2) and f (N/2), and we require that
both of them are of order o(N−(c+1)).

Since

f (2) = 2α ·
(

e2d

α

)2α

·
(

2

N

)2(d−1−2α)

.

α < d−1
2 − c+1

4 implies 2(d − 1− 2α) > c + 1, and so f (2) = o(N−(c+1)). Because

f (N/2) = αN

2
·
[(

e2d

α

)α

·
(

1

2

)d−1−2α
]N/2

,

f (N/2) decreases exponentially as N increases if
(

e2d
α

)α

< 2d−1−2α . Because the first

derivative of function αα is αα(1+ ln α) and it achieves minimum at α = 1/e, the condition
α <

(d−1) ln 2−1/e

2+ln(4d)
guarantees this. This completes the proof of Theorem 6.11.

12. A PROTOCOL FOR SECURING COMPUTER NETWORK

Theorems 6.9 and 6.10 imply the following three discoveries:

1. Structures are essential to the security of networks against cascading failure models of
attacks.
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2. There is a trade-off between the role of structures and the role of thresholds in security
of networks.
Remark: There are ways to resist cascading failure of attacks. For example, we may
define the threshold φ(v) = 1 for all the nodes v ∈ V . However, this is expensive or
even impossible in real-world applications, because large φ(v) means a high cost to
protect node v. Our theory shows that if the network G is wellstructured, then small
thresholds φ(v) for all the v’s are sufficient to resist the network from cascading failures
of a small-scaled attacks.

3. Neither power-law distribution [4] nor small-world property [48] is an obstacle of
security of networks.

The first discovery is a mathematical principle. From the viewpoint of mathematics,
we believe that structures determine the properties. In so doing, a structural theory of
networks would provide provable guarantee for some of the key applications of network
science. The nature of networks are the networks themselves, instead of just statistical
measures of the networks. The investigation of interactions and structures of interactions
of networks is, hence, essential to network theory and applications.

The second discovery explores that security of networks can be achieved theoretically
by structures of networks, and that there is a trade-off between the role of structures and the
role of lifting of the thresholds. This discovery is in sharp contrast to the current practice of
network security engineering, which basically lifts the thresholds. Exploring the trade-offs
between the role of structures and the role of thresholds in security of networks would
provide a foundation for network security engineering, and hence, it would be exactly the
subject of security theory of networks. Our discovery here plays such a role.

The third discovery is also highly nontrivial. The reasons are as follows intuitively
speaking, power law allows us to attack a small number of top-degree nodes to generate a
global cascading failure, and the small-world property means that spreading is so easy and
so quick, that a small number of attacks might easily generate a global cascading failure.

Our discoveries imply that structure is a new, essential, and guaranteed source for
security, and that the trade-off between the role of structure and the role of thresholds might
provide both a full understanding of security and new technology for security engineering
of networks.

We notice that the proofs of the security theorems, Theorems 6.9 and 6.10, are
complicated systems of a number of topological, statistical, and combinatorial principles
of networks of our security model. The system of the principles and proofs actually explore
a criterion (or sufficient and necessary conditions) for security of networks. In Subsections
12.1 and 12.2, we will establish the criterion of network security, which is hidden in the
proof system of our security theorems.

12.1. Sufficient Conditions for Security

The security model shows that dynamic and scale-free networks can be secure,
for which homophyly, randomness, and PA are the underlying mechanisms, providing a
principle for investigating the security of networks theoretically and generally.

Our security theorems explore some new discoveries between the roles of structures
and of thresholds in the security of networks. The proofs of the security theorems provide
a general framework to analyze both theoretically and practically security of networks.
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It seems surprising that networks of the security model satisfy simultaneously all
the properties stated in the four theorems, i.e., Theorems 6.1, 6.4, 6.6 and 6.8, and that a
merging of the principles in Theorems 6.1, 6.4, 6.6, and 6.8 gives rise to the proofs of the
security theorems, Theorems 6.9 and 6.10.

The proofs of Theorems 6.9 and 6.10 consist of a series of combinations of the the
properties of networks generated by the natural selection of homophyly/kinship, random-
ness, and PA. By the proofs of Theorems 6.1, 6.4, 6.6, 6.8, 6.9, and 6.10, we can summarize
some general principles for the community structure of networks that guarantees the security
of the networks against cascading failure of any attacks of small scale.

Theorem 12.1. (Structural principles of the security model.) Let G = (V,E) be
a network generated by our security model. Suppose that N = {X1, X2, · · · , XN } is
the community structure of homochromatic sets of G, in which each Xi is called a natural
community. Then, the natural community structureN of G satisfies the following properties:

(1) (Overlapping free) The communities are disjoint.
(2) (Small-community phenomenon) The sizes of the communities are bounded by

logO(1) n, where O(1) is a constant, and n is the number of nodes of the network.
(3) (Inclusiveness and exclusiveness) There is no edge between nonseed nodes of distinct

communities.
(4) (King node principle) With high probability, a community has a seed node that has

degree significantly larger than any nodes of its own community and that represents
the majority of external links of its own community.

(5) (Uniqueness) For a community X, the set of neighbors of X that are outside of X and
are nonseed nodes of any community are all in a single community.

(6) (Robustness) Most nodes of a community have neighbors only within their own com-
munity.

(7) (Stability) The degree of a node is contributed mainly by nodes of its own community.
(8) (External decentrality) Both neighbors of a seed node outside of its own community

and neighbors of nodes of a community outside of the community are homogenously
distributed among different communities.

Recall that a community is strong if it will never be infected by the collection of
outside communities, unless it has already been infected by nodes in the community
itself.

(9) (Strong communities) Most communities are strong.
(10) (Infection priority tree) By modulo the small communities, we can extract an infection

priority tree of the network, which is a directed tree in which all the directions are
pointing to the roots.

(11) (Principle of infection among communities) Infections among the strong communities
must be triggered by an edge in the infection priority tree of the network.

(12) (Directness) A seed node links to a nonseed node of a distinct community only if the
seed node is created after the birth of the nonseed node.

(13) (Infection priority tree principle) The infection priority tree of the network has height
O(log n).

Proof. By the proofs of Theorems 6.1, 6.4, 6.6, and 6.8.
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A foundation for community analysis of the security of network is provided by (1)-
(9), and (10) ensures that there is a huge number of strong communities. The existence of
the infection priority tree T is the key to our proofs of the security theorems; (11), (12) and
(13) ensure that cascading procedure among the strong communities has a path of length
O(log n).

By the proofs of Theorems 6.9, and 6.10, we notice that the properties (1)–(13) in
Theorem 12.1 are sufficient for the proofs of the security theorems 6.9, and 6.10.

We will show that each of the properties (1)–(13) in Theorem 12.1 is essential to
the resistance of networks against cascading failures of networks. It is easy to see that (1)
in Theorem 12.1 is a necessary condition. In Subsection 12.2, we will show that each of
(2)-(13) in Theorem 12.1 is necessary for the security of networks.

12.2. Remarks: The Necessary Conditions for Security

In this subsection, we demonstrate that each of the properties (2)–(13) in Theorem
12.1 is necessary for security of networks.

Let G = (V,E) be a network. Suppose that N = {X1, X2, · · · , XN } is a disjoint
community structure of G. We prove by contradiction that each of Theorem 12.1(2)-(13)
is necessary for security of networks. We consider the following cases.

Case 1. Theorem 12.1(2) is necessary for security of networks.
Suppose to the contrary that (2) fails to hold. We consider two subcases.
Subcase 1A. The Xi’s are too small.
In this subcase, the structure N fails to represent the community structure of G.
Subcase 1B. The Xi’s are too large.
In this subcase, if the Xi’s are generated by a PA scheme as that in the security model,

then even a single infected node in a community Xi might infect a large fraction of the
community Xi . Because the Xi’s are large, it is possible that a few infected communities
could constitute a global failure of the network.

Therefore, if the communities are either too small or too large, then the community
structure fails to resist cascading failure of the network.

Case 2. Theorem 12.1(3).
Suppose to the contrary that (3) fails to hold.
Given a community X, we call the nodes in X vulnerable if they are easily infected;

these are usually the low-degree nodes in X.
For two disjoint communities X and Y , if there are edges between vulnerable nodes

in X and vulnerable nodes in Y , then the failure of a single vulnerable node in X might
easily infect a vulnerable node in Y and then the whole of Y .

By the assumption, there are many such edges between the vulnerable nodes of
distinct communities. Therefore, the network fails to resist cascading failures by a small
number of attacks. Therefore, the inclusiveness and conclusiveness in Theorem 12.1(3) are
necessary for security of networks.

Case 3. Theorem 12.1(4).
The king node principle is necessary for security of networks.
By the arguments in Case 1 and Case 2, if a community fails to have strong nodes,

then either the community is easily infected through external links, or the community is
isolated from the network. Therefore, a community needs strong nodes (or king nodes) to
lead the community and to communicate to nodes outside of the community.

Case 4. Theorem 12.1(5).
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Suppose to the contrary that X, Y , and Z are three disjoint communities such that the
strong nodes in X link to the vulnerable nodes in both Y and Z.

In this case, even if there is only one infected node in X, the following cascading
failures could occur:

� All nodes in X are infected due to the heterogeneity of X.
� The vulnerable nodes in both Y and Z linking to nodes in X are all infected.
� All the nodes in Y and Z are infected.

Therefore, a single infected node in X might cause two infected communities Y and
Z. This cascading procedure might continue from Y and Z, leading to an exponentially
increasing of infected communities. This shows that Theorem 12.1(5) is necessary for
security of networks.

This explains the reason why we create only one edge by the PA for a seed node in
Definition 5.1.

Case 5. Theorem 12.1(6).
Let X be a community. By the arguments in Case 3, there are a few strong nodes in X,

and most nodes in X are vulnerable nodes. By the arguments in Case 4, most external edges
of a strong node link to strong nodes of other communities. Therefore, the most vulnerable
nodes in X can link only to nodes in X itself.

Case 6. Theorem 12.1(7).
Let X be a community. By the arguments in Case 5, vulnerable nodes in X have this

property, obviously.
Let x0 be a strong node of X. Suppose to the contrary that the degree of x0 is

significantly contributed by nodes outside of X. In this case, x0 is easily infected by its
external neighbors. This makes X a vulnerable community.

Case 7. Theorem 12.1(8).
By the arguments in Cases 3, 4, and 5, every community has only a few strong nodes,

the external links of a community are mainly through its strong nodes, and external edges
of a strong node mainly link to strong nodes of other communities. Therefore, the external
links of a community X are homogenously distributed among the strong nodes of other
communities.

External links of a community are homogenously distributed in different communi-
ties.

By the arguments in Case 2, a strong node of a community has external links mainly
to strong nodes of other communities. By definition, a strong node is unlikely to be infected
by the collection of its external neighbors, meaning that the external neighbors of a strong
node cannot be too many and must be homogeneously distributed.

Case 8. Theorem 12.1(9) is necessary.
Suppose to the contrary that many communities’ Xi’s are vulnerable. Then clearly

the community structure N fails to resist cascading failure of the network.
Case 9. Theorem 12.1(10), (11), and (12).
By the arguments in Case 4, there exists an infection priority tree T such that an

infection from a strong community X to a distinct strong community Y occurs only through
an edge of tree T . Suppose to the contrary that the infection priority tree T is undirected.
In this case, there are arbitrarily long infecting paths in T .

Therefore Theorem 12.1(10), (11), and (12) are all necessary for security of networks.
Case 10. Theorem 12.1(13).
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Suppose to the contrary that the infection priority tree T has a long path from a
leaf to the root. In this case, a single infected node might cause a long chain of infected
communities. Therefore, Theorem 12.1(13) is necessary for security of networks.

We thus conclude that each of the properties in Theorem 12.1 is necessary for security
of networks.

By the arguments in Subsections 12.1 and 12.2, we have that a community structure
N of a network G resists cascading failure of G by attacks if and only if all the properties
in (1)–(13) of Theorem 12.1 are satisfied.

This explains the reason why our model in Definition 5.1 proceeds in a carefully
organized way as it is. In particular, in the definition, we require that a seed node can
use the PA to create ONLY one edge. (We simply cannot create more than 1 such edge,
in engineering, there is no such edge in fact.) This again indicates that security is an
engineering requirement, which can only be achieved carefully, instead of arbitrarily or
freely.

Therefore, community structure does resist cascading failure of attacks if and only if
a number of combinatorial principles are satisfied. The result demonstrates that the role of
community structure in security of networks is conditional, contrary to the naı̈ve intuition
that a community may protect members of its community [42, 50], and that there is no
simple statistical measure of networks that guarantee the security of networks.

12.3. Computer Network Engineering

Currently, most models of networks have a background of social interactions and
nature evolving. Consequently, the networks generated by the models are usually far from
the real engineering networks, such as the internet topology. In a recent survey, [49]
proposed a network modeling of reverse-engineering. This explored a community structure
of the real Internet with all the properties as stated in our principles (1)–(13) in Theorem
12.1, except that the nodes responsible for global links have small degrees. This property
is easy to achieve by a reduction from the networks of our model. It proceeds as follows:

Let G = (V,E) be a network generated by our model. Let X be a natural community
of G and x0 be the seed node of X. We replace x0 by an edge (x in

0 , xout
0 ) such that x in

0
and xout

0 play the internal and external roles of x0, respectively. That is, every edge from
a node x ∈ X to x0 is replaced by an edge (x, x in

0 ), and every edge from a node y 	∈ X

to x0 is replaced by an edge from y to xout
0 . Let H be the network obtained by extending

the seed nodes of G by the reduction above. Then H is very similar to a network by the
reverse-engineering introduced in [49].

By construction, H consists of some small communities, each of which has a base
station that is central to its own community, and a representative node that links to the
central node and to nodes outside of the community. Now, the global core of the network
is basically the part of external links of the seed nodes, which are small, and each of which
has a small degree.

However, in this case, H is no longer secure. We demonstrate that the security proofs
of G cannot be carried to H . The reasons are as follows. In H , for every community X

and its seed node x0, we replace it by a link (x in
0 , xout

0 ). In this case, we still regard both x in
0

and xout
0 as being in the community X. We say that a node y is strong if the degree of y

contributed by its neighbors outside its community is negligible compared to the degree of
y. From this understanding, x in

0 is still a strong node, but xout
0 is no longer a strong node. In

fact, we may regard xout
0 as the boundary of community X. Then, almost all external links
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of a community are through the boundary of the community. Now, the following infection
of nodes among different communities occurs with high probability. Suppose that X is a
community and its boundary xout

0 has been infected. By the construction of H , it is highly
likely to have a nonseed node y in a community Y 	= X such that there is an edge between
xout

0 and y. Because xout
0 is infected, and y is nonseed, it is highly likely that y is infected.

Furthermore, many nodes in Y , including the pair y in
0 and yout

0 generated from the seed y0

in G, are infected. Because all the boundary nodes are weak, yout
0 could easily infect all

its neighbor boundary nodes such as aout
0 , bout

0 , · · · . Furthermore, all the infected boundary
nodes aout

0 , bout
0 , · · · simultaneously infect its vulnerable nonseed nodes outside their own

communities. This shows that H is no longer secure.

12.4. A Protocol for the Security of Computer Network

By the arguments in Subsection 12.3, the reduced network H from the network G of
the security model is insecure, so cannot be the model of a real-world computer network.
However, there is an easy way to secure H . Let H ′ be the graph obtained from H by
deleting all the edges between boundary nodes and nonseed nodes outside the communities
of the boundary nodes. For H ′, the obstacle of security for H disappears, and the proofs of
security of G can be carried out to H ′. This gives rise to a model of a computer network
that is guaranteed to be secure.

Therefore, our principles (1)–(13) in Theorem 12.1 reflect the phenomena of engi-
neering networking.

The reduction above also suggests a generator of networks that very well simulates
the engineering of computer networks and guarantees the security of the networks.

12.5. Expander core theorem of computer network H ′

An important property of H ′ is the following result.

Theorem 12.2. (Expanding core theorem.) For a > 0, and d ≥ 3, let G be a network
of the security model with n nodes, affinity exponent a and average number of edges d.
Let H and H ′ be the networks constructed from G in Subsections 12.3 and 12.4. Let K

be the induced subgraph of all the boundary nodes xout of H ′. Then, K is an expander, or
equivalently, there is a large constant α > 0 such that for every subset S of the nodes of
K , the conductance of S in K is greater than or equal to α.

Proof. By Theorem 6.11.

By Theorem 12.2, communications in K are easy and quick.
Therefore, our theory provides a foundation for the principles of computer network

security. However, practice principles based on our theory must be built based on computer
network experiments, for which one of the main tasks is to determine the appropriate
affinity exponent a for the networks with real-world sizes. This problem is not solved by
our theory, because our security theorems assume the affinity exponent a > 4 or even > 6,
and even in this case, we assume that loga n is negligible with n. This assumption fails to
apply to the real-world computer networks.
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13. CONCLUSIONS AND FUTURE DIRECTIONS

We proposed the definition of security of networks, and the security model of net-
works. It was shown that with appropriate choice of affinity exponent, the networks gener-
ated by our model are provably secure. We also proposed a protocol for securing a computer
network based on our model of networks. It is conceivable that our theory, a dynamic theory
of networks, provides a foundation for a security theory of networks in a wide range of
areas such as computer engineering, communication engineering, industry, nature, society,
economics, finance, and Internet finance, etc., to name a few. Our theory suggests a number
of new directions for future network study, for which we introduce some of the important
issues as follows:

(1) Security protocols of industry networks, economics networks, finance, and Internet
finance networks, and the security criterion of computer networks.

For security engineering of networks, the most important issue would be to define
a measure to determine the Network Security Index (NSI). This criterion, once defined,
allows us to quantitatively understand the security performance of a given network and
to establish a combinatorial optimization theory for security of networks.

(2) The roles of the affinity exponent a in the dynamics of real-world networks, including
the theory of resisting cascading failures, the theory of emergence of cooperation in
evolutionary games, and the principles of self-organization and social organization in
networks.

In the real world, the networks are finite graphs, although large. For the networks
of the security model with sizes bounded by a large number N , the dynamics of the
networks are determined by the affinity exponent a. In this case, if a is too small or too
large, the networks of the model might fail to satisfy the dynamics desired. The issue
is to characterize the desired affinity exponent a with fixed number N of nodes of the
networks and to develop new applications based on the analyses.

(3) Evolutionary game theory on the basis of the security model
One of the most important topics of network dynamics is the theory of evolution-

ary games, because the security model follows some of the ideas of Darwin’s natural
selection [12]. The model may provide a foundation for an evolutionary game theory.

(4) Robustness of networks
Robustness is closely related to, but certainly different from, our security theory,

here. It would be very interesting to develop a robustness theory of networks.
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[15] P. Erdös and A. Rényi. “On Random Graphs.” Publ. Math. 6 (1959), 290–297.
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