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ABSTRACT

This paper proposes a maximum-likelihood method to update travel behavior model
parameters and estimate vehicle trip chain based on plate scahinenghformation from

plate scanning consists of the vehicle passing time and sequence of scanned vehicles along a
series of plate scanning locations (sensor locations installed on road network). The paper
adopts the hierarchical travel behavior decision model, in which the upper tier is an activity
pattern generation model, and the lower tier is a destination and route choice model. The
activity pattern is individual profile of daily performing activities. To obtain the reliable
estimation results, the sensor location schemes for predicting trip chaining are proposed. The
maximum-likelihood estimation problem based on plate scanning is formulated to update
model parameters. This problem is solved by the Expectation-Maximization (EM) algorithm.
The model and algorithm are then tested with simulated plate scanning data in a modified
Sioux-Falls network. The results illustrate the efficiency of the model and its potential for an
application to large and complex netwadses.

Key Words: maximum-likelihood estimation; plate scanning; EM algorithm; trip chaining
1. INTRODUCTION

The underlying assumption of the four-step model ignores the emendent decision of trips,
which may be due to time and/or space constraint, made \wldra over each day. This
assumption delinks the relationship between human daily actiane travel pattern. The
activity-based model (ABM) has been proposed to overcome this limitatiwhich the travel
demand is derived from activity participation and the sequemgesterns of activity behavior
(Bha et al., 1999). The structure of ABM can be utility maximization-8gdsey. Bowman et
al., 2006, 2008 or rule-based approach (e.g. Arentze and Timmermans, 2004)utilibhe
maximization-based ABM#ave been widely developed to evaluate the traffic policres
many cities such as Portland, Columbus, Atlanta, and Sacra(veawvsha et al.2004.

Traditionally, activity-based models are estimated from travel diary survey data (TD).
These estimated results can be biased due to low-sampling size, inaccurate travel diary data,
etc. For instance, considering the complex activity-travel decisions in ABM, approximately
only 1% of the population was used to estimate the ABM parameters (Bowman and Bradley,
2008). In addition, the under-reporting of trips, due to response burden or uncompleted
memorization of trips, leads to inaccurate travel dairy data (Bricka and Bhat, 2006).
Consequently, the predicted travel demand from ABM based on TD can be inconsistent with
actual roadside data (e.g. link count). In order to calibrate ABM parameters, Bowman et al.
(2006) developed a comprehensive model calibration approach to calibrate the ABM
parameters with travel survey data. According to his approach, some paramgterstility
of activity-travel decisions are heuristically adjusted to reproduce predicted traffic flows that



fit to traffic counts. In recent years, Cools et al. (2010) also coedédM calibration by
heuristic method. In their study, ABM parameters are adjusted by randomly weighting the
chosen activity-travel patterns so as to reproduce the external trip matrix information. The
heuristic-based calibrations, however, still latd#tistical measures on how well the calibrated
ABM parameterganreproduce the collected roadside data (e.g. linki).

In the other related problems of traffic model calibration, the problem of estinaging
table information from link counts has been a long-running themedgortation network
analysis. The estimation of trip table can be classified by two apm@m®a¢) top-down
approach, and (ii) bottom-up approach. For top-down approachsfep model is generally
used to reproduce internal origin-destination (OD) trips from intéraific zones. In addition,
these OD trips associated with the trips originating from exterrféittemnes (external OD
trips) are used to calculate the trip table from this approach.dfomtine, to calibrate the trip
table, trip table adjustment to fit with link counts is heuristicabypducted (e.g. applying of
origin-destination K-factors (Ortuzar and Willumsen, 2011))pfavide the statistical method
for estimating trip tables, the observable data from the road netf@aklink counts) can
directly be utilized in the model calibration from bottom-up apgmody specifying the
observable data on road network as the preferred outputs ofaihel, the parameters of the
model (trip table) can be adjusted accordingly. For instancegdiniats and prior trip table are
directly used in the model to statistically estimate trip table filaisiapproach (Bell, 1991,
Cascetta, 1984, 1993; Maher, 1983; Watling, 1994; Yanh, €992, 1995). In the context of
intelligent transportation systems (ITS), Hu et al. (2001) extended the problem obkeip ta
estimation by using adaptive kalman filtering to estimate dynamic assignment matrices and
OD demands. To consider other traffic model estimations, Lao et al. (2012) devaloped
Gaussian mixture model to estimate travel speeds and classified vehicle volumes using loop
detectors. Also, Yuan et al. (201&dopted the traffic flow model to predict the travel speeds
using two traffic data sources (loop detector and floating car data) based on kalman filtering.

Ideally, the data used in the estimationABM parameters should be collected by
GPS-based travel surveys (activity-travel data collected by the GPS equipment attached to
probe vehicles or carried by travelers). For instance, Axhausen et al. (2003) dewwioped
automated process to predichvelers’ destinations and trip purposes from vehicle GPS
traces. In additionFrignani et al. (2010) also collected high accurate activity-travel data (e.g.
chosen activity type, destination and mode) from internet GPS-based interaction travel
feedback system. To identify the travel path using vehicle GPS traces, topological map-
matching method is normally used. Due to error in positioning probe vehicles in the digital
map, this method sometimes fails to identify the correct travel path. In recent year, Velaga et
al. (2012) improved the performance of map-matching method by using error detection and
correction technique. Nevertheless, the deployment of the GPSremntiph a large scale to
collect activity-travel data for ABM parameter estima may not be appropriate due to low
response rate or high cost of GPS mobile devikkernatively, the other method, which can
possibly identify activity-travel data, is plate scagn{PS). Compared with the GPS-based data
collection method, the information obtained fromtg@lacanning is similar to the GPS-based
data in the context of tracking the vehiclés contrast plate scanning does not require the
installation of the GPS equipment on the testedclehi Based on PS data collection, the
information of these vehicles is obtained pre-determined locations on road network.
Furthermore, the process of plate scanning canifgght same vehicles traveling along a
series of plate scanning locations by matching theenke plate numbers. With this method of
data collection, plate scanning is considered toobe of methods to collect vehicke-
identification (VI) data. The data from plate scagnoonsistf: (i) the vehicle passing time at
plate scanning locations, afij sequence of scanned vehicles along a series efgdahning



locations on road network. The accuracy of collectine above data from plate scanning
methodis determined from detection rate and identificatiote.rd’he detection rate is the
proportion of the number of vehicles that pass selosations and can be detected (i.e. vehicle
is known to pass at the sensor, but the licenge plamber of the vehicle may or may not be
identified by sensor)By considering on the detection rate fré&¥§ most of vehicles pasgn
sensors can generally be detected. Consequenglyddtection ratés generally higkr than
other VI methods (e.g. tag reader system). In addiieentification rate is the proportion of
detected vehicles, in which their license plate nusgan be correctly identifiedased on
intelligent vehicle identification system, Ozbay datelebi (2005) proposed the method of
advance license plate recognitions with more tl@#b 8f vehicle samples correctly identified.

In this study, he statistical framework for updating of travel behaviomdelgarameters
and estimating vehicle trip chain from plate scanii?fg) is proposed based on the hierarchical
travel decision modeThis framework was motivated by similar works don¢hia area of trip
table estimation (i.e. particularly based on bottgrapproach). Nevertheless, due to the nature
of partial observations, the selection of the routd activity/location, is not fully observed
from PS Thus, in the estimation probletthe “missing variables” are defined to represent the
lack of the routes and activity/location data. Tdaper then defines a maximum likelihood
function for this problem based on .PBhiis proposed model was solved by the Expected-
Maximization (EM) algorithm so as to avoid the combmnial nature of the missing variables.
The remainder of the paper is organized as folldvst, some basic components of the
proposed model are described in next section, imgudotation and model formulatiobata
collection from PSs also describechithe third section. The fourth section then formulétes
maximume-likelihood estimation problem (MLP) from plateanning data and solves this
proposed MLP. The optimal location BfS stations (i.e. generallyalled “sensor locatioi's
throughout the papgis presented in appendix. Section 5 then tests the proposed model and
algorithm with simulated PS data on a test netwohle final section concludes the paper.

2. NOTATION AND MODEL FORMULATION
Considering the approach to update travel behavior model parameters and estimate vehicle
trip chain from plate scanning, the following notations are used throughout the paper:

Sets of network components

O =set of origin zones. L =setoflinks|elL.
D = set of destination zones. N = set of nodes.

M easur ement variables (of observed usej i

K = the link that useris identified in order k of links to be scanned (stad at senso k

Yiia = Sensoro-sensor travel time from sensor k to sensor k+1.
t, = time moment of vehicle scanned at sensor k.
m. = travel period of vehicle scanned at sensor k.

Sets of measurements (of observed user i)
_ set of links installed with sensors (scanned links) identify

i i .
={. P the same vehicle (or sensor path x).
Y, :{yLZ...,yk’kﬂ,...,ny_l’Kx} set of sensote-sensor travel times between two consecu
sensors.

T ={t.. tk,-- o} set of time moments of scanned vehicle though sensors.



Mg ={m,..., nL rylx} set of timestamp periods of scanned vehicle though sen:

Estimation variables

U, = mearin-vehicle time on route r at time period m.
S, = mean duration of an activity a.
0.,0. = coefficient of route choice and activity choice respectively.

r’~a

di  =travel demand of trip chain h associated with activity pattern f (or activity chain (f,h
travelling on travel period seﬁ?éh scanned by sensor path x.

2.1 Network and activity choice representation

Consider a traffic networkN,L) with activity location Ip) in each traffic zonlewhereNZ
is the set of zone centroids ahdis the set of links in traffic zone z, respectively,(c N and
L, < L). In addition, the activity locationld) is assumed to virtually locate at the zone
centroid where the zone centroid is the node, representative of all real activity locations in
that zone [o e N,).

According to daily activity-travel participations, useobserved vehicle™) makes a plan to
perform activity pattern Let A ; denote the activity pattern consisted of an ordered set of the

activities which are daily scheduled to be carried out:
A, ={a,..., &, g } forfell,. F} (2.1a)

whereF = the total daily activity patterns.
a,= an activity performed in sequence ¢ of activity pattemef{l,...,Q;}, andQ; is the

total number of activities included in activity pattern f.

For instance, if the activity pattern (=1) is Staykome(H)-Working(W)-Stayat-home
(H), A, ={H,W, H} .

Individuals can then select trip chain which is coesisf anorderedsd of activity locations
andan ordered set of paths travelled between any two adjacent activity locations. Given the

list of activities in the specified activity pattern performed by individudls, the trip chairh
(the combined set of locations visited and paths travelled by trip makers starting at origin
zone o)is denote ad R$, , which is expressed as follows.

LR$, = {(10y,.+,10g, 100, )1 CrpsFepgrn +-bop-10p ) (2.1b)

forhefl,..,H:}, lo =0, lq,eN,, qe {1,....Q, }

wherelo, = activity location g where individual performs an activity, N, .
Q;, = the total number of visits at activity locations of individual who makes trip chain h of

activity locations and paths associated with activity pattern f.
H, = the total number of trip chains of activity locati@ml paths associated with activity

pattern f.

! A traffic zone is a special area designed by state, whidhlly consists of one or more census blocks.
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q,q+1 ™

= path travelled from activity locatiolo, to lo,,; .

Note that a trip chain that begins and ends at the sativity location [0, =10, ) is called a

tour. A tour of trip chain begins at home is called home-based lto@ddition, individuals,
who make trip chain h associated with activity pattern f, perform activity Ttfain

2.2 Assumptions

The general assumptions for this study are:

(i)

(ii)

(iii)

(iv)

(V)

(vi)

Travel behaviour model based on utility maximization-based approach (e.g. Bifulco et
al., 2010; Bradley et al., 2010; Bowman et al., 2006, 2008sha et al., 2004) is adopted.

In particular, in this study, a group of people who makes at least one out-of-home
activity and drives alone without changing to other modes of trangpodnsidered.
Consequently, neglecting mode choice consideration, activity-travel participations of this
group of people can be distinguished into two tiers (higher tier: activity pattern and
lower tier: trip chain (route and activity location).

The set of feasible activity patterns and trip chains of individual travelers is assumed to
be given. In addition, the travel pattern of feasible trip chains is assumed to be home-
based tour. These assumptions have also been adopted by the related studies (e.g. Li et
al., 2010; Maruyama and Sumalee, 2007).

The daily activity-travel schedules of trip-makergolve the decisions of activity pattern
and trip chain. Trip-makers base their decisions Bhotivity and travel schedules on a
tradeoff between the utility or benefits derivednfractivity participation at different
locations and the disutility incurred by travel betwectivity locations. Here, we assume
that all individuals are utility-maximizing decisionakers, that is, they schedule their
activity patterns/trip chains or activity chairte maximize their perceived trip utility (e.g.
Feil et al., 2009; Flotterod et al., 2011; Li et al., 2010)

The utility gained from activity participation depends on the start time cdictieity and

its duration. In contrast, the disutility of travel between activity locations depends on the
in-vehicle time (e.g. Flotterod et al., 2011; Li et al., 2010; Feil et al., 2009). In this study,
the utility of activity and travel is assuméal be a linear function with respect to ihe
vehicle time and activity duration.

The in-vehicle time and duration of an activity follow a probability distribution
parameterized by its mean and variance (independent normal distribution type).

For disaggregated travel behavior model (e.g. activity-based|mdue utility of activity
pattern at upper tier is generally derived from socio-demograghigs household and
personal characteristics) and logsum utility of trip chain at davee (Bowman et al.,
2006 ,2008). However, in this study, we focus on the methquleict the demand of
vehicle trip chain from plate scanning at short-term operatioty@asawhich can be
varied from day to day. Socio-demographics may not describeese tariations of
activity pattern demand. In contrast, these demand variatiorstrargly relatedo the
parameters (in utility function at lower tier) predicting trip-chain demn&onsequently,
we assume that the utility of activity pattern is solely derivedh the logsum utility of
trip chain at lower tier (see (2.00

2.3 Mode formulation
Supply side

2 Activity chain is the combined decision of travelers on activity pattern and trip chain.



Consider a traffic networkN,L) whereN the set of nodes ard is and the set of links
in section 2.1, there are two types of network elements that are defined as follows.

Vehicle path. A vehicle path represents a run of vehicles on the links between two locations.
Each vehicle path contains informationiarvehicle time. The in-vehicle time on any path
during time period m, denotedlas,, is equal to the difference between the departure time of

the vehicle from and its arrival time at that path, g, = $%m—vm, Wherev,,and 9, is

the time at which the vehicle begins and ends its journey onrpadhing time period m,
respectively.

Activity link. An activity link represents a place where an individual performs a certain
activity. Individuals gain utility or benefit from participation in an activity that is dependent
on the activity start time and duration. The duration of activity a, denotbgamsactivity

link, is equal to the difference between the times that travelers enter to and leave from that
link, i.e.b, = w,—7 5, Wherer,is the enter time of traveler at activity link (or the activity

start time) andwo, is the departure time of trawelfrom activity link (or the activity end time).

In addition, the time windows of travely|,, 9], can be defined by travel periods, which
canalso be determined as a function of departure time and enter time of vehicle path, where
time period ofv,,, and 4, 0(V,9) =m; 7, <V, S < @, for time periodme{l,...,M}(M

is the number of travel periodsgnd z,,,,@is the start and end time of time period m,
respectively. Thus, we can also define the set (iedewf travel periods of individuals

travelling between any two adjacent activity locations of activity chain (ﬂﬁ,, as follows.

th
Ce :{”1,2---’mq,q+1’---’”bm4@m}’ eefl,.... B (2.2)
where E is the total number of travel period setg. ,is travel period of individual
traveling on pathq,qﬂof activity chain (f,h.

Furthermore, if user (observed vehicle i) travels on vehicle path (or simply called path)
during travel period seft?éh , vehicle path set including travel period information can be
defined as follows.

RM ?’n 2 mlz) q 1 mq q+1) ('bm—l,an ’rQ),h—lQ1h )} (2-3)

According to assumption (v), we assume that both durations of performing an activity a at
location g and traveling on paﬂa ol during travel period m follow normal distribution,

activity durationp, , and in-vehicle time,b;,,, can then be formulated as follows.
2
b, " N( s3,(od) ) foracA, (2.4)

2
b, N( U (0%) ) forrme RM®, (2.5)
where SY , ( a) is the mean and variance of duration of an activity a at location q

ut ,(aﬁm) is the mean and varianceinfvehicle time on patin

aqH during travel period m.



According to assumption (iv), the utility of activity participation and disutility of travel is
represented by the utility of trip chain h associated with activity pattern f during travel period

setCéh V&, Which can be written as follows.
Vfi = Z Vperf (a) + Z Vtravel( r, @ (26)
aeh; rmeRM§,

where V(a) .. is measured utility of performing activitg, and Vi, (r,m)is measured

disutility of traveling on route during travel period m, which essentially have the following
forms:

Ve (8) =6, S; foracA; (2.7)
V,avel (1M =6, -ug for rme RM ¢, (2.8)

whered, , 6. is the coefficient ofan activity choice and route choice, respectividy >0,
6,20, 6,,0,0).

In addition, the coefficienbf activity choice,f,, representing the marginal utility during
performing an activity a at its duration dependsvem factors: (i) type of activity pattern, f, and
(ii) activity start timer , (e.g. Bifulco et al., 2010; Bowman et al., 20@)nsequentlyf, can
be classifiecby the informationof z and f asé,(z, ) or a simplified form of6,(m, f) for
time period ofzr, 8(z) =m ; r,, <7 < @, wheremis travel period, and,,, @,,is the start

and end time of time period m, respectively.

m?

Note that the maximum likelihood estimation problem and solution algorithm for updating
vehicle time/activity duration and coefficients of utility of performing activity and traveling
based on utility function (2.6), (2.7), and (RaBe presented in section 4.

Demand side

The purpose of the demand modeto explain the traveler’s choice of activity patterns and

trip chains in terms of the attributes of the travelers and of the available atavélypattern
alternatives. The basic choice alternative which is being modeled is typical daily activity
patterns and trip chains (or activity chains) of travelers. It is assumed that the choice sets of
activity-travel patterns conducted by travelers are given (assumption (ii)).

According to assumptio(i), the structure of the demand model is nested logit. There are, of
course, other mathematical forms, which associate choice probabilities with attributes of the
alternatives (e.g. structural equation and probit model). The nested logit model, however, has
the advantage of representing reasonable hypotheses about choice behavior with correlation
in the nest (level of decisions) while remaining tractable for empirical estimation (Ortuzar
and Williams, 2011). The model consists of two levels of decisions. The higher tier model is
an activity pattern demand generation (2.1a), and the lower tier represents a trip chain
(activity location/route choice (2.1b)) model. According to assumption (vi), the utility of
activity pattern in this study is assumed to be the logsum utility of trip chains belonging to
specified activity pattern at lower tiers. The probability that individuals select trip chain h
associated with activity pattern f is then expressed by



exp{uv; ) extly V)

m=F R/if= (2.9)

H
éle)(p(llflvg ) dz:]il eXF(‘//zv fd )

wherey, , v, = scale parameters, b = index of activity patterns.
d =index of trip chain associated with activity pattern f.
V; = logsum utility of trip chains belonging to activity pattefn

V,, = utility of trip chain h associated with activity pattdrat lower tier (see (2.6), (2.7), and
(2.8) for utility formulation).

\ 1), T
Vi = | = |In X exp(y,Vy ) (2.10)
v, d=1

Limitations of demand model

The demand model as developed here incorporates several behavioral assumptions. The most
fundamental assumption is that travel arises from a #awedloice process in which the
alternatives that are considered are complete daily activity-travel participations. These
activity-travel participations are constructed by two hierarchical levels of decisions (activity
pattern and trip chain). In addition, the utility of these participations is simply derived from
related activity-travel attributes (in-vehicle times and activity durations). There are, however,
some limitations of such a demand model:

e As the activity-travel interactions between members in household are not captuied in th
model, the trips in trip chains made by individualsiadependent to other travelers.

¢ Regarding to assumption (i), a single group of trip makers is considered. In practice, the
preferences of activity pattern or trip chain (or perceived utility) can be different from one
group to others (taste variations). These preferences are normally dependditidual
or household demographics, which are not included in the utility function. This utility
function is simply assumed to be identically perceived by the members of the same
behavioral homogeneous group (e.g. Li et al., 2010). Consequently, model coefficients
(6) are derived from the utility function only responding to the particular group.

e Regarding to assumption (ii), the trip makers have the fixed plan on conducting all
activities in the daily activity patterns without rescheduling such a plan. This assumption
would be unsuitable when non-scheduled activities are the major concerns of the.analysis
Nevertheless, the advantage of this approach is that the model estimation results are
consistent and efficiently used to test the new transportation policy applications.

The demand model, of which its limitations are described above, is used for a general
framework to update the demand model parameters and estimate vehicle trip chains from
plate scanning. The extensions of this framework such as the complex demand model
representing activity-travel interaction of members in household or other groups of travelers
can be adopted for further studies.

Data needsfor model estimation

In generalthe model estimation is constructed by ugsiagelers’ attributes ifi-vehicle times

and activity durations) and chosen activity patterns and trip chains of travelers. However,
these attributes and chosen activity patterns/trip chains are not directly observed by plate
scanning. To obtain such information, the method is presented in section 4 and 5.



3. DATA COLLECTION FROM PLATE SCANNING

For networN, L), let | denote the link installed by a sensor scanaixghicle license plate

(simply called scanned lidk). When useii makes an activity patterihassociated with trip

chain h traveling on the network, user i has been scanned by a series of sensors locating on
the scanned links. Path traveled by usean be represented by an ordered set of links that
this user orderly passes. Compared to travel path, sensor path is the path or partial path of
travelers represented by the ordesetlof scanned links identifying the same vehicle in the

sequence order using license plate matching technique. Obsersed gath x of user iY)q :
can be defined as follows.

Yooe{l'sl s L} forxedd, .., X} (3.1)

wherel,' = the scanned link that usieis identified in order k of links to be scanned.

K* = the total number of times of links to be scanned in sensor path x.
X = the total number of sensor paths.

Other information that we can collect from plate scanning is the time moment of user i pass
through scanned link' . The ordered set of observed time moment of uisedefined by:

T ={t,...t,,..t .} fork=12_, K. (3.2)
Wheret,‘( = the time moment that user i passes the sensor k on scannEti link

In addition, the different of time moments between any two adjacent scanned links, which are
registered by user i, can be represented by the observed s®esensor travel time. The
ordered set of observed sensmisensor travel timey, , of user i can be described as follows.

Y, :{y‘m...,y‘kkﬂ,...,nyfl’Kx} , Vi >0 fork =12, K*-1. (3.3)

wherey, ,.,= the sensote-sensor travel time from scanned lifhk (sensor K) td,, (sensor
k+ 1)’ yik,k+1: tIi<-+—1_tik "
According to the model resolution, which is usually represented in the unit of time period of a

day, we can directly convert the ordered the set of observed time moment ipf userthe
ordered set (indeg) of timestamp periods (time periods of a day) as follows.

Mg = &(T) ={ A, 5, S Qe )} fOrk =1.2,.., K 6t)=m, ;7,<t, < @, (3.4)

where m|, = timestamp period of usépassing sensorda scanned link, ' .
r..,@,,= the start and end time of time period m, respelgti

To illustrate data collection from plate scanning, a simple network with 9 nodes (including
two zone centroids) and 12 links is defined in Figure 1(a). User 1 and user 2 perform trip
chain H1W2-H1 on path 1 and path 2, respectively (Figure 1(b)). According to data
observed from plate scanning, the partial paths of user 1 and user 2 are observed by sensor
path 1,(Y,={,2,5,12}), and sensor path 2Y, ={1,7,12,6}), respectively Furthermore, as

user 1 and user 2 passed these scanned linkseaasl Y, (Figure 1(c)), the ordered set of
observed time moments at scanned limks= {8:00,8:15,8:28,17:30} and,_, = {8:03,8:20,
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17:30,17:47}, could be recorded. Given two possible travel periods, period 1 = [6:30-9:30]
and period 2 = [16:30-19:30], the ordered set of timestamp period of user 1 and Msgr 2 (
={1,1,1,2} andM _, = {1,1,2,2}) could be calculated from ordered set of time momeént,

In addition, the observed sengorsensor travel times of both users (in min.), whae
calculated from the difference of time momentswai tonsecutive sensors, are equal, 1o
{15,13,542} andY,_,= {17,550,17}. Note that the values of the sertsesensor travel times

from scanned link 5 to scanned link 12 of user 2 (&n.) and from scanned link 7 to scanned
link 12 of user 2 (550 min.) are high, because thasiees include duration of work at zone 2.

Home (Hl) D—L+——>)—2+—(@

Sensor location

Zone centroid /activity
location of zone 1

Node 3

|
le @

Oneway link 1
H1 Stayathome at zone 1

12 2 W2 Work at zone 2
Work (W2)
(a) Network components

H1 W2 H1

D000 5@ HE->E—>@ Path 1 traveled by user 1

D000 @1302>E@—>G—2>@ Path 2 traveled by user 2
(b) Vehicle path of trip chain HW2-H1

@D—+>)—>@D—>D- >@—>0) Sensor path 1 traveled by user
_>_ _, Sensor path 2 traveled by user

(c) Observed sensor paths

Figure 1 Network description and sensor path.

4. UPDATING OF TRAVEL BEHAVIOR MODEL PARAMETERS AND
ESTIMATION OF VEHICLE TRIP CHAIN BASED ON PLATE SCANNING

4.1 Maximum likelihood estimation problem

According to assumption (ii), the choice sets of activity chain (f,h) of travelers are given
(,e. f €{l,...,F*}andhe {1,....H'}), where F is the total number of feasible activity
patterns (2.1a) derived from sensor path x, Bifdis the total number of feasible trip chains
(2.1b) associated with activity pattern f derived from sensor path x
For each feasible choice of activity chains, time of the day of travelers can be represented by
the set of travel periods daily travelling between any two adjacent activity locations. In
addition, travel period of traveler§3éh in (2.2)), can be directly distinguistifrom observed
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M. in (3.4), where the sensors are specifically located on the dsi#tee proposed sensor
location schemes in appendix A.

Consider user i traveling on sensor patllluring timestamp period sat, (3.4), T the

chosen activity chain (f)hduring travel period séﬁéh (2.2) can directly be observed from
plate scanning, then the indicator variables can be obsasvetiows:

1, if usern , is sequentially detected by sensokl,.,K fand matched with

z' =4 sensorpatk , and selects activity chaih (, ) duringltperiod see . (4.1)
0, otherwise.

In order to obtain the updated model parameters, rewrittaneotor form,Q2 = {6, v, U, S ,

the conventional maximum-likelihood of all users for nested logit choice modgl i§2.9
formulated as follows:

EX Ne FX Hf

a @) =T TTITTTTTT(PE@)™ (4.2

x=1 e=1 i=1 f=1h=1
where E = the total number of travel period sets (2.2) derived from sensor path x.
ne =the number of vehicles observed by sensor ydthring travel period sefE;h :
P]f;ez probability of user i selecting activity chain (f,h) on travel period&gt by (2.9),
which the feasible choices of activity chains are derived from sensor path x.
However, the chosen activity chain (f,h) of usend the model’s attributes (i.e. mean in-

vehicle time,ul, € uin (2.8) and mean activity duratio8J € S in (2.7)) are not directly
observed from plate scanning (iéefn,uﬁm, andS]are not directly observed).

According to assumption (v), we assume that lmtvehicle time(u], (o11,)?) and duration
of activity (S3,(c3)?) are distributed normally and independently. As a result, for any

travekrs possibly performing activity chain (f,h) during travel period@éqand identified

by sensor k and k+1 in the network, the sentsaensor travel time between sensor k and
k+1, which is an aggregated form at,and SJ, also follows the normal distribution shown
in (4.3, (4.4), and (4.5) below.

Vi 0 N(E(yp), (o)) (4.3)
E(y‘ﬁ):ufm+§; for a'eA,, rmMeRMY (4.4)
(') = (1) > +(ck)? for a e A, rmeRME (4.5)

wherey's = random sensaie-sensor travel time between sensor k to k+1 of travelers

performing activity chain (f,h) during travel period @f .

E(y©),c'S = mean and standard deviationydf, y*°eY andc'S eo .
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u<.,ok. =mean and standard deviation infvehicle time between sensor k to k+1 of

travelers performing activity chain (f,h).
S§,a'§ = mean and standard deviation of total activity durations of travelers performing
activity chain (f,h) between sensor k to k+ 1.

According to travelers performing activity chain {fhif there is no activity performed
between sensor k to k+1, sensoisensor travel time will be equsd the in-vehicle time.

Thus, sfand o will be excluded from (4.4) and (4.5).

To estimate zon&s-zonein-vehicle time, network example in Figure 2 is used to illustrate
the relations between observed sensesensor in-vehicle time and modeled zooeone
in-vehicle time. The expected travel times from activity locafzmne centroid) o g+1 can

then be presented in a form of mean setsgensor travel time from any sensor k to kﬁﬂn,,
as follows.

ut =78+ (- RNt for kel K*-3, qefl....Q} (4.6)

whereu], = meanin-vehicle time of travelers from location (zone centraitt) g+1,u} eu.

k,q

4 = ratio of in-vehicle time (from location (or zone centroid) q to sensor Kelj-

vehicle time (from sensdeto sensor k+) (i.e. 0< y < 1)

After replacingu:‘m, in (4.4) by the definition in (4.6), the mean sen®sesensor travel time
in (4.4) can then be formulated in a form of zéoeone in-vehicle time as follows.

ey _ . kaq g K, g1 k

E(yli(’n)_y l'lrm+(1_7/ q)urm + Sd 4.7)

! ue ! yo+t ! . L

i »; » Modeled zonde-zonein-vehicle time
Sensotg"" o, k+1 ogs k27" Llog.2= log

- (D -- 2 EE 1
.Home . ~WWork . ~..Home
k k+1
} u > u » Mean sensote-sensor

in-vehicle time @ zone centroid

at zone 1

ket 1,G+ 1 k+1,q+1 1 . . .
I(l-;/ w)éj]lq yletar uﬂ*=I Meanin-vehicle time | ™ zone boundary

Sk gkt Mean activity duration

FIGURE 2 Representation of in-vehicle time and activity duration (chEAFW2-H1).

Since trips are assumed to be started or ended at zone centroids, the distribution of actual
activity locatiors in traffic zone also leads to significant travel time variation. For instance, if
activity locations are dispersed in large traffic zaneyehicle time variation from location g

to g+1, (o/1,)*tends to be high. However, the information of actual locations, where the trips

start and end, is not directly observed from plate scanning. Consequenviihicle time
variation between two actual activity locatioissnot explicitly known. Nevertheless, the
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variance of zonée-zonein-vehicle times can be presented in a form of variance-eéhicle
time from any sensor k to k+ 1;;‘%)2 shown in (4.8a).

A e A CEN LN (B A N ORI (4.8a)
Where(cﬁm)zis variance ofin-vehicle time of travelers between two centroidsn(ftog to [0g+ 1).

After replacing(cs',fm)zin (4.5) by the definition in 4.838), the sensote-sensor travel time
variation (4.5) can then be rearranged as follows.

(6'©)2 =7 9687+ (175N (6Eh? +(ok)? (4.8b)

If the actual decisions of any travelez =1 or O fori =1,...,ny) can be known, the mean

and variance of senstw-sensor travel time (sensor k té B of activity chain (f,h) can be
estimated by solving the first order derivation from maximum likelihood problen 4.2
follows (Ben-Akiva and Lerman, 1985

X Ne X Nye . 2
Z Z ikt Zie Z Z Zien ( Yikel— E(y'ﬁ?))
ke =1i=1 ke 2 =1i=1
E(yi = 22 and(afh) = =i (4.9)
2.2 Zem 2.2 Zem
x=1i=1 x=1li=1

xie

where vy, ,.,is sensotto-sensor travel time from sensor k to k+1on sensor path x observed

from user i traveling during travel period ﬁih . In addition, the meaim-vehicle time,u:‘mv

is equal toE(y',‘ﬁ) for the case that travelers does not perform any activity. On the other hand,

the mean activity duratiorsg‘,, is equal toE(y'ﬁf)-ufm for the case that travelers perform
only an activity in between sensor k and k+1.

In practice, there could be more than one feasible activity chain of individuals derived
Consequently, the value af; can not be directly observed from plate scanning. To deal
with this problem, indicator variabfs basically treated as a missing variable and solved by
the method in section 4.2.

To update model parameter, rewritten in a vector foea{6 u S o,y}, based on maximum-
likelihood estimation approach, a joint probability mass function) ¢hé probability density
function (normal distribution) for the random variablegs() in (4.3) assumed to underlying

our observationsyj in (3.3), under the case thatan be estimated, can be written down as
follows:

zX
M . ieth
EX Ne F* H; Xie

2
X K*—1 _E(yke
7)= pxe 1 1) Yike th (4.10)
a (Aly.2)=TTTTTITTIT Pr (Q)lk_:[l N ex 2{ ke }

x=1 e=1 i=1 f=1h=1 fh O
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4.2 Solution algorithm

As mentioned in section 4.1, the varialalewhich represents the selection of activity
pattern/path/activity location from travelers, is unobserved and cannot be directly identified
by plate scanning (due to the nature of partial observation). Thus, in the estimation problem,
one option is to treat as “missing variables” (Watling et al., 1992, 1994) and apply the EM
(Expectation-Maximization) algorithm to solve the estimation problem with missiiy
taking log of the function (4.10), we can obt#in “complete data log-likelihood function”

The EM algorithm will then iterate between the two stepsmg@imizing this likelihood
function with respect to the parameteks={6, 4 S 6,y} (the M-step) given the expected value

of z, and (ii) evaluating the expectatioli§z) over the missing variablez given tle
parameter values (the E-step). Note that the reader can skip from the details of the EM
algorithm as follows to the proposed algorithm without loss of generality of this paper.

In the M-step, taking log of function (4.10) yields the complete-data log-likelihood of:

EX Ne F* HY

2
K*-1 1 E
D)) AL R Ly SR
k=1

x=1e=1 i=1 f=1h=1 th

The complete-data log-likelihood is linearanThus, in the context of the EM algorithm, the
expected complete-data log-likelihood is just (4.10) with each z replaced by its conditional

expectatiorE[z|Y,A], whereY represents the vector of random variabileg4.3),Y =
{...,y',...}, corresponding to particular values of observed sewssensor travel timg, and

z is vector form of scalar z. Then, given conditional expectatiap @om E-step), model
parameter vectorA , is updated by maximizing the completed-data logdliceld (411).
However, simultaneous updatinfimodel’s attributes (or vector fromSandu) and coefficients

of nested choice modeb( in vector A can lead to the combinatorial problem. To avoid the
combinatorial problem of updating from the observed senstes-sensor travel timey, the
process to updata is divided into two steps:

First, given any scalar z (from E-step) and obsemyeithe mean activity durations() and
mean in-vehicldime (U) are updated by maximizing log-likelihood of probability density
function of observed senstw-sensor travel timeyf as follows.

EX Ne F* Hf K*-1

E 2
TETRATE % % NN INED WIS ¥ [%} (4.12)
k=1

x=1e=1i=1 f=1h=1 fh

where the random variablg® can be formulated on the basis of the mean sensEnsor
travel time E(y?n) (or in a form ofSandu) and varlancefh, which are expressed in ($.7
and (4.8bof section 4.1, respectively.

Second, giverz (from E-step)and model’s attributes ( Sand U) updated from problem (4.1,2)
route and activity choice coefficientg.(andéd,) and scke parametely are simultaneously

updated by maximizing log-likelihood of nested logit choice model (2.9) as follows.

LowIsu-3 535S 2, neE Q) (4.13)

x=1e=1 i=1 f=1h=1
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For the E-step, the uncompleted-data is estimated by all updated values of model
parametersA ) from the M-step as follows:

E[Ze IV A= 0.P( 2= OY A)+ LRrIZ= YIA)= Prig= Y] (4.14)
Then, by standard laws of conditional probabilities:

Pr( 2 = 1Y 1)

Pr( z. =1y ,A): =y (4.15)
By theBayes’ rule (and the fact thaZixeﬁ1 can only be 0 or 1):

Pr(Y |A) ijlé P{Zn=1iY A) (4.16)
Putting (415) and (4.16)nto (4.14), it gives:

2 IV A] - R0 =2 1) (4.17)

;Pr(éﬁwzjy |A)

The probability distributions of selecting activity chain (f,h) associated with obsgrved
required for the numerator and denominator of (4.17) can be defined by #Ad @nother
application of Bayes’ rule, yielding:

PiZm=iylh)= > agzh (4.18)

all combinationg
with Zigg,=]

Since the decision on activity chain (f,h) of user i is independent from other users, the
combinatiors z in (4.18) consist ok, =1 when usef selects activity chain (f,h) angf, =0

for other cases that activity chain (f,h) is not selected from user i. Consequenitgn
compute the expected z-value for user i selecting activity chain (f,h) as follows:

W.’é
E[zixemw,A] - h (4.19)
>
Vita~EOR) |
where W* —P"e Q exp —= i c 4.20
e ( )H 2 O-bc 2( Gbc j ( )

Regarding to the procedure of the two tiers mentioned above, the proposed algorithm we can
be summarized as below.

Proposed algorithm

Step 1: Initialize parametef8’ ={0°, u°, s° 6° %) ; Setiteration: n = 0.

Step 2:From E-step, given", find expected traveler’s chosen activity chairk(z), by solving
(4.19) and (420). Then, set n=n+1.

Step 3From M-step, find updated parameté’e' ={6" a" $" 6" 1) as follows.
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Step 3.1: findi", S", ands "by solving problem (4.12), given B(from step 2 and
observed sensdo-sensor travel timey,.
Step 3.2: findd"and y"by solving problem (4.13), given H(from step 2 and
updated mean in-vehicle time and activity duratigh ,(S") from step 3.1.

Step 4lf the convergence criterion is met, stop and figalatech = A"; otherwise go to step 2.

The convergence criterion bases on the maximum relative gap of all parameterat
N _An—l

~

AI”I—l

successive iterations: m < & wherec¢ is the error tolerance.

nxe
Step 5: Estimate activity-chain demartty = > 7% .

i=1
Note that the initialA° can usuallybe obtained from prior data, which assumed to be known
for this study.Furthermorethe accuracy of updating of model paramgetgiby the proposed
algorithm with plate scanning data also depends on the sensor location. More details on the
design of sensor locations can be foundpgoendix A.

5. NUMERICAL EXAMPLE

In this section, the proposed algorithm is tested with a modified Sioux Falls network. This
network consists of 35 nodes, 98 links, and 10 traffic zones shown in Figure 3(a). In addition,
Figure 3(b) presents the available activity types in each zone (i.e. zone 1-3 includiag stay-
home (H) and transition (T), zone 4-7 including work (W), and zone 8-10 including
maintenance (O)). The proposed sets of sensors of cordon-line-based sgeappegndix A

in Figure 3(b) can collect 2,000 registered vehicles (i.e. the vehicle population travelling in
the network), of which 440 vehicles of vehicle population have their trips originated from
zone 1. The remains have their trips originated from zone 2 and 3.

5.1 Setting of thetest case
Some network conditions are defined for the tests:

1) The choice alternation of oof-home activities includes work (W) and maintena(og
purposes. In addition, at-home activities includedition (T) and stagthome (H) purposes.

2) Four possible types of activity patterns have been explicitly observed.

e Home-based work tour (H-W-H)
Home-based work tour including maintenance before work (H-O-W-H).
Home-based work tour including maintenance after work (H-W-O-H).
Home-based work tour with one secondary tour for maintenance (H-W-T-O-H).

3) The model resolution is divided into four periods (period 1: AM [628R9], period 2:
Midday [9:30-15:59], period 3: PM [16:0.8:59], and Period 4: Other [19:6829]).

For instance, when the users perform trip chain H1TW4%8-H1 during travel period

set {1,3,4,4}, these users start their first trip from home at zone 1 on period 1 and travel
after work at zone 5 on period 3 to home for a transition purpose (e.g. taking a short break
after work at home). Secondly, they leave home on period 4 for maintenance at zone 8
and return home within the same period.
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Sensor location Pof cordon-
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FIGURE 3 Test network and sensor location of cordon-line base scheme.
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4) Travel time variation between two adjacent sensors during travel periﬁd‘se(bﬁf 2, in
(4.8b) can be estimated as a linear function of meaosenrsensor travel time, it yields:

key 2 ke
(o) =aE(yy) (5.1)
wherea is a constant representing level of travel time variations.

5.2 Simulation and evaluation method

According to the simulation method in this study, given pre-specified true model parameters

A™={0" " s™ e ™y "F, the demand of activity pattern/location/path choice or
activity chain can be calculated from nested choice logit model (2.9).

Based on such the activity-chain demand, the simulated sersenor travel timey) of

each traveler observed from plate scannmgbtained from a Monte-Carlo method by
samplingy from normal variates in (4.3). For instance, given a true demand of vehicles
passing on the sensor pdb2,D3,D5,D2) to perform trip chain H¥5-H1 on vehicle path
(2,6,9,11,13,15,17,7,4), these vehicles will stop at zone 1 (between D2 and D3) far stay-
home purpose (H) and stop at zone 5 (between D3 andfddSwork purpose (W).
Consequently, the simulated sentmsensor time (from sensor D3 to sensor D5) based on
this demand is drawn from the meanretehicle time plus duration of work and its variance

("™, S™°, ™). After the simulation, the initial model parametersAfl are set as the
initial values for finding final updated parametbrsf\ from solution algorithm (section 4.2).

In this study, evaluation of the statistical performance of updating of model parametéss,
also carried out through a Mi@Carlo method by randomly sampling initial estimates of true

parameter A" In particular, initial A° is generated by drawing from a normal variate
A° 0 (1+7)- A™ wheren is a random error term of initial® with a mean equal t§ and

a variance equal tmj. The statistical performance of final updat&«tan be measured by

the percentage reduction of mean square error from idiflaldefined as follows (Cascetta
and Russo, 1997).

MSE%(3, )= [MSE(@’ - MSEf, )]/ MSER® ) 100% foB°cA° and A (5.2)

whereN = total number of trials of a dataset’@ndA ) with the samej and o;f.
MSE%(3; )= percentage reduction of the mean square error of parameter inAcector

MSE(8)= i By, =B IN (53)
MSE(3, )=i B, - ™Y IN (5.4)

where gie= " parameter in true parameter vecigt®.

MSE(B)= mean square error of initial value & parameter im°from N datasets;;;{jis
initial value of |" parameter im\°of n™ trial.

MSE(B,— )= mean square error of updated value'bparameter inA from N datasets,z@’mj is

updated value of'jparameter inA of n'” trial.
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5.3 Computational results

To examine the performance of updating of model parameters based on plate scanning, two
tests were conducted as follows:

5.3.1 Random initialization test

To investigate initialization of in-vehicle time and activity duration (presenting the qualities

of prior data), initial values of in-vehicle times and activity durations are set randomly to
deviate from the true values set from the base case (Table 2). Given other model parameters,
the results of updated-vehicle time and activity duration (in Table 1) show that:

e The performance of the algorithm in updating themm-vehicle times/activity durations
and variance of senstw-sensor travel times generallysatisfactory due to high percentage
error reduction (MSE% ofuS, (c'¢)? > 50%) This implies that the MSE of the updated

model is substantially improved from the initial deh even though in the tests the initial
parameters in the calibration process of the uddatedel were highly deviated from the
true values § =2.5).

e When the initial parameters of the variance of sef®gensor time were set to be
substantially different from the true valu@ (> 1.7), the improvement of the updated

model (parameters) in terms of MSE% can be limited. This may be due to the non-convex
nature of the maximum likelihood estimation problem where the solution may be at the
local optimal when the start point of the estimation problem is far from the global optimal
solution (true parameters).

e From other results, the proposed algorithm generally performed satisfactorily in updating
the activity duration parameters (mean of work, transition and maintenance durations).
However, the algorithm performed not as well in updating the mean travel time
parameters. This may be due to the issue of non-identification of the travel route based on
the sensote-sensor time data. Nevertheless, the improvement of the MSE% for the case
of updating the mean travel time is still acceptable (in the range of 58%-94%
improvement compared to non-updated models).

5.3.2 The senditivity test

With true parameters of mean in-vehicle tim&, @from zone to zone) and mean activity
duration, § (base case in Table 2), the updating of the parameters from the initial parameters
in random initialization test has a good result (MSE% > 50%). In this initialization test, there
is a significant difference between &d § (e.g. S=w= 480 min. and 1¥=18.8 min.). To
further test on the robustness of the proposed algorithm, the sensitivity test with the reduction
of S from base case was conducted (Table 2). Also, there are two levebvelf time
variations set in this test (low€0.5) or high ¢=1.5), see (5.1)). Value of in base case and

case 3 is equal to 0.5, and valueooin the other cases (case 2 and 4) is equal to 1.5. The
initial values of 0, S, (o)*from setting no.3 in Table 1 are adopted to represent the normal

applications of these values. The numerical results are described as follows:
Updating of in-vehicletime

e Theresults (Table 2) show that, for the cases that a gap betwaed § is simila (e.g.
base case and case thle absolute percentage error (ARE)" increases when level of
travel time variationg , increases from 0.5 to 1.5. For instance, the APE uf case 2 is
larger than the APE ofllin base case and the APE 8fnicag 4 is larger than the APE
of u’in case 3.
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e With the same level of travel variation, the error (APE) in updating of*uncrease
when activity duration, Sdecreases (e.g. APE df(aase 2) < APE ofcase 4)).

Updating of activity duration

e For the cases with the same valuexpthe error of updating of mean activity durason
(work, maintenance and transition) tends to increase when the difference befwadn S
u? decreases. For instance, with the same value (a£1.50, the error of updatingfo
S=w Si=0 Or S=7in case 2 is much less than the error in case 4 (Table 2).

e With the smallest values of, &ssociated with high value af(in case 4), the updating of
mean activity duration,,$as the worst result (Table 2).

Updating of coefficients of demand model

e The updated model coefficients or &, in all test cases are different from true values
(Table 2). This implies thatlue to non-convex maximization problem (solved byEMe
algorithm), the updated model coefficients €) are non-unige solutions. Consequently,
there can be more than one solution of updatingiodj that can possibly reproduce the
observations (sensto-sensor travel times).

Trip chain estimation

To exemplify trip chain estimation based on observed sdoss#nso travel time §), true
trip-chain demands derived from tra€“in case 3 (Table 2) are set to represent the base t
activity durations of any purposes are smallessf(oallest values of {(S u?)). The estimated

trip chains are illustrated with 6 sensor paths of total simulated 50 sensor paths on test
network. Path topology and path travel time of feasible trip chains of each sensor paths are
described in Table 4. The results of trip chain estimationsadnie @):

e Due to thesdtings of smallest activity duration{)]Sn case 3, some travelers, performing
the maintenance {& = 6 min.) in the activity pattern (H-O-\M-and H-W-0O-H), cannot
be predicted in the E-step of the EM algorithm. As a result, trip chains of H-W-H are
over-estimated and trip chains of H-O-W-H or H-W-O-H are under-estimated (Table 3).

e In contrast, the results from Figure 4 imply that, with largest difference betweamd S
u%, the smallest errors (MMSES) of estimated trip chains in base case and case 2 are
obtained. In addition, the MMSE in case 2 higher than the MMSE in base case, due to
higher value ofa.. For the remaining cases (case 3-4), the performance of trip chain
estimations tends to decrease when level of travel time variadipimgreases.

Discussions of results

The proposed algorithm performs well in updating the model attributes and predicting trip
chains in some conditions (high activity durations and low travel time variptiohss

implies that, due to the large values of{8"), thesensorto-sensor travel time distributions

(y) of the alternativey,) that travelers do at least one activity in a single traffic zone of two
adjacent sensors are distinguished from another altern@tiyethat travelers just drive
through without doing any activity. Consequently, the chosen activities with two different
distributions (y, y») are effectively predicted. By using proposed sensor loatappendix

A), the choices of travelling between two adjacent sensors (sensor k to k+1) are delimited to
such the two alternatives. As a result, the chosen activity patterns made by most travelers are
correctly predicted by a series of sengssensor travel timesy, (E-step). In accordance

with accurate expected choice of activity patterng),Bijodel attributes are well updated.
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Table 1 Updated results from random initial values after 15 trials (N=15).
Setting of initial variables

Variable Name Index
1 2 3 4 5 6 7
ud Mean in-vehicle Mean 7 020 050 0.70 1.00 150 2.00 250
. 2
time from zone to Var. o, 002 005 007 010 015 0.20 0.25
zone (min.) MMSEY® 68 87 58 94 85 68 68
Mean7 020 050 070 1.00 150 200 250
Mean work Var. o
S=w  qyration (min.) .o, 002 005 007 010 015 020 0.25
MSE% ~10 ~100 ~100 ~100 ~100 ~100 ~100
Mean Mean 77 0.20 050 070 1.00 150 200 250
. 2
S0 (rj“a'”t.e”a”‘?e Var. o, 002 005 007 010 015 020 025
uration (min.)  \sE0, 100 ~100 ~100 ~100 ~100 ~100 ~100
Mean7 020 050 070 1.00 150 200 250
Mean transition Var. o2
Sh=t duration (min.) ar. o, 0.02 005 007 010 015 020 0.25
MSE% 97 97 ~100 ~100 99 99 ~100
Variance of Mean 7 030 070 100 150 170 250 3.00
key 2 2
(o sensorto-sensor  Var. o, 003 007 010 015 017 025 0.30
time (5.1) MSE% 100 ~100 ~100 ~100 71 60 52
Computational time(min.) 488 522 53.8 539 531 544 542

MMSE% of Ul is the average of MSE% of in-vehicle times from all OD pgila]ue is close to 100%.
“All settings of initial variables are processed by Quad CPU i5-2400 @ 3.10 GHz and Ram 4 GB.

Table 2 Updated results from various settings of mean activity duratiyrag8d level of travel
time variations & ).

. Case
Variable Name Index Base ‘ 3 7
. . g True 18.8

Average of mean .|n-veh|cle tima,, Est 186 179 196 206

of all OD pairs (min.) APE 1.06 4.79 4.26 9.57
True 480.0 24.0

_ _ (Se W) (461.2) (5.2)

Si=w Mean work duration (min.) g, 479.8 479.9 237 236
APE 0.05 0.03 1.18 1.48
True 120.0 6.0

Si=0 Mean maintenance duration (s () (101.2) (-12.8)

(min.) Est. 119.9 120.0 4.4 4.0
APE 0.09 0.001 27.20 33.59
True 45.0 2.3

S.=1, Mean transition duration (S ) (26.2) (-16.5)

(min.) Est. 45.3 43.6 4.2 4.9
APE 0.58 3.10 86.11 119.26
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Table 2 Updated results from various settings of mean activity duratiprad level of travel
time variations & ) (Continue.).

. Case
Variable Name Index Base 5 3 7
_ o True 0.50 1.50 0.50 1.50
o level of travel time variation (5.1) Est 0.49 1.49 0.92 3.55
APE 0.55 0.52 83.73 136.46
. o True 0.80
&, Route choice coefficient Est 0.82 08l 0.60 0.62
APE 2.55 0.97 25.01 22.76
a N o . True 0.91
L, Activity choice coefficient o Est 0.36 0.35 0.02 0.00
pattern H-W-H aC, ={1,3} ' i ' ’ )
APE 60.28 61.92 97.58 100.00
4 o . . True 0.71
L, Activity choice coefficient o Est 0.28 0.27 0.00 0.00
pattern H-W-O-H a€, ={1,3,4} ' i i j )
APE 73.58 60.77 100.00 100.00
9 H . . True 0.81
L, Activity choice coefficient o Est 0.40 0.39 200 200
pattern H-W-T-O-H a€. ={1,3,4,4} ' i ' ’ ’
APE 50.37 51.46 146.91 146.91
9 H . . True 0.69
L, Activity choice coefficient o Est 0.27 0.26 0.00 0.00
pattern H-O-W-H a€. ={1,1,3} ' i i j )
APE 60.82 62.90 100.00 100.00
Computational tim&(min.) 55.9 55.0 54.1 41.0

2all settings of initial variables are processed by Quad CPU i5-2400 @ 3.10 GHz and Ram 4 GB.

Table 3 Example ofestimated results of trip chains originating from zorfe 1.

Feasible p Timestamp True Estimated
Sensor path trip chain Path period set flows flows M SE
(veh.) (veh.)
D1 D18 D15D4D1  H1-O9-W6-H1 1 {1,1,33,1} 20.0 18.4 341
H1-W6-H1 1 {1,1,33,1} 20.0 21.6 341
D2 D3 D5 D2 H1-W5-O8-H1 2 {1341} 20.0 16.9 9.93
H1-W5-H1 2 {1,341} 20.0 23.1 9.93
D1 D3 D16 D5 D4 D H1-W6-08-H1 3 {113,341} 10.0 8.7 2.61
H1-W5-O8-H1 3 {113,341} 10.0 9.0 1.51
H1-W5-H1 3 {1,1334,1} 10.0 11.0 1.51
H1-W6-H1 3 {113,341} 10.0 11.3 2.61
D2 D3 D16 D5D2 H1-W6-O8-H1 4 {1,1,3,4,1} 10.0 8.5 2.70
H1-W5-08-H1 4 {1,1,3,4,1} 10.0 8.8 1.79
H1-W5-H1 4 {1,1,3,4,1} 10.0 11.2 1.78
H1-W6-H1 4 {1,1,3,4,1} 10.0 11.5 2.71
D1 D11 D6 DADL H1-W7-O8-H1 5 {11,341} 20.0 17.5 7.84
H1-W7-H1 5 {11,341} 20.0 22.5 7.84
D2 D11 D6 D2 H1-W7-O8-H1 6 {1,34,1} 20.0 17.0 9.56
H1-W7-H1 6 {1,341} 20.0 23.0 9.56

*True model parameters are set from case 3 in sensitivity test shown in Table 2.
PGiven path topology and path travel time are shown as table 4.
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Table 4 Example ofpath topology and path travel time of trip chains.

Path Path topology Path travel time (min.)
1 3830329092585654 777523121051 95
2 2691113151774 80
3 26911247675231314121051 92
4 269112476752313151774 92
5 3830373829181614121051 61
6 38303738291816151774 61
Low travel timevariation (o = 0.50) High travel time variation (o = 1.50)
Base case Case 2
60 60
MMSE? = 0.364 MMSE = 0.371

40

F
o

Base case & case?2
Sy =480 min.

Sy =120 min.

€0 Sr=45min.

20

[
(=3

Modeled trip chain
Modeled trip chain

R2=10.9983 R2=10.9982

0 0
0 60 0

20 40 20 40
True trip chain (veh.) True trip chain (veh.)

60 Case 3 60 Case 4
MMSE =9.0 MMSE = 10.692

R2=0.9652 R2=0.9603

40 40
Case 3&4
Sy =24 min.
S =6 min.
0 _ .

0 i 0 Sr=2.3 min.

20 40 0 20 40 60
True trip chain (veh.) True trip chain (veh.)

20 20

Modeled trip chain
Modeled trip chain

*MMSE of trip chain is the average of MSE of all trip chains.

Figure 4 Comparisons between true and modeled trip-chain demand from various setting of
mean activity duration gpand level of travel time variationx() in sensitivity test (Table 2).

6. CONCLUSIONS

In this paper, a method based on the maximum-liketihiechnique for updating travel
behavior models parameters and estimation of veltiggechain by using senstw-sensor
travel time of ach sensor path collected from plated scanning is pempo$he solution
algorithm, based on EM approach, uses the travel tihany user observed from any adjacent
sensors making the specified sensor path at arcemae period. The structure of demand
model is a nested logit. Based on plate scannin@ datlection, the chosen activity
patterns/routes/locations are forecasted by maxigithe joint function between probability
density function of observed sengotsensor travel time and probability of nested logdice
model of activity-travel pattern.He proposed model and algorithm were tested with afieddi
Siouxfalls network, where the optimal set of sensomstalled. In addition, the relative gap of
solution algorithm is less than the error tolerafice 0.0001). The test results, then, showed



24

that solution algorithm can produce a good updatihghodel parameters, when level of

travel time variationy , is low or mean activity duration is high. Howevanadler activity

duration and higher travel time variations leadinghigh overlap of sensdp-sensor travel

time distributions among activity-chain alternatiqshown in sensitivity test) tend to update

model parameters less accurate. The possible apptis of the proposed method are:

e To update the importance attributes of travel demand model from the prior data (e.g.
activity duration, travel time) without conducting the new household and travel survey
(HTS).

e To predict trip chain demand based on plate scanning (using dersasor travel time).

APPENDIX A

Thedesign on sensor location scheme

A cordon-line-based sensor location scheme is proposed for this study, where any activity
location, qu, in traffic zone is contained in the cordon line of sensors. Then, this scheme can

fully detect vehicles before or after making an activity in a single traffic zone. The observed
travel time {) between two sensors of cordon line is used to predict the possibility (or the
indicator variableg in (4.1)) of making this activity between them. As a result, large possible
activity location choices can be diminished to a binary choice of an activity location visited
by any user whether he/she passes through or stops to make the acadpeaified traffic

zone.

The characteristics of the algorithm for cordon-line-based schesgescribed as follows.

e The objective A.1) is to find minimum numbers of links installed with sensors that can
provide the conditions of cordon-line-based scheme.

e To satisfy such a scheme, there must be at least one sensor contained on each feasible
path between any two adjacent activity locatioglog,;) of any activity chain (f,h)

This requirementA.2) for collecting the set of observed timestamp perMd,can be
used to distinguish the set of travel peri6d Consequently, for any path of activity chain
(fh), the path consists at least the link | located with a sensor. This constraint is also
known as sensor location scheme of path coverage (see Yang et al. (1998) and Castillo et
al. (2008, 2011) for more applications of sensor location schemes

e In addition, the constraint (A.3) is another specific characteristic of the cordon-line-based
scheme in that any activity location in specified traffic zone can be contained in a cordon
line of sensors. In other words, the travelers can pass on the link installed with sensors at
least one time before arriving to and after departing from a single traffic zone where they
perform an activity. Consequently, for each sensor paths of cordon-line-based-scheme,
feasible trip chains are delimited to only choices of performing an activity in single traffic
zone located in between two adjacent sensors.

The binary linear programming problem of this scheme can then be formulated as follows:
min > u,, (A.1)
subject to

Zulqpo'D >1; vO,D,p, " ={

leL’

1 if linkl isin pathp fronOto D .

] (A.2)
0] otherwise.
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S ud(P0 0% )>1; vODLD2, [0 2 (A3)
lelL’
1 pODl pO.D2
,d(plO‘Dl, p?’DzJ): 1 ifb, =™ ;D1 =D2.
0 otherwise.

whereL'’ = the set of all links excluding any link in origin zone O, destination Bdnand
zoneD2,L' = set of link, L .

p>ot = path 1 (from origin O to destinati@n).
qp?'m = link-pah incident value of path 1 containing with link I.

d(pPP%,p2 P2 1) = the indicator variabled(p>®,pPP? )= 1: link | is in path 1 and not in
path 2 or vice versa; ardi(p™°*, p5> P2, 1) = 0: otherwise].

u = a binary value such that it takes one when thel liskocated by a sensor,
and 0 otherwise.

ACKNOWLEDGEMENTS

The authors are indebted to the General Research Fund of the Hong Kong Research Council
(RGC) (ProjectPolyU 5290/09E) for support of this research.

REFERENCES

Arentze, T.A., & Timmermans, H.J.P. (2004 learning-based transportation oriented simulation
system. Transportation Research Paldg7), 613-633.

Axhausen, K.W., Schonfelder, S., et al. (2003). 80 weeks of GPS-traces: Approaches to enriching the
trip information, Arbeitsbericht Verkehrsind Raumplanungl178, Institut fir Verkehrsplanung
und Transportsysteme, ETH Zurich, Zirich.

Bell, M.G.H. (1991). The estimation of origin-destination matrices by constrained generalised least
squares. Transportation Research Pagsgl), 13-22.

Ben-Akiva, M., & Lerman, S.R. (1985). Discrete Choice Analysis: Theory and Application telTrav
Demand. MIT Press, Cambridge.

Bhat, C.R. & Koppelmen, F.S. (1999). Handbook of Transportation Sci®ee York, Kluwer
acalemic publishers.

Bifulco, G., Carteni, A., & Papola, A. (2010). An activity-based approach for complex travel
behaviour modelling. European Transport Research Re2je209221.

Bradley, M., Bowma, J.L., & Griesenbeck, B., (2010). SACSIM: An applied activity-based model
system with fine-level spatial and temporal resolution. Journal of Choice Mod&ling5-31.

Bricka, S., & Bhat, C.R. (2006). A Comparative analysis of GPS-based and trawsiisased data
Transportation Research Recotfl72, 9-20.

Bowman, J.L., & Bradley, M.A. (2008, October). Activity-based model: approaches used to achieve
integration among trips and tours thoughtout the &aper presented at the European Transport
Conference, Leeuwenhorst, The Netherlands.

Bowman, J.L., Bradley, M.A., & Gibb, J. (2006, September). The Sacramento activity-based travel
demand model: estimation and validation resuaper presented at the European Transport
Conference, Strasbourg, France.

Cascetta, E. (1984). Estimation of trip matrices from traffic counts and survey data: A generalized
least squares estimator. Transportation Research Pt 239-299.

Cascetta, E., Inaudi, D., & Marquis, G. (1993). Dynamic estimators of origin-destination matrices
using traffic counts. Transportation Scien2g4), 363-373.

Cascetta, E., & Russo, F. (1997). Calibrating aggregate travel demand models with traffic counts:
Estimators and statistical performance. Transporta®4(3), 271293.



26

Castillo, E., Menéndez, J.M., & Jiménez, P. (2008). Trip matrix and path flow reconstruction and
estimation based on plate scanning and link observafloassportation Research PartR(5),
455481.

Castillo, E., Gallego, I., Menéndez, J.M. & Jiménez, P. (2011): Link flow estimation in traffic
networks on the basis of link flow observations, Journal of Intelligent Transportation Systems
Technology,Planning, and Operatioh§(4), 205-222.

Cools, M., Moons, E., & Wets, G. (2010). Calibrating activity-based models with external-origin
destination information: overview of possibiliti€&ansportation Research Recogdy5, 98-110.

Feil, M., Balmer, M., & Axhausen, K.W. (2009). Generating comprehensive all-day schedules:
expanding activity-based travel demand modelling. European Transport Planning Colloquium.
Flotterdd, G., Chen, U., & Nagel, K. (2011). Behavioral calibration and analysis of a large-scale travel
microsimulation| Networksand Spatial EconomigsA journal of Infrastructure Modeling and

Computation, 122.

Frignani, M.Z., Auld, J., Mohammadian, A.K., & Williams, C. (2010). Urban travel route and activity
choice survey: Internet-based prompted-recall activity travel survey using global positioning
system datalransportation Research Reco2d83, 19-28.

Hu, S.R., Madanat, S., Krogmeier, J., & Peeta, S. (2001). Estimation of dynamic assighment matrices
and OD demands using adaptive kalman filtering, Journal of Intelligent Transportation Systems:
Technology, Planning, and Operatip6€3), 281-300.

Li, Z.C., Lam, W.H.K, Wong S.C., & Sumalee A. (2010). An activity-based approach for scheduling
multimodal transit services. Transportati8m(5), 751-774.

Lao, Y., Zhang, G., Corey, J., & Wang, Y. (2012) Gaussian mixture model-based speed estimation
and vehicle classification using single-loop measurements, Journal of Intelligent Transportation
SystemsTechnology, Planning, and Operatioh§(4), 184-196.

Maruyama, T., & Sumalee A. (2007). Efficiency and equity comparison of cordon- and area-based
road pricing schemes using a trip-chain equilibrium modiehnsportation Research Part A
41(7),655671.

Maher, M.J. (1983). Inferences on trip matrices from observations on link volumes: A bayesian
statistical approach. Transportation Research Pari(B), 435447.

Ortuzar, J.D. & Willumsen, L.G. (2011). Modelling Transport (fourth Edition). Chichester, Wiley.

Ozbay, S., & Ercelebi, E. (2005). Automatic vehicle identification by plate recognition. World
Academy of Science, Engineering and Technql8g922-225.

Velaga, N.R., Quddus, M.A., & Bristow, A.L. (2012). Improving the performance of a topological
mapmatching algorithm through error detection and correctidournal of Intelligent
Transportation System$echnology, Planning, and Operatioh6(3), 147-158.

Vovsha, P., Bradley, M. & Bowman, J.L. (2004, May). Activity-based travel forecasting models in the
United States: Progress since 1995 and Prospects for the Future. Paper presented at the EIRASS
Conference on Progress in Activity-Based Analysis, Maastricht.

Watling, D.P. (1994). Maximum likelihood Estimation of an origin-destination matrix from a partial
registration plate survey. Transportation Research P 28(8), 289-314.

Watling, D.P., & Maher, M.J. (1992). A statistical procedure for estimating a mean origin-destination
matrix from a partial registration plate survey. Transportation Research P&(8B171-193.

Yang, H., Sasaki, T., et al. (1992). Estimation of origin-destination matrices from link traffic counts
on congested networks. Transportation Research Raé(®, 417434.

Yang, H., & Zhou, J. (1998). Optimal traffic counting locations for origin-destination matrix
estimation. Transportation Research PaZ8?), 109-126.

Yang, H. (1995). Heuristic algorithms for the bilevel origin-destination matrix estimation problem
Transportation Research Part2, 231-242

Yuan, Y., Lint, H.V., Wageningen-Kessels, F.V., & Hoogendoorn, S. (2013) Network-wide traffic
state estimation using loop detector and floating car data, Journal of Intelligent Transportation
SystemsTechnology, Planning, and OperatipAscepted for publication.



http://www.springerlink.com/content/1566-113x/

