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ABSTRACT 
 
This paper proposes a maximum-likelihood method to update travel behavior model 
parameters and estimate vehicle trip chain based on plate scanning. The information from 
plate scanning consists of the vehicle passing time and sequence of scanned vehicles along a 
series of plate scanning locations (sensor locations installed on road network). The paper 
adopts the hierarchical travel behavior decision model, in which the upper tier is an activity 
pattern generation model, and the lower tier is a destination and route choice model. The 
activity pattern is individual profile of daily performing activities. To obtain the reliable 
estimation results, the sensor location schemes for predicting trip chaining are proposed. The 
maximum-likelihood estimation problem based on plate scanning is formulated to update 
model parameters. This problem is solved by the Expectation-Maximization (EM) algorithm. 
The model and algorithm are then tested with simulated plate scanning data in a modified 
Sioux-Falls network. The results illustrate the efficiency of the model and its potential for an 
application to large and complex network cases. 
 
Key Words:  maximum-likelihood estimation; plate scanning; EM algorithm; trip chaining 
 

1. INTRODUCTION 
 
The underlying assumption of the four-step model ignores the interdependent decision of trips, 
which may be due to time and/or space constraint, made by travelers over each day. This 
assumption delinks the relationship between human daily activities and travel pattern. The 
activity-based model (ABM) has been proposed to overcome this limitation in which the travel 
demand is derived from activity participation and the sequences or patterns of activity behavior 
(Bhat et al., 1999). The structure of ABM can be utility maximization-based (e.g. Bowman et 
al., 2006, 2008) or rule-based approach (e.g. Arentze and Timmermans, 2004). The utility 
maximization-based ABMs have been widely developed to evaluate the traffic policies in 
many cities such as Portland, Columbus, Atlanta, and Sacramento (Vovsha et al., 2004).  

Traditionally, activity-based models are estimated from travel diary survey data (TD). 
These estimated results can be biased due to low-sampling size, inaccurate travel diary data, 
etc. For instance, considering the complex activity-travel decisions in ABM, approximately 
only 1% of the population was used to estimate the ABM parameters (Bowman and Bradley, 
2008). In addition, the under-reporting of trips, due to response burden or uncompleted 
memorization of trips, leads to inaccurate travel dairy data (Bricka and Bhat, 2006). 
Consequently, the predicted travel demand from ABM based on TD can be inconsistent with 
actual roadside data (e.g. link count). In order to calibrate ABM parameters, Bowman et al. 
(2006) developed a comprehensive model calibration approach to calibrate the ABM 
parameters with travel survey data. According to his approach, some parameters in the utility 
of activity-travel decisions are heuristically adjusted to reproduce predicted traffic flows that 
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fit to traffic counts. In recent years, Cools et al. (2010) also conducted ABM calibration by 
heuristic method. In their study, ABM parameters are adjusted by randomly weighting the 
chosen activity-travel patterns so as to reproduce the external trip matrix information. The 
heuristic-based calibrations, however, still lack statistical measures on how well the calibrated 
ABM parameters can reproduce the collected roadside data (e.g. link counts). 

In the other related problems of traffic model calibration, the problem of estimating trip 
table information from link counts has been a long-running theme of transportation network 
analysis. The estimation of trip table can be classified by two approaches: (i) top-down 
approach, and (ii) bottom-up approach. For top-down approach, four-step model is generally 
used to reproduce internal origin-destination (OD) trips from internal traffic zones. In addition, 
these OD trips associated with the trips originating from external traffic zones (external OD 
trips) are used to calculate the trip table from this approach. Furthermore, to calibrate the trip 
table, trip table adjustment to fit with link counts is heuristically conducted (e.g. applying of 
origin-destination K-factors (Ortuzar and Willumsen, 2011)). To provide the statistical method 
for estimating trip tables, the observable data from the road network (e.g. link counts) can 
directly be utilized in the model calibration from bottom-up approach. By specifying the 
observable data on road network as the preferred outputs of the model, the parameters of the 
model (trip table) can be adjusted accordingly. For instance, link counts and prior trip table are 
directly used in the model to statistically estimate trip table from this approach (Bell, 1991; 
Cascetta, 1984, 1993; Maher, 1983; Watling, 1994; Yang et al., 1992, 1995). In the context of 
intelligent transportation systems (ITS), Hu et al. (2001) extended the problem of trip table 
estimation by using adaptive kalman filtering to estimate dynamic assignment matrices and 
OD demands. To consider other traffic model estimations, Lao et al. (2012) developed a 
Gaussian mixture model to estimate travel speeds and classified vehicle volumes using loop 
detectors. Also, Yuan et al. (2013) adopted the traffic flow model to predict the travel speeds 
using two traffic data sources (loop detector and floating car data) based on kalman filtering.  

Ideally, the data used in the estimation of ABM parameters should be collected by 
GPS-based travel surveys (activity-travel data collected by the GPS equipment attached to 
probe vehicles or carried by travelers). For instance, Axhausen et al. (2003) developed an 
automated process to predict travelers’ destinations and trip purposes from vehicle GPS 
traces. In addition, Frignani et al. (2010) also collected high accurate activity-travel data (e.g. 
chosen activity type, destination and mode) from internet GPS-based interaction travel 
feedback system. To identify the travel path using vehicle GPS traces, topological map-
matching method is normally used. Due to error in positioning probe vehicles in the digital 
map, this method sometimes fails to identify the correct travel path. In recent year, Velaga et 
al. (2012) improved the performance of map-matching method by using error detection and 
correction technique. Nevertheless, the deployment of the GPS equipment in a large scale to 
collect activity-travel data for ABM parameter estimation may not be appropriate due to low 
response rate or high cost of GPS mobile devices. Alternatively, the other method, which can 
possibly identify activity-travel data, is plate scanning (PS). Compared with the GPS-based data 
collection method, the information obtained from plate scanning is similar to the GPS-based 
data in the context of tracking the vehicles. In contrast, plate scanning does not require the 
installation of the GPS equipment on the tested vehicles. Based on PS data collection, the 
information of these vehicles is obtained at pre-determined locations on road network. 
Furthermore, the process of plate scanning can identify the same vehicles traveling along a 
series of plate scanning locations by matching their license plate numbers. With this method of 
data collection, plate scanning is considered to be one of methods to collect vehicle re-
identification (VI) data. The data from plate scanning consists of: (i) the vehicle passing time at 
plate scanning locations, and (ii)  sequence of scanned vehicles along a series of plate scanning 
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locations on road network. The accuracy of collecting the above data from plate scanning 
method is determined from detection rate and identification rate. The detection rate is the 
proportion of the number of vehicles that pass sensor locations and can be detected (i.e. vehicle 
is known to pass at the sensor, but the license plate number of the vehicle may or may not be 
identified by sensor). By considering on the detection rate from PS, most of vehicles passing 
sensors can generally be detected. Consequently, the detection rate is generally higher than 
other VI methods (e.g. tag reader system). In addition, identification rate is the proportion of 
detected vehicles, in which their license plate numbers can be correctly identified. Based on 
intelligent vehicle identification system, Ozbay and Ercelebi (2005) proposed the method of 
advance license plate recognitions with more than 90% of vehicle samples correctly identified.  

 In this study, the statistical framework for updating of travel behavior model parameters 
and estimating vehicle trip chain from plate scanning (PS) is proposed based on the hierarchical 
travel decision model. This framework was motivated by similar works done in the area of trip 
table estimation (i.e. particularly based on bottom-up approach). Nevertheless, due to the nature 
of partial observations, the selection of the route and activity/location, is not fully observed 
from PS. Thus, in the estimation problem, the “missing variables” are defined to represent the 
lack of the routes and activity/location data. The paper then defines a maximum likelihood 
function for this problem based on PS. This proposed model was solved by the Expected-
Maximization (EM) algorithm so as to avoid the combinatorial nature of the missing variables. 
The remainder of the paper is organized as follows. First, some basic components of the 
proposed model are described in next section, including notation and model formulation. Data 
collection from PS is also described in the third section. The fourth section then formulates the 
maximum-likelihood estimation problem (MLP) from plate scanning data and solves this 
proposed MLP. The optimal location of PS stations (i.e. generally called “sensor locations” 
throughout the paper) is presented in appendix A. Section 5 then tests the proposed model and 
algorithm with simulated PS data on a test network. The final section concludes the paper. 

 
2. NOTATION AND MODEL FORMULATION 

 
Considering the approach to update travel behavior model parameters and estimate vehicle 
trip chain from plate scanning, the following notations are used throughout the paper: 

Sets of network components 

O    = set of origin zones. 
D    = set of destination zones. 

L   = set of links, l L . 

N  = set of nodes. 

Measurement variables (of observed user i)  
i

kl      = the link that user i is identified in order k of links to be scanned (scanned at sensor k). 

, 1yi
k k  = sensor-to-sensor travel time from sensor k to sensor k+1. 

i
kt  = time moment of vehicle scanned at sensor k. 

i
km  = travel period of vehicle scanned at sensor k. 

Sets of measurements (of observed user i) 

 ix x= 1{ ,..., ,..., }x
i i i

k K
l l l     

 iY  
= 1,2 , 1 1,

{y ,..., y ,..., y }x x
i i i

k k K K 
 

 iT
   

= 1{ ,..., ,..., }x
i i

K

i
kt t t  

set of links installed with sensors (scanned links) identifying 
the same vehicle (or sensor path x). 
 

set of time moments of scanned vehicle though sensors. 

set of sensor-to-sensor travel times between two consecutive 
sensors. 
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 ie
M  =

1
{ ,..., ,..., }

x

i i

K

i
k

m m m  

Estimation variables 

rmu    = mean in-vehicle time on route r at time period m. 

as        = mean duration of an activity a.   

,r a     = coefficient of route choice and activity choice respectively. 
xe
fhd     = travel demand of trip chain h associated with activity pattern f (or activity chain (f,h)) 

travelling on travel period set 
fh
eC  scanned by sensor path x. 

2.1  Network and activity choice representation 

Consider a traffic network ( ,N L)  with activity location (lo) in each traffic zone1 where zN  

is the set of zone centroids and Lz is the set of links in traffic zone z, respectively (z N N and 

Lz   L ). In addition, the activity location (lo) is assumed to virtually locate at the zone 

centroid where the zone centroid is the node, representative of all real activity locations in 
that zone ( zloN ).    

According to daily activity-travel participations, user i (observed vehicle ith) makes a plan to 
perform activity pattern f. Let fA denote the activity pattern consisted of an ordered set of the 

activities which are daily scheduled to be carried out: 

A  f    
= 1{ ,..., ,..., }

fQqa a a
  

for {1,..., }f F
    

                      (2.1a) 

where F   = the total daily activity patterns. 

qa = an activity performed in sequence q of activity pattern f, {1,..., } fq Q , and fQ is the 

total number of activities included in activity pattern f. 

For instance, if the activity pattern (f=1) is Stay-at-home(H)-Working(W)-Stay-at-home 
(H), {H,W,H}1 A .  

Individuals can then select trip chain which is consisted of an ordered set of activity locations 
and an ordered set of paths travelled between any two adjacent activity locations. Given the 
list of activities in the specified activity pattern performed by individuals, A f , the trip chain h  

(the combined set of locations visited and paths travelled by trip makers starting at origin 
zone o) is denote as LR  o

fh , which is expressed as follows. 

LR  o
fh

  
= 1 1,2 1,, 1{( ,..., ,..., ), ( ,..., ,..., )}Q Q Qfh fh fhq q qr r rlo lo lo 

                                         

(2.1b) 

1for {1,..., },   = ,  ,  {1,..., }Nf fhq zh H lo o lo q Q    

where qlo    = activity location q where individual performs an activity, Nq zlo  . 

fhQ   =  the total number of visits at activity locations of individual who makes trip chain h of 

activity locations and paths associated with activity pattern f. 

fH   =  the total number of trip chains of activity locations and paths associated with activity  

pattern f. 

                                                            
1 A traffic zone is a special area designed by state, which usually consists of one or more census blocks. 

set of timestamp periods of scanned vehicle though sensors.
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, 1q qr =  path travelled from activity location qlo to 1qlo  . 

Note that a trip chain that begins and ends at the same activity location ( 1 = Qlo lo ) is called a 

tour. A tour of trip chain begins at home is called home-based tour. In addition, individuals, 
who make trip chain h associated with activity pattern f , perform  activity chain2 (f,h). 

2.2 Assumptions 

The general assumptions for this study are: 

(i) Travel behaviour model based on utility maximization-based approach (e.g. Bifulco et 
al., 2010; Bradley et al., 2010; Bowman et al., 2006, 2008; Vovsha et al., 2004) is adopted. 
In particular, in this study, a group of people who makes at least one out-of-home 
activity and drives alone without changing to other modes of transport is considered. 
Consequently, neglecting mode choice consideration, activity-travel participations of this 
group of people can be distinguished into two tiers (higher tier: activity pattern and 
lower tier: trip chain (route and activity location).  

(ii)  The set of feasible activity patterns and trip chains of individual travelers is assumed to 
be given. In addition, the travel pattern of feasible trip chains is assumed to be home-
based tour. These assumptions have also been adopted by the related studies (e.g. Li et 
al., 2010; Maruyama and Sumalee, 2007). 

(iii)  The daily activity-travel schedules of trip-makers involve the decisions of activity pattern 
and trip chain. Trip-makers base their decisions about activity and travel schedules on a 
tradeoff between the utility or benefits derived from activity participation at different 
locations and the disutility incurred by travel between activity locations. Here, we assume 
that all individuals are utility-maximizing decision makers, that is, they schedule their 
activity patterns/trip chains or activity chains2 to maximize their perceived trip utility (e.g. 
Feil et al., 2009; Flotterod et al., 2011; Li et al., 2010).   

(iv) The utility gained from activity participation depends on the start time of the activity and 
its duration. In contrast, the disutility of travel between activity locations depends on the 
in-vehicle time (e.g. Flotterod et al., 2011; Li et al., 2010; Feil et al., 2009). In this study, 
the utility of activity and travel is assumed to be a linear function with respect to the in-
vehicle time and activity duration. 

(v) The in-vehicle time and duration of an activity follow a probability distribution 
parameterized by its mean and variance (independent normal distribution type).  

(vi) For disaggregated travel behavior model (e.g. activity-based model), the utility of activity 
pattern at upper tier is generally derived from socio-demographics (e.g. household and 
personal characteristics) and logsum utility of trip chain at lower tier (Bowman et al., 
2006 ,2008). However, in this study, we focus on the method to predict the demand of 
vehicle trip chain from plate scanning at short-term operation analysis, which can be 
varied from day to day. Socio-demographics may not describe on these variations of 
activity pattern demand. In contrast, these demand variations are strongly related to the 
parameters (in utility function at lower tier) predicting trip-chain demand. Consequently, 
we assume that the utility of activity pattern is solely derived from the logsum utility of 
trip chain at lower tier (see (2.10)). 

 2.3  Model formulation 

Supply side 
                                                            
2 Activity chain is the combined decision of travelers on activity pattern and trip chain. 
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Consider a traffic network ( ,N L)  where N  the set of nodes and L  is and the set of links 
in section 2.1, there are two types of network elements that are defined as follows. 

Vehicle path. A vehicle path represents a run of vehicles on the links between two locations. 
Each vehicle path contains information on in-vehicle time. The in-vehicle time on any path r 
during time period m, denoted asrmb , is equal to the difference between the departure time of 

the vehicle from and its arrival time at that path, i.e.  rmb   rm rm  , where rm and rm  is 

the time at which the vehicle begins and ends its journey on path r during time period m, 
respectively. 

Activity link. An activity link represents a place where an individual performs a certain 
activity. Individuals gain utility or benefit from participation in an activity that is dependent 
on the activity start time and duration. The duration of activity a, denoted as ab on activity 

link, is equal to the difference between the times that travelers enter to and leave from that 
link, i.e. a a ab    , where a is the enter time of traveler at activity link (or the activity 

start time) and a is the departure time of traveler from activity link (or the activity end time). 

In addition, the time windows of travel, [rm , rm ], can be defined by travel periods, which 

can also be determined as a function of departure time and enter time of vehicle path, where 
time period of  and rm rm  , ( ), m    ; m rm  , rm m  for time period m {1,..., }M (M 

is the number of travel periods), and ,m m is the start and end time of time period m, 

respectively. Thus, we can also define the set (indexe ) of travel periods of individuals 

travelling between any two adjacent activity locations of activity chain (f,h),  
fh
eC , as follows. 

fh
eC =

1,1,2 , 1
{ ,..., ,..., },    {1,..., }

fh fhQ Qq q
m m m e E

 
                           

(2.2) 

where E is the total number of travel period sets; , 1q qm  is travel period of individual 

traveling on path , 1q qr  of activity chain (f,h). 

Furthermore, if user i (observed vehicle i) travels on vehicle path (or simply called path) 

during travel period set 
fh
eC , vehicle path set including travel period information can be 

defined as follows. 

1,2 1,2 1,, 1 , 1 1,{( , ..., ( (), , ),..., , )}
fh fh fh fhQ Q Q Q

e
q q q qfh r m r m r m  RM                            (2.3) 

According to assumption (v), we assume that both durations of performing an activity a at 
location q and traveling on path , 1q qr   during travel period m follow normal distribution, 

activity duration, ab , and  in-vehicle time, rmb , can then be formulated as follows. 

  2
,q q

a a ab N s                 for A fa                                                                               (2.4) 

  2
,q q

rm rm rmb N u             for RMe
fhrm                                (2.5) 

where q
as ,  2q

a is the mean and variance of duration of an activity a at location q; 

q
rmu  , 2q

rm is the mean and variance of in-vehicle time on path , 1q qr   during travel period m. 



   7 

   
 

According to assumption (iv), the utility of activity participation and disutility of travel is 
represented by the utility of trip chain h associated with activity pattern f during travel period 

set 
fh
eC , e

fhV ,  which can be written as follows. 

,( ) ( )
e

f fh

e
fh perf travel

a rm

a r mV V V
 

  
A RM         

(2.6) 

where ( )perfaV is measured utility of performing activity a, and ,( )travel r mV is measured 

disutility of traveling on route r during travel period m, which essentially have the following 
forms: 

( )perf
q

a aaV s      for A fa                               (2.7) 

,( )travel
q

r rmr mV u      for RMe
fhrm                             (2.8) 

where a , r is the coefficient of an activity choice and route choice, respectively ( 0,  a   

0,  , ).r a r   ș  

In addition, the coefficient of activity choice, a , representing the marginal utility during 

performing an activity a at its duration depends on two factors: (i) type of activity pattern, f, and 
(ii) activity start time, , (e.g. Bifulco et al., 2010; Bowman et al., 2008). Consequently, a  can 

be classified by the information of  and f  as ( , )a f   or a simplified form of ( , )a m f  for 

time period of  , ( ) m  
 
; m   m   where m is travel period, and m , m is the start 

and end time of time period m, respectively. 

Note that the maximum likelihood estimation problem and solution algorithm for updating in-
vehicle time/activity duration and coefficients of utility of performing activity and traveling 
based on utility function (2.6), (2.7), and (2.8) are presented in section 4. 

Demand side 

The purpose of the demand model is to explain the traveler’s choice of activity patterns and 
trip chains in terms of the attributes of the travelers and of the available activity-travel pattern 
alternatives. The basic choice alternative which is being modeled is typical daily activity 
patterns and trip chains (or activity chains) of travelers. It is assumed that the choice sets of 
activity-travel patterns conducted by travelers are given (assumption (ii)).  

According to assumption (i), the structure of the demand model is nested logit. There are, of 
course, other mathematical forms, which associate choice probabilities with attributes of the 
alternatives (e.g. structural equation and probit model). The nested logit model, however, has 
the advantage of representing reasonable hypotheses about choice behavior with correlation 
in the nest (level of decisions) while remaining tractable for empirical estimation (Ortuzar  
and Williams, 2011). The model consists of two levels of decisions. The higher tier model is 
an activity pattern demand generation (2.1a), and the lower tier represents a trip chain 
(activity location/route choice (2.1b)) model. According to assumption (vi), the utility of 
activity pattern in this study is assumed to be the logsum utility of trip chains belonging to 
specified activity pattern at lower tiers. The probability that individuals select trip chain h 
associated with activity pattern f  is then expressed by:  
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/
P P P

fh f h f
     

   
1 2

1 2

*

*

1 1

exp exp

exp exp
H fF

f fh

b fd
b d

V V

V V

 

 
 
 



                 

                     (2.9) 

where 1 2 ,    = scale parameters,  b = index of activity patterns. 

d    = index of trip chain associated with activity pattern f . 
*
fV  =  logsum utility of trip chains belonging to activity pattern  f .  

fhV = utility of trip chain h associated with activity pattern f at lower tier (see (2.6), (2.7), and 

(2.8) for utility formulation). 

*
fV

 
=   2

2 1

1
exp  ln

H
f

fd
d

V
 


 
 
 

                                                                                   (2.10) 

Limitations of demand model 

The demand model as developed here incorporates several behavioral assumptions. The most 
fundamental assumption is that travel arises from a traveler choice process in which the 
alternatives that are considered are complete daily activity-travel participations. These 
activity-travel participations are constructed by two hierarchical levels of decisions (activity 
pattern and trip chain). In addition, the utility of these participations is simply derived from 
related activity-travel attributes (in-vehicle times and activity durations). There are, however, 
some limitations of such a demand model: 

 As the activity-travel interactions between members in household are not captured in this 
model, the trips in trip chains made by individuals are independent to other travelers. 

 Regarding to assumption (i), a single group of trip makers is considered. In practice, the 
preferences of activity pattern or trip chain (or perceived utility) can be different from one 
group to others (taste variations). These preferences are normally dependent on individual 
or household demographics, which are not included in the utility function. This utility 
function is simply assumed to be identically perceived by the members of the same 
behavioral homogeneous group (e.g. Li et al., 2010). Consequently, model coefficients 
() are derived from the utility function only responding to the particular group. 

 Regarding to assumption (ii), the trip makers have the fixed plan on conducting all 
activities in the daily activity patterns without rescheduling such a plan. This assumption 
would be unsuitable when non-scheduled activities are the major concerns of the analysis. 
Nevertheless, the advantage of this approach is that the model estimation results are 
consistent and efficiently used to test the new transportation policy applications. 

The demand model, of which its limitations are described above, is used for a general 
framework to update the demand model parameters and estimate vehicle trip chains from 
plate scanning. The extensions of this framework such as the complex demand model 
representing activity-travel interaction of members in household or other groups of travelers 
can be adopted for further studies. 

Data needs for model estimation 

In general, the model estimation is constructed by using travelers’ attributes (in-vehicle times 
and activity durations) and chosen activity patterns and trip chains of travelers. However, 
these attributes and chosen activity patterns/trip chains are not directly observed by plate 
scanning. To obtain such information, the method is presented in section 4 and 5.  
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3. DATA COLLECTION FROM PLATE SCANNING 
 

For network( ,N L) , let l denote the link installed by a sensor scanning a vehicle license plate 

(simply called scanned linkl ). When user i makes an activity pattern f associated with trip 
chain h traveling on the network, user i has been scanned by a series of sensors locating on 
the scanned links. Path traveled by user i can be represented by an ordered set of links that 
this user orderly passes. Compared to travel path, sensor path is the path or partial path of 
travelers represented by the ordered set of scanned links identifying the same vehicle in the 
sequence order using license plate matching technique. Observed sensor path x of user i, 

ix
 , 

can be defined as follows. 

1{ ,..., ,..., }x

i i i
k Kix

l l l x
 
for {1,..., }x X                              (3.1) 

where i
kl = the scanned link that user i is identified in order k of links to be scanned. 

         xK = the total number of times of links to be scanned in sensor path x. 
         X  = the total number of sensor paths. 

Other information that we can collect from plate scanning is the time moment of user i pass 
through scanned link ikl . The ordered set of observed time moment of user i is defined by: 

Ti  1{ ,..., ,..., }x
i i i

k K
t t t  for k = 1,2,…, xK .       (3.2) 

where i
kt = the time moment  that user i passes the sensor k on scanned link i

kl . 

In addition, the different of time moments between any two adjacent scanned links, which are 
registered by user i, can be represented by the observed sensor-to-sensor travel time. The 
ordered set of observed sensor-to-sensor travel time ,Yi , of user i can be described as follows. 

1,2 , 1 1,
{y ,..., y ,..., y }Y x x

i i i
i k k K K 
  , , 1y 0i

k k   for k = 1,2,…, xK -1.    (3.3) 

where , 1yi
k k = the sensor-to-sensor travel time from scanned link i

kl  (sensor k) to 1
i

kl   (sensor 

k+1); , 1 1y = i i i
k k k kt t   . 

According to the model resolution, which is usually represented in the unit of time period of a 
day, we can directly convert the ordered the set of observed time moment of user i, Ti , to the 

ordered set (index e
 ) of timestamp periods (time periods of a day) as follows. 

1( ) { ( ),..., ( ),..., ( )}x
i

i i i
i k Ke T t t t     M    for k = 1,2,…, xK ; ( )i

kt  i
km  ; i

km mt          (3.4) 

where i
km = timestamp period of user i passing sensor k on scanned link i

kl . 

    m , m = the start and end time of time period m, respectively.  

To illustrate data collection from plate scanning, a simple network with 9 nodes (including 
two zone centroids) and 12 links is defined in Figure 1(a). User 1 and user 2 perform trip 
chain H1-W2-H1 on path 1 and path 2, respectively (Figure 1(b)). According to data 
observed from plate scanning, the partial paths of user 1 and user 2 are observed by sensor 
path 1, 1(  {1,2,5,12}), and sensor path 2, 2( {1,7,12,6}) , respectively. Furthermore, as 

user 1 and user 2 passed these scanned links as 1 and 2 (Figure 1(c)), the ordered set of 

observed time moments at scanned links,1Ti = {8:00,8:15,8:28,17:30} and 2Ti = {8:03,8:20, 
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17:30,17:47}, could be recorded. Given two possible travel periods, period 1 = [6:30-9:30] 
and period 2 = [16:30-19:30], the ordered set of timestamp period of user 1 and user 2 (1Mi  
= {1,1,1,2} and 2Mi  = {1,1,2,2}) could be calculated from ordered set of time moment, T . 

In addition, the observed sensor-to-sensor travel times of both users (in min.), which are 
calculated from the difference of time moments at two consecutive sensors, are equal to1Yi = 

{15,13,542} and 2Yi = {17,550,17}. Note that the values of the sensor-to-sensor travel times 

from scanned link 5 to scanned link 12 of user 1 (542 min.) and from scanned link 7 to scanned 
link 12 of user 2 (550 min.) are high, because these values include duration of work at zone 2. 

 

 

 

 

 

 

 
 

  

 

 
 

 

 
 

 

 

Figure 1 Network description and sensor path. 

           

4. UPDATING OF TRAVEL BEHAVIOR MODEL PARAMETERS AND 
ESTIMATION OF VEHICLE TRIP CHAIN BASED ON PLATE SCANNING 

 
4.1 Maximum likelihood estimation problem 

According to assumption (ii), the choice sets of activity chain (f,h) of travelers are given 
(i.e. {1,..., } and {1,..., }x x

ff F h H  ), where Fx is the total number of feasible activity 

patterns (2.1a) derived from sensor path x, and x
fH  is the total number of feasible trip chains 

(2.1b) associated with activity pattern f  derived from sensor path x.  

For each feasible choice of activity chains, time of the day of travelers can be represented by 
the set of travel periods daily travelling between any two adjacent activity locations. In 

addition, travel period of travelers (
fh
eC in (2.2)), can be directly distinguished from observed 

2 

3 

8 

12 11 

6 

1 

9 10 
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5 6 7 

8 9 2 
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7 
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1 

1 
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7 
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Sensor path 1 traveled by user 1. 
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7 
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12 
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6 

3 

(a) Network components 

(c) Observed sensor paths   

(b) Vehicle path of trip chain H1-W2-H1 

Path 1 traveled by user 1. 

Path 2 traveled by user 2. 

1 5 1 4 2 8 1 12 2 10 11 3 3 7 9 5 8 

1 7 1 6 2 6 1 12 4 10 9 3 3 7 9 5 6 
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eM  in (3.4), where the sensors are specifically located on the links as the proposed sensor 

location schemes in appendix A. 

Consider user i traveling on sensor path x during timestamp period set eM  (3.4), if the 

chosen activity chain (f,h) during travel period set 
fh
eC  (2.2) can directly be observed from 

plate scanning, then the indicator variables can be observed as follows: 

C

1,   if  user , is sequentially detected by sensor 1,.., ,..., and matched with

z      sensor path ,  and selects activity chain ( , ) during travel period set .

0,  otherwise.  

x

x fh
eiefh

i  k K
   

x f h

  




 



(4.1) 

In order to obtain the updated model parameters, rewritten in a vector form,  =  { , , } Sș ,u , 
the conventional maximum-likelihood of all users for nested logit choice model (2.9) is 
formulated as follows: 

 
1 1 1 1 1

z
( ) ( )

xx x
fxe HX E F

x e i f h

x
iefh

n
xe
fhq P

    

  z  
                    

(4.2)
 

where Ex = the total number of travel period sets (2.2) derived from sensor path x.  

nxe    = the number of vehicles observed by sensor path x during travel period set 
fh
eC . 

fh

xeP = probability of user i selecting activity chain (f,h) on travel period set 
fh
eC  by (2.9), 

which the feasible choices of activity chains are derived from sensor path x. 

However, the chosen activity chain (f,h) of user i and the model’s attributes (i.e. mean in-
vehicle time, q

rmu  u in (2.8) and mean activity duration, qaS S  in (2.7)) are not directly 

observed from plate scanning (i.e. z , ,  and x
iefh

q q
rm au S are not directly observed). 

According to assumption (v), we assume that both in-vehicle time 2( , ( ) )q q
rm rmu   and duration 

of activity 2( , ( ) )q q
a aS  are distributed normally and independently. As a result, for any 

travelers possibly performing activity chain (f,h) during travel period set 
fh
eC and identified 

by sensor k and k+1 in the network, the sensor-to-sensor travel time between sensor k and 
k+1, which is an aggregated form of q

rmu and q
aS , also follows the normal distribution shown 

in (4.3), (4.4), and (4.5) below. 

 2( ), ( )fh fh fh
ke ke key N E y 

                             
(4.3) 

( )fh
keE y  k k

rm au S         for  , f
e
fha rm  A RM            (4.4)        

2 2 2( ) (ı ) (ı )fh
ke k k

rm a   

  

for  , f
e
fha rm  A RM             (4.5)        

where ke
fhy  = random sensor-to-sensor travel time between sensor k to k+1 of travelers 

performing activity chain (f,h) during travel period set 
fh
eC . 

( )ke
fhE y ,ıke

fh =  mean and standard deviation ofxke
fhy , xke

fhy Y and ıke
fh ı . 
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,ık k
rm rmu    = mean and standard deviation of in-vehicle time between sensor k to k+1 of 

travelers performing activity chain (f,h). 

,k k
a aS    = mean and standard deviation of total activity durations of travelers performing 

activity chain (f,h) between sensor k to k+1. 

According to travelers performing activity chain (f,h), if there is no activity performed 
between sensor k to k+1, sensor-to-sensor travel time will be equal to the in-vehicle time. 

Thus, k
a

S and k
a

 will be excluded from (4.4) and (4.5).  

To estimate zone-to-zone in-vehicle time, network example in Figure 2 is used to illustrate 
the relations between observed sensor-to-sensor in-vehicle time and modeled zone-to-zone 
in-vehicle time. The expected travel times from activity location (zone centroid) q to q+1 can 

then be presented in a form of mean sensor-to-sensor travel time from any sensor k to k+1, k
rm

u  , 

as follows.  

, , 11( )k k q q k q q
rm rm rmu u u  
     for

 {1 },-1 {1 }x
fhk ,..,  K q ,...,Q                   (4.6) 

where q
rmu

 
= mean in-vehicle time of travelers from location (zone centroid) q to q+1, q

rmu u .  
,k q   = ratio of in-vehicle time (from location (or zone centroid) q to sensor k+1) to in-

vehicle time (from sensor k to sensor k+1) (i.e. 0 1).   
After replacing k

rm
u   in (4.4) by the definition in (4.6), the mean sensor-to-sensor travel time 

in (4.4) can then be formulated in a form of zone-to-zone in-vehicle time as follows. 

, , 11( ) ( )ke k q q k q q k
fh rm rm aE y u u S  

       (4.7)  
 
   
 
 
 
 
 
 
 

 

 

 

FIGURE 2 Representation of in-vehicle time and activity duration (chain H1-W2-H1). 

 
Since trips are assumed to be started or ended at zone centroids, the distribution of actual 
activity locations in traffic zone also leads to significant travel time variation. For instance, if 
activity locations are dispersed in large traffic zone, in-vehicle time variation from location q 
to q+1, 2(ı )q

rm tends to be high. However, the information of actual locations, where the trips 

start and end, is not directly observed from plate scanning. Consequently, in-vehicle time 
variation between two actual activity locations is not explicitly known. Nevertheless, the 

2 
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1 
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1 
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 k,qu q (1- k ,q)u q+1 
Mean in-vehicle time  (1- k+1 ,q+1)u q  k+1 ,q+1u q+1 

uk uk+1 

Mean sensor-to-sensor  
in-vehicle time  

Zone boundary 
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variance of zone-to-zone in-vehicle times can be presented in a form of variance of in-vehicle 

time from any sensor k to k+1, 2(ı )k
rm shown in (4.8a). 

 

2 , 2 , 1 21(ı ) (ı ) ( ) (ı )k k q q k q q
rm rm rm  
                      (4.8a) 

where 2( )ıq
rm is variance of  in-vehicle time of travelers between two centroids (from loq to loq+1). 

After replacing 2( )ık
rm in (4.5) by the definition in (4.8a), the sensor-to-sensor travel time 

variation (4.5) can then be rearranged as follows. 

2 2 2 2, , 11(ı )  (ı ) ( ) (ı ) (ı )k q q k q qke k
rm rm afh   

                                               (4.8b) 

If the actual decisions of any travelers (zx
iefh =1 or 0 for i =1,…,nxe) can be known, the mean 

and variance of sensor-to-sensor travel time (sensor k to k+1) of activity chain (f,h) can be 
estimated by solving the first order derivation from maximum likelihood problem (4.2) as 
follows (Ben-Akiva and Lerman, 1985). 

, 1
1 1

1 1

( )

y z

  

z

xe

xe

xie x
k k iefh

x
iefh

nX

ke x i
fh nX

x i

E y


 

 






 and  

 , 1

2

2
1 1

1 1

( )z y

  

z

xe

xe

x xie ke
iefh k k fh

x
iefh

nX

ke x i
fh nX

x i

E y


 

 

 





                            (4.9) 

where  , 1yxie
k k is sensor-to-sensor travel time from sensor k to k+1on sensor path x observed 

from user i traveling during travel period set 
fh
eC . In addition, the mean in-vehicle time, k

rmu   

is equal to ( )ke
fhE y for the case that travelers does not perform any activity. On the other hand, 

the mean activity duration, kaS  , is equal to ( )ke
fhE y - k

rmu   for the case that travelers perform 

only an activity in between sensor k and k+1. 

In practice, there could be more than one feasible activity chain of individuals derived. 
Consequently, the value of zx

iefh can not be directly observed from plate scanning. To deal 

with this problem, indicator variablez is basically treated as a missing variable and solved by 
the method in section 4.2.  

To update model parameter, rewritten in a vector form  { , , , , },Sș u ı  based on maximum-
likelihood estimation approach, a joint probability mass function (2.9) and probability density 
function (normal distribution) for the random variables (ke

fhy ) in (4.3) assumed to underlying 

our observations (y) in (3.3), under the case that z can be estimated, can be written down as 
follows: 

2
1

, 1

1 1 1 1 1 1

z

y ( )1 1
( | , ) ( ) exp

22

xx x x
fxe

x
iefh

H xie keX E F K
k k fh

fh ke ke
x e i f h k fh fh

n
xe E y

q P
 




     

                      

 y z

    

(4.10) 
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4.2 Solution algorithm 

As mentioned in section 4.1, the variable z, which represents the selection of activity 
pattern/path/activity location from travelers, is unobserved and cannot be directly identified 
by plate scanning (due to the nature of partial observation). Thus, in the estimation problem, 
one option is to treat z as “missing variables” (Watling et al., 1992, 1994) and apply the EM 
(Expectation-Maximization) algorithm to solve the estimation problem with missing z. By 
taking log of the function (4.10), we can obtain the “complete data log-likelihood function.” 
The EM algorithm will then iterate between the two steps: (i) maximizing this likelihood 
function with respect to the parameters, { , , , , }  Sș u ı  (the M-step) given the expected value 
of z, and (ii) evaluating the expectations E(z) over the missing variables z given the 
parameter values (the E-step). Note that the reader can skip from the details of the EM 
algorithm as follows to the proposed algorithm without loss of generality of this paper.  

In the M-step, taking log of function (4.10) yields the complete-data log-likelihood of: 

2
1 1

, 11
2

1 1 1 1 1 1 1

y ( )
( | , ) ln( ( )) ln( 2 )

xx x x x
fxe xie keHX E F K K

k k fhx xe ke
iefh fh ke

x e i f h k k fh

n

fh

E
L z P

y




 


      

             
  y z

     

(4.11) 

The complete-data log-likelihood is linear in z. Thus, in the context of the EM algorithm, the 
expected complete-data log-likelihood is just (4.10) with each z replaced by its conditional 
expectation ,E   z Y , where Y represents the vector of random variables in (4.3), Y  

{..., ,...}ke
fhy , corresponding to particular values of observed sensor-to-sensor travel time y, and 

z is vector form of scalar z. Then, given conditional expectation E(z) (from E-step), model 
parameter vector,  , is updated by maximizing the completed-data log-likelihood (4.11). 
However, simultaneous updating of model’s attributes (or vector from S andu ) and coefficients 
of nested choice model (ș ) in vector   can lead to the combinatorial problem. To avoid the 
combinatorial problem of updating   from the observed sensor-to-sensor travel time, y, the 
process to update   is divided into two steps: 

First, given any scalar z (from E-step) and observed y, the mean activity duration (S ) and 
mean in-vehicle time (u ) are updated by maximizing log-likelihood of probability density 
function of observed sensor-to-sensor travel time (y) as follows. 

2
1 1

, 11
2

1 1 1 1 1 1 1

,
y ( )

( | , ) z ln( 2 ),
xx x x x
fxe xie keHX E F K K

k k fhx ke
iefh fh ke

x e i f h k k fh

n E y
L 



 


      

           
  y zS ıu

            

(4.12) 

where the random variable ke
fhy  can be formulated on the basis of the mean sensor-to-sensor 

travel time ( )ke
fhE y  (or in a form of S andu ) and variance ke

fh , which are expressed in (4.7) 

and (4.8b) of section 4.1, respectively. 

Second, given z (from E-step) and model’s attributes ( S and u ) updated from problem (4.12), 
route and activity choice coefficients ( and r aș ș ) and scale parameter  are simultaneously 

updated  by maximizing log-likelihood of nested logit choice model (2.9) as follows. 

1 1 1 1 1

, ,( | , ) z ln( ( ))

xx x
fxe HX E F

x xe
iefh fh

x e i f h

n

L P
    

zSș u

                        

(4.13) 
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For the E-step, the uncompleted-data z is estimated by all updated values of model 
parameters (  ) from the M-step as follows: 

     z | , 0.Pr z 0 | , 1.Pr z 1| , Pr z 1| ,x x x x
iefh iefh iefh iefhE           Y Y Y Y

                      
(4.14) 

Then, by standard laws of conditional probabilities: 

    
 

Pr z 1, |
Pr z 1| ,

Pr |

x
iefhx

iefh

 
  



Y
Y

Y
                                       (4.15) 

By the Bayes’ rule (and the fact that zx
iefhcan only be 0 or 1): 

    
1

0

Pr | Pr z , |
j

x
iefh j



   Y Y                              (4.16) 

Putting (4.15) and (4.16) into (4.14), it gives: 

  
 

1

0

Pr z 1, |
z | ,

Pr z , |
j

x
iefhx

iefh
x
iefh

E
j



 
   

 

Y
Y

Y

                            (4.17) 

The probability distributions of selecting activity chain (f,h) associated with observed y 
required for the numerator and denominator of (4.17) can be defined by (4.10) and another 
application of Bayes’ rule, yielding: 

 
z

Pr z , | ( , | )

iefh

x
iefh

all combinations
with j

j q



   
z

y y z                                      (4.18) 

Since the decision on activity chain (f,h) of user i is independent from other users, the 
combinations z in (4.18) consist of 1zx

iefh   
when user i selects activity chain (f,h) and 0zx

iefh   
for other cases that activity chain (f,h) is not selected from user i. Consequently, we can 
compute the expected z-value for user i selecting activity chain (f,h) as follows: 

1 1

z | , x
fx

x
iefh

HF
x
iebc

b c

x
iefh

w
E

w
 

   


Y                                                          (4.19) 

where 

2
1

, 1

1

y ( )1 1
( ) exp

22

x

bc

xie keK
k k bcx xe

iebc keke
k bcbc

E y
w P








               
                                (4.20) 

Regarding to the procedure of the two tiers mentioned above, the proposed algorithm we can 
be summarized as below. 

Proposed algorithm 

Step 1: Initialize parameters0 0 0 0 0 0( { , , , , })  Sș u ı  ; Set iteration:   n = 0. 

Step 2: From E-step, givenn , find
 
expected traveler’s chosen activity chain, E(z), by solving 

(4.19) and (4.20). Then, set n=n+1. 

Step 3: From M-step, find updated parameters ˆ ˆˆˆ ˆ( { , , , , })ˆn n n n n n  Sș u ı  as follows. 
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Step 3.1: find ˆˆ , , and ̂n n nSu ı by solving problem (4.12), given E(z) from step 2 and 
observed sensor-to-sensor travel time, y.  
Step 3.2: find ˆnș and ˆ n by solving problem (4.13), given E(z) from step 2 and 

updated mean in-vehicle time and activity duration (ˆnu ˆ, nS ) from step 3.1. 

Step 4: If the convergence criterion is met, stop and final updated ˆ n   ; otherwise go to step 2. 

The convergence criterion bases on the maximum relative gap of all parameters in   at 

successive iterations:  max

 

1

1

ˆ ˆ
ˆ

n n

n






 



 where  is the error tolerance.  

Step 5: Estimate activity-chain demand, 
1

xe
xe x
fh iefh

i

n

d z


 . 

Note that the initial 0  can usually be obtained from prior data, which assumed to be known 
for this study. Furthermore, the accuracy of updating of model parameter( ) by the proposed 
algorithm with plate scanning data also depends on the sensor location. More details on the 
design of sensor locations can be found in appendix A. 
 

5. NUMERICAL EXAMPLE 
 

In this section, the proposed algorithm is tested with a modified Sioux Falls network. This 
network consists of 35 nodes, 98 links, and 10 traffic zones shown in Figure 3(a). In addition, 
Figure 3(b) presents the available activity types in each zone (i.e. zone 1-3 including stay-at-
home (H) and transition (T), zone 4-7 including work (W), and zone 8-10 including 
maintenance (O)). The proposed sets of sensors of cordon-line-based scheme (see appendix A) 
in Figure 3(b) can collect 2,000 registered vehicles (i.e. the vehicle population travelling in 
the network), of which 440 vehicles of vehicle population have their trips originated from 
zone 1. The remains have their trips originated from zone 2 and 3. 

5.1 Setting of the test case 

Some network conditions are defined for the tests: 

1) The choice alternation of out-of-home activities includes work (W) and maintenance (O) 
purposes. In addition, at-home activities include transition (T) and stay-at-home (H) purposes. 

2) Four possible types of activity patterns have been explicitly observed.  
 Home-based work tour (H-W-H)  
 Home-based work tour including maintenance before work (H-O-W-H).   
 Home-based work tour including maintenance after work (H-W-O-H).  
 Home-based work tour with one secondary tour for maintenance (H-W-T-O-H). 

3) The model resolution is divided into four periods (period 1: AM [6:30–9:29], period 2: 
Midday [9:30–15:59], period 3: PM [16:00–18:59], and Period 4: Other [19:00–6:29]). 

For instance, when the users perform trip chain H1-W5-T1-O8-H1 during travel period 
set {1,3,4,4}, these users start their first trip from home at zone 1 on period 1 and travel 
after work at zone 5 on period 3 to home for a transition purpose (e.g. taking a short break 
after work at home). Secondly, they leave home on period 4 for maintenance at zone 8 
and return home within the same period.  
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FIGURE 3 Test network and sensor location of cordon-line base scheme. 
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4) Travel time variation between two adjacent sensors during travel period set fh
eC , 2( ) ,ke

fh  in 

(4.8b) can be estimated as a linear function of mean sensor-to-sensor travel time, it yields: 

     

2( ) ( )ke ke
fh fhE y              (5.1) 

     where  is a constant representing level of travel time variations.   

5.2 Simulation and evaluation method 

According to the simulation method in this study, given pre-specified true model parameters 

true ={ , , , , }true true true true trueSș ȝ ı , the demand of activity pattern/location/path choice or 
activity chain can be calculated from nested choice logit model (2.9).  

Based on such the activity-chain demand, the simulated sensor-to-senor travel time (y) of 
each traveler observed from plate scanning is obtained from a Monte-Carlo method by 
sampling y from normal variates in (4.3). For instance, given a true demand of vehicles 
passing on the sensor path (D2,D3,D5,D2) to perform trip chain H1-W5-H1 on vehicle path 
(2,6,9,11,13,15,17,7,4), these vehicles will stop at zone 1 (between D2 and D3) for stay-at-
home purpose (H) and stop at zone 5 (between D3 and D5) for work purpose (W).  
Consequently, the simulated sensor-to-sensor time (from sensor D3 to sensor D5) based on 
this demand is drawn from the mean of in-vehicle time plus duration of work and its variance 

( ,trueȝ trueS , trueı ). After the simulation, the initial model parameters in 0
 
are set as the 

initial values for finding final updated parameters in ̂  from solution algorithm (section 4.2). 

In this study, evaluation of the statistical performance of updating of model parameters, ̂ , is 
also carried out through a Monte-Carlo method by randomly sampling initial estimates of true 
parameter, true . In particular, initial 0  is generated by drawing from a normal variate 

0 (1 ) true    where   is a random error term of initial 0  with a mean equal to ̂  and 

a variance equal to2
 . The statistical performance of final updated ̂ can be measured by 

the percentage reduction of mean square error from initial 0 , defined as follows (Cascetta 
and Russo, 1997). 

0 0 0 0ˆ ˆ ˆMSE%( ) [MSE( ) MSE( )] / MSE( ) 100%   for and j j j j j j                (5.2) 

where N = total number of trials of a dataset (0 and̂ ) with the same ̂ and 2.   

MSE%( )j = percentage reduction of the mean square error of parameter in vector.  

0 0 2
,

1

MSE( ) ( ) /
N

true
j n j j

n

N  


           (5.3) 

2
,

1

ˆ ˆMSE( ) ( ) /
N

true
j n j j

n

N  


                     (5.4) 

where true
j =  jth parameter in true parameter vector true . 

0MSE( )j = mean square error of initial value of jth parameter in 0 from N datasets; 0
,n j is 

initial value of jth parameter in 0 of nth trial. 
ˆMSE( )j = mean square error of updated value of jth parameter in ̂  from N datasets; 

,
ˆ

n j is 

updated value of jth parameter in ̂ of nth trial. 
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5.3 Computational results 

To examine the performance of updating of model parameters based on plate scanning, two 
tests were conducted as follows: 

5.3.1 Random initialization test 

To investigate initialization of in-vehicle time and activity duration (presenting the qualities 
of prior data), initial values of in-vehicle times and activity durations are set randomly to 
deviate from the true values set from the base case (Table 2). Given other model parameters, 
the results of updated in-vehicle time and activity duration (in Table 1) show that: 

 The performance of the algorithm in updating the mean in-vehicle times/activity durations 
and variance of sensor-to-sensor travel time is generally satisfactory due to high percentage 
error reduction (MSE% of uq, Sa, 2( )ke

fh  > 50%). This implies that the MSE of the updated 

model is substantially improved from the initial model, even though  in the tests the initial 
parameters in the calibration process of the updated model were highly deviated from the 
true values (̂ =2.5). 

 When the initial parameters of the variance of sensor-to-sensor time were set to be 
substantially different from the true value (̂  ≥ 1.7), the improvement of the updated 
model (parameters) in terms of MSE% can be limited. This may be due to the non-convex 
nature of the maximum likelihood estimation problem where the solution may be at the 
local optimal when the start point of the estimation problem is far from the global optimal 
solution (true parameters).  

 From other results, the proposed algorithm generally performed satisfactorily in updating 
the activity duration parameters (mean of work, transition and maintenance durations). 
However, the algorithm performed not as well in updating the mean travel time 
parameters. This may be due to the issue of non-identification of the travel route based on 
the sensor-to-sensor time data. Nevertheless, the improvement of the MSE% for the case 
of updating the mean travel time is still acceptable (in the range of 58%-94% 
improvement compared to non-updated models).   

5.3.2 The sensitivity test 

With true parameters of mean in-vehicle time, uq, (from zone to zone) and mean activity 
duration, Sa, (base case in Table 2), the updating of the parameters from the initial parameters 
in random initialization test has a good result (MSE% > 50%). In this initialization test, there 
is a significant difference between Sa and uq (e.g. Sa=W = 480 min. and uq =18.8 min.). To 
further test on the robustness of the proposed algorithm, the sensitivity test with the reduction 
of Sa from base case was conducted (Table 2). Also, there are two levels of travel time 
variations set in this test (low (=0.5) or high (=1.5), see (5.1)). Value of  in base case and 
case 3 is equal to 0.5, and value of  in the other cases (case 2 and 4) is equal to 1.5. The 
initial values of uq, Sa, 

2( )ke
fh from setting no.3 in Table 1 are adopted to represent the normal 

applications of these values. The numerical results are described as follows: 

Updating of in-vehicle time  

 The results (Table 2) show that, for the cases that a gap between Sa and uq is similar (e.g. 
base case and case 2), the absolute percentage error (APE) in uq increases when level of 
travel time variation,  , increases from 0.5 to 1.5. For instance, the APE of uq in case 2 is 
larger than the APE of uq in base case and  the APE of uq in case 4 is larger than the APE 
of uq in case 3. 
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 With the same level of travel variation, , the error (APE) in updating of uq increase   
when activity duration, Sa, decreases (e.g. APE of uq (case 2) < APE of uq (case 4)). 

Updating of activity duration 

 For the cases with the same value of , the error of updating of mean activity durations 
(work, maintenance and transition) tends to increase when the difference between Sa and 
uq decreases. For instance, with the same value of  (=1.50), the error of updating of 
Sa=W, Sa=O, or Sa=T in case 2 is much less than the error in case 4 (Table 2). 

 With the smallest values of Sa associated with high value of  (in case 4), the updating of 
mean activity duration, Sa has the worst result (Table 2). 

Updating of coefficients of demand model 

 The updated model coefficients r or a in all test cases are different from true values 
(Table 2). This implies that, due to non-convex maximization problem (solved by the EM 
algorithm), the updated model coefficients (r,a) are non-unique solutions. Consequently, 
there can be more than one solution of updating of (r,a) that can possibly reproduce the 
observations (sensor-to-sensor travel times).  

Trip chain estimation 

To exemplify trip chain estimation based on observed sensor-to-sensor travel time (y), true 
trip-chain demands derived from truetrue in case 3 (Table 2) are set to represent the case that 
activity durations of any purposes are smallest (or smallest values of (Sa - u

q)).  The estimated 
trip chains are illustrated with 6 sensor paths of total simulated 50 sensor paths on test 
network. Path topology and path travel time of feasible trip chains of each sensor paths are 
described in Table 4. The results of trip chain estimations are (table 3): 

 Due to the settings of smallest activity duration (Sa) in case 3, some travelers, performing 
the maintenance (Sa=O = 6 min.) in the activity pattern (H-O-W-H and H-W-O-H), cannot 
be predicted in the E-step of the EM algorithm. As a result, trip chains of H-W-H are 
over-estimated and trip chains of H-O-W-H or H-W-O-H are under-estimated (Table 3).  

 In contrast, the results from Figure 4 imply that, with largest difference between Sa and 
uq, the smallest errors (MMSEs) of estimated trip chains in base case and case 2 are 
obtained. In addition, the MMSE in case 2 higher than the MMSE in base case, due to 
higher value of . For the remaining cases (case 3-4), the performance of trip chain 
estimations tends to decrease when level of travel time variations, , increases.  

Discussions of results 

The proposed algorithm performs well in updating the model attributes and predicting trip 
chains in some conditions (high activity durations and low travel time variations). This 
implies that, due to the large values of (Sa - u

q), the sensor-to-sensor travel time distributions 
(y) of the alternative (y1) that travelers do at least one activity in a single traffic zone of two 
adjacent sensors are distinguished from another alternative (y2) that travelers just drive 
through without doing any activity. Consequently, the chosen activities with two different 
distributions (y1, y2) are effectively predicted. By using proposed sensor locations (appendix 
A), the choices of travelling between two adjacent sensors (sensor k to k+1) are delimited to 
such the two alternatives. As a result, the chosen activity patterns made by most travelers are 
correctly predicted by a series of sensor-to-sensor travel times, y, (E-step). In accordance 
with accurate expected choice of activity patterns, E(z), model attributes are well updated.  
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Table 1 Updated results from random initial values after 15 trials (N=15). 

Variable     Name Index Setting of initial variables 
1 2 3 4 5 6 7 

qu  Mean in-vehicle  
time from zone to 
zone (min.) 

Mean ̂  0.20 0.50 0.70 1.00 1.50 2.00 2.50 

Var. 
2    0.02 0.05 0.07 0.10 0.15 0.20 0.25 

 MMSE%a 68 87 58 94 85 68 68 

Sa=W  
Mean work 
duration (min.) 

Mean ̂  0.20 0.50 0.70 1.00 1.50 2.00 2.50 

Var. 
2    0.02 0.05 0.07 0.10 0.15 0.20 0.25 

MSE% 100b 100 100 100 100 100 100 

Sa=O  
Mean 
maintenance 
duration (min.) 

Mean ̂  0.20 0.50 0.70 1.00 1.50 2.00 2.50 

Var. 
2    0.02 0.05 0.07 0.10 0.15 0.20 0.25 

MSE% 100 100 100 100 100 100 100 

Sa=T 
Mean transition  
duration (min.) 

Mean ̂  0.20 0.50 0.70 1.00 1.50 2.00 2.50 

Var. 
2    0.02 0.05 0.07 0.10 0.15 0.20 0.25 

MSE% 97 97 100 100 99 99 100 

2( )ke
fh  

Variance of 
sensor-to-sensor 
time (5.1) 

Mean ̂  0.30 0.70 1.00 1.50 1.70 2.50 3.00 

Var. 
2    0.03 0.07 0.10 0.15 0.17 0.25 0.30 

MSE% 100 100 100 100 71 60 52 

Computational timec (min.) 48.8 52.2 53.8 53.9 53.1 54.4 54.2 

aMMSE% of uq is the average of MSE% of in-vehicle times from all OD pairs. bValue is close to 100%. 
cAll settings of initial variables are processed by Quad CPU i5-2400 @ 3.10 GHz and Ram 4 GB.  

  
 
Table 2 Updated results from various settings of mean activity duration (Sa) and level of travel 
time variations ( ). 

Variable Name Index 
Case 

Base 2 3 4 

Average of mean in-vehicle time, uq, 
of all OD pairs (min.) 

True                          18.8 

Est. 18.6 17.9 19.6 20.6 

APE 1.06 4.79 4.26 9.57 

Sa=W, Mean work duration (min.) 

True 
(Sa- u

q) 
480.0 

(461.2) 
 

24.0 
(5.2) 

Est. 479.8 479.9 23.7 23.6 

APE 0.05 0.03 1.18 1.48 

Sa=O, Mean maintenance duration 
(min.) 
  

True 
(Sa- u

q) 
120.0 

(101.2) 
6.0 

(-12.8) 

Est. 119.9 120.0 4.4 4.0 

APE 0.09 0.001 27.20 33.59 

Sa=T, Mean transition  duration 
(min.) 
  

True 
(Sa- u

q) 
45.0 

(26.2) 
2.3 

(-16.5) 

Est. 45.3 43.6 4.2 4.9 

APE 0.58 3.10 86.11 119.26 
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Table 2 Updated results from various settings of mean activity duration (Sa) and level of travel 
time variations ( ) (Continue.). 

Variable Name Index 
Case 

Base 2 3 4 

  level of travel time variation (5.1) 
 

True 0.50 1.50 0.50 1.50 

Est. 0.49 1.49 0.92 3.55 

APE 0.55 0.52 83.73 136.46 

r, Route choice coefficient 
  

True 0.80 

Est. 0.82 0.81 0.60 0.62 

APE 2.55 0.97 25.01 22.76 

a , Activity choice coefficient of  
pattern H-W-H at Ce ={1,3} 

True                                    0.91  

Est. 0.36 0.35 0.02 0.00 

APE 60.28 61.92 97.58 100.00 

a, Activity choice coefficient of  
pattern H-W-O-H at Ce ={1,3,4} 

True                                    0.71 

Est. 0.28 0.27 0.00 0.00 

APE 73.58 60.77 100.00 100.00 

 a, Activity choice coefficient of  
pattern H-W-T-O-H at Ce ={1,3,4,4} 

True                                   0.81 

Est. 0.40 0.39 2.00 2.00 

APE 50.37 51.46 146.91 146.91 

 a, Activity choice coefficient of  
pattern H-O-W-H at Ce ={1,1,3} 

True                                   0.69 

Est. 0.27 0.26 0.00 0.00 

APE 60.82 62.90 100.00 100.00 

Computational timea (min.) 55.9 55.0 54.1 41.0 

aAll settings of initial variables are processed by Quad CPU i5-2400 @ 3.10 GHz and Ram 4 GB.  

 
Table 3 Example of estimated results of trip chains originating from zone 1. a 

x Sensor path Feasible 
trip chain Pathb  Time stamp 

period set 

True 
flows 
(veh.) 

Estimated 
flows 
(veh.) 

MSE 

1 D1 D18 D15 D4 D1 H1-O9-W6-H1 1 {1,1,3,3,1} 20.0 18.4 3.41 

  H1-W6-H1 1 {1,1,3,3,1} 20.0 21.6 3.41 

2 D2 D3 D5 D2 H1-W5-O8-H1 2 {1,3,4,1} 20.0 16.9 9.93 

  
H1-W5-H1 2 {1,3,4,1} 20.0 23.1 9.93 

3 D1 D3 D16 D5 D4 D1 H1-W6-O8-H1 3 {1,1,3,3,4,1} 10.0 8.7 2.61 

  H1-W5-O8-H1 3 {1,1,3,3,4,1} 10.0 9.0 1.51 

 
 H1-W5-H1 3 {1,1,3,3,4,1} 10.0 11.0 1.51 

 
 H1-W6-H1 3 {1,1,3,3,4,1} 10.0 11.3 2.61 

4 D2 D3 D16 D5 D2 H1-W6-O8-H1 4 {1,1,3,4,1} 10.0 8.5 2.70 

  H1-W5-O8-H1 4 {1,1,3,4,1} 10.0 8.8 1.79 

 
 H1-W5-H1 4 {1,1,3,4,1} 10.0 11.2 1.78 

 
 H1-W6-H1 4 {1,1,3,4,1} 10.0 11.5 2.71 

5 D1 D11 D6 D4 D1 
H1-W7-O8-H1 5 {1,1,3,4,1} 20.0 17.5 7.84 

H1-W7-H1 5 {1,1,3,4,1} 20.0 22.5 7.84 

6 D2 D11 D6 D2 H1-W7-O8-H1 6 {1,3,4,1} 20.0 17.0 9.56 

  H1-W7-H1    6  {1,3,4,1}  20.0  23.0  9.56 

        aTrue model parameters are set from case 3 in sensitivity test shown in Table 2. 

bGiven path topology and path travel time are shown as table 4. 
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Table 4 Example of path topology and path travel time of trip chains. 

Path  Path topology Path travel time (min.) 

1  3 8 30 32 90 92 58 56 54 77 75 23 12 10 5 1    95 

2  2 6 9 11 13 15 17 7 4     80 

3  2 6 9 11 24 76 75 23 13 14 12 10 5 1   92 

4  2 6 9 11 24 76 75 23 13 15 17 7 4    92 

5  3 8 30 37 38 29 18 16 14 12 10 5 1    61 

6  3 8 30 37 38 29 18 16 15 17 7 4     61 
  

 
 

 
 

               
             
            
            

 

 

 

 

 

 

 

 

 
aMMSE of trip chain is the average of MSE of all trip chains. 

Figure 4 Comparisons between true and modeled trip-chain demand from various setting of 
mean activity duration (Sa) and level of travel time variation ( ) in sensitivity test (Table 2). 

 
6. CONCLUSIONS 

 
In this paper, a method based on the maximum-likelihood technique for updating travel 

behavior models parameters and estimation of vehicle trip chain by using sensor-to-sensor 
travel time of each sensor path collected from plated scanning is proposed. The solution 
algorithm, based on EM approach, uses the travel time of any user observed from any adjacent 
sensors making the specified sensor path at a certain time period. The structure of demand 
model is a nested logit. Based on plate scanning data collection, the chosen activity 
patterns/routes/locations are forecasted by maximizing the joint function between probability 
density function of observed sensor-to-sensor travel time and probability of nested logit choice 
model of activity-travel pattern. The proposed model and algorithm were tested with a modified 
Siouxfalls network, where the optimal set of sensors is installed. In addition, the relative gap of 
solution algorithm is less than the error tolerance (  = 0.0001). The test results, then, showed 

Low travel time variation ( = 0.50) 

Base case & case 2 
Sw = 480 min. 
S0 = 120 min. 
ST = 45 min. 
 

High travel time variation ( = 1.50) 

Case 3&4 
Sw = 24 min. 
S0 = 6 min. 
ST = 2.3 min. 
 

MMSE = 0.371 MMSEa = 0.364 

MMSE = 9.0 MMSE = 10.692 
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that solution algorithm can produce a good updating of model parameters, , when level of 
travel time variation, , is low or mean activity duration is high. However, smaller activity 
duration and higher travel time variations leading to high overlap of sensor-to-sensor travel 
time distributions among activity-chain alternations (shown in sensitivity test) tend to update 
model parameters less accurate. The possible applications of the proposed method are: 
 To update the importance attributes of travel demand model from the prior data (e.g. 

activity duration, travel time) without conducting the new household and travel survey 
(HTS). 

 To predict trip chain demand based on plate scanning (using sensor-to-sensor travel time). 
 

 
APPENDIX A 

 
The design on sensor location scheme 

A cordon-line-based sensor location scheme is proposed for this study, where any activity 
location, qlo , in traffic zone is contained in the cordon line of sensors. Then, this scheme can 

fully detect vehicles before or after making an activity in a single traffic zone. The observed 
travel time (y) between two sensors of cordon line is used to predict the possibility (or the 
indicator variables z in (4.1)) of making this activity between them. As a result, large possible 
activity location choices can be diminished to a binary choice of an activity location visited 
by any user whether he/she passes through or stops to make the activity in a specified traffic 
zone.  

The characteristics of the algorithm for cordon-line-based scheme are described as follows. 

 The objective (A.1) is to find minimum numbers of links installed with sensors that can 
provide the conditions of cordon-line-based scheme. 

 To satisfy such a scheme, there must be at least one sensor contained on each feasible 
path between any two adjacent activity locations 1( , )q qlo lo  of any activity chain (f,h). 

This requirement (A.2) for collecting the set of observed timestamp period, M, can be 
used to distinguish the set of travel period, C. Consequently, for any path of activity chain 
(f,h), the path consists at least the link l located with a sensor. This constraint is also 
known as sensor location scheme of path coverage (see Yang et al. (1998) and Castillo et 
al. (2008, 2011) for more applications of sensor location schemes). 

 In addition, the constraint (A.3) is another specific characteristic of the cordon-line-based 
scheme in that any activity location in specified traffic zone can be contained in a cordon 
line of sensors. In other words, the travelers can pass on the link installed with sensors at 
least one time before arriving to and after departing from a single traffic zone where they 
perform an activity. Consequently, for each sensor paths of cordon-line-based-scheme, 
feasible trip chains are delimited to only choices of performing an activity in single traffic 
zone located in between two adjacent sensors.  

The binary linear programming problem of this scheme can then be formulated as follows: 

min ,l
l

u



L

                           (A.1)
 

subject to 
,,

 
1 if  link  is in path  from   .

b 1;  , , ,  
0 otherwise.

O DO D p
l l l

l

p l p O to D
u O D p b

 





  
L                  

(A.2) 
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, , , ,
1 2 1 2, 2,    ( , , ) 1;  ,O D1 O D2 O D1 O D2

l
l

D1 Du d p p l O p p
 

  
L

                 (A.3) 

, ,
1 2, ,

1 2
1 if b b ;   ., ( , , )  
0 otherwise.

O D1 O D2

O D1 O D2 l l
p p D1 D2d p p l





       

where L  = the set of all links excluding any link in origin zone O, destination zone D1 and 
zone D2, set of link,L   L  . 

, 1
1
O Dp   =  path 1 (from origin O to destination D1). 

, 1
1
O Dp

lb
    

=   link-path incident value of path 1 containing with link l. 
, ,

1 2( , , )O D1 O D2d p p l   = the indicator variable [ , ,
1 2( , , )O D1 O D2d p p l = 1: link l is in path 1 and not in 

path 2 or vice versa; and , ,
1 2( , , )O D1 O D2d p p l = 0: otherwise]. 

lu  = a binary value such that it takes one when the link l is located by a sensor, 

and 0 otherwise. 
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