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ABSTRACT

Arterial travel time information is crucial to advanced traffic management systems and advanced
traveler information systems. An effective way to represent this information is the estimation of travel
time distribution. In this paper, we develop a modified Gaussian mixture model in order to estimate
link travel time distributions along arterial with signalized intersections. The proposed model is
applicable to traffic data from either fixed-location sensors or mobile sensors. The model performance
is validated using real-world traffic data (more than 1,400 vehicles) collected by the wireless magnetic
sensors and digital image recognition in the field. The proposed model shows high potential (i.e.,
the correction rate are above 0.9) to satisfactorily estimate travel time statistics and classify vehicle
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stop versus non-stop movements. In addition, the resultant movement classification application can
significantly improve the estimation of traffic-related energy and emissions along arterial.

Introduction

Estimating arterial travel time is crucial to the devel-
opment and application of both advanced traffic man-
agement systems (ATMS) and advanced traveller infor-
mation systems (ATIS) which rely on real-time traffic
information to make better decisions, such as traffic signal
control (Pandit et al., 2013) and dynamic vehicle routing
(Feijer, Savla, & Frazzoli, 2012). Compared with the case
of freeway segments, estimating link travel times along
arterials is much more challenging because traffic condi-
tions are more complicated and vehicles’ movements can
be often interrupted by control devices (e.g., traffic sig-
nals) and other disturbances, such as random mid-block
crossings. More challenging issues on understanding the
travel time variability may raise from the “close-loop”
effects from the travellers’ (re)scheduling behavior as a
response (Noland & Polak, 2002). On the other hand,
link travel time distributions (TTDs) can better represent
the stochastic properties of traffic states along signalized
corridors (Hofleitner, 2013); therefore, its modeling has
been attracting significant research interest (Chen, Sun,
& Qi, 2017; Sanaullah, Quddus, & Enoch, 2016).

Most of the TTD modeling algorithms can be cat-
egorized into either model-based or data-driven. The
former category is built on top of physical principles,
such as hydrodynamics and queuing theory (Olszewski,

1994). Derivation of these algorithms is usually accompa-
nied with some fundamental assumptions, e.g., no lane-
changing and/or known arrival distribution(s), which
restrict their practicality. The data-driven algorithms,
however, largely rely on fitting a significant amount of data
with well-established probability distributions (Hofleit-
ner, Herring, & Bayen, 2012a; Uno, Kurauchi, Tamura,
& lida, 2009; Zheng & van Zuylen, 2010). The major
issue is the availability of enough data for model training.
Although a few studies have proposed hybrid strategies to
train parameters of the physical model(s) using machine
learning techniques (Hofleitner, Herring, Abbeel, &
Bayen, 2012b), these strategies can only be applied to one
type of data sources: either fixed-location sensors (e.g.,
wireless magnetic sensors) or mobile sensors (e.g., probe
vehicles) just like most of the data-driven algorithms.

In this paper, we modify the generic Gaussian mixture
model (GMM) (McLachlan, 1988) to estimate TTDs
along arterials. The proposed modified Gaussian mixture
model (MGMM) can be trained very efficiently using
real-world data from either fixed-location sensors or
mobile sensors as well as roadway geometric features
(e.g., intersection spacing) that can be extracted from
most of the existing geographic information systems
(GIS). The resultant good fitting of travel time probabil-
ity density functions and high accuracy rate of vehicle
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movement (stop versus non-stop) classification further
validate the proposed MGMM. In addition, application
of our algorithm to some simulation studies exhibits
great potential to improve estimation of arterial traffic
energy consumption and emissions, compared to existing
methods, e.g., Yang, Boriboonsomsin, & Barth (2011).

The remainder of this paper is organized as follows:
The “Background” section presents some background
information for developing the MGMM-based arte-
rial link TTD estimation algorithm. The “Modeling
approach” section details the proposed model in the
cases of both fixed-location sensors and mobile sen-
sors, followed by the validation in the “Validation by
field data” section using real-world measurements. The
field data of fixed-location sensors are obtained from
the Sensys wireless magnetic sensors network and have
been pre-processed by the algorithm in Kwong, Kavaler,
Rajagopal, & Varaiya (2009). The data of mobile sensors
are emulated from the measurements archived in the
Next-Generation Simulation (NGSIM) Program (FHWA,
2006). The “Application to energy/emissions estimation”
section describes an application of the proposed model to
the traffic energy consumption and emissions estimation
along arterials. The last section concludes this paper with
recommendations on future research.

Background

Link travel time measurement

Within the framework of measuring/estimating arterial
travel times, a link is usually defined as the segment
between two signalized intersections (including either the
upstream or downstream intersection), as depicted in
Figure 1. In this paper, we consider a link as the segment
including the downstream intersection (i.e., between two
fixed-location sensors).

As aforementioned, although advanced traffic surveil-
lance techniques now offer a variety of ways to measure
the arterial travel time, most of such data sources can
be divided into two categories: fixed-location sensors

® mobile data I fixed sensor delay region

=N T
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Figure 1. A typical layout of an arterial (one way) with signalized
intersections and sensors is illustrated. Fixed-location sensors are
usually installed right after the intersections. Red spots represent
data sampling locations by mobile sensors. The black arrow points
out the traffic flow direction. The orange segment represents a
delay region where queues usually occur.

and mobile sensors. Fixed-location sensors such as
wireless magnetic sensors (Kwong et al., 2009), micro-
loop detectors (Ndoye, Totten, Krogmeier, & Bullock,
2011), bluetooth (Araghi, Krishnan, & Lahrmann, 2016;
Wasson, Sturdevant, & Bullock, 2008), and radio fre-
quency identification (RFID), are usually installed right
after intersections in order to capture any delay due to
queuing effects. The link travel time, which is defined
as the temporal difference between the passages of
two consecutive sensors, can be measured by vehicle
re-identification via the unique signature.

Mobile sensors, such as probe vehicles equipped with
global positioning systems (GPS), can report second-
by-second position information. By applying virtual
detection lines whose locations can be chosen the same
as those of fixed-location sensors (e.g., the vertical “blue
bars” in Figure 1), we can estimate the link travel times
with ease. Due to the rapid proliferation of smart-phone
users, data streaming from GPS-enabled mobile devices
has become a more and more important source of
travel time measurements. However, most of the mobile
sensor data for real-time traffic information collection
(especially for commercial use) today are sampled at a
relatively low frequency (ranging from 5 to 60 seconds
in the sampling interval (BeattheTraffic, 2014)) due to
the high costs in data storage and transmission. Such
sparseness issue may bring about some challenge for link
travel time measurement because the spatial coverage of
two consecutive samples is longer than a link. In this case,
a heuristic remedy is to estimate the link travel time by
interpolation (based on link length and travel distance).
On the other hand, if some data samples fall into the
so-called intersection delay region (orange segment in
Figure 1 where queues usually occur). The estimation
of link travel time using such samples may be biased
because the intersection delay cannot be fully captured.
In this study, we filter out such data samples by applying
some predefined speed threshold(s).

Besides the aforementioned data sources, the NGSIM
dataset is another valuable source which is a particu-
lar application of digital image recognition and contains
detailed trajectories (every tenth of seconds) of all vehi-
cles traveling along certain roadway segments (around
1.5 miles in length) during one or more 15-min time inter-
vals. We will use this dataset to generate the mobile sensor
like data for model validation.

Existing models to estimate link travel time
distribution

With a variety of data sources, numerous studies have
been conducted to estimate the arterial link TTD.
Guo, Rakha, and Park (2010) proposed a GMM to
estimate link travel time and the traffic state transitions



between links. Using the NGSIM dataset, Ramezani and
Geroliminis (2012) studied the joint TTDs on consecutive
links, which can be used to improve route level travel time
estimation/prediction. However, the methods mentioned
above are only applicable to the data collected from fixed-
location sensors. For mobile sensor based data whose
sampling locations may vary, some assumptions have to
be relaxed and a more generalized framework for param-
eter fitting needs to be developed.

Recent success on estimating TTD based on sparse
mobile sensor data is archived in Hofleitner et al. (2012a,
2012b). The authors developed mixture models to cap-
ture dual-mode TTDs along signalized intersections.
As described in Hofleitner et al. (2012b), for example,
the delayed time was modeled as a mixture of a Dirac
Delta distribution and a uniform distribution under the
assumption of uniform arrival pattern of the upstream
traffic. A close form of arterial link TTD was then devel-
oped, which turned out to be a mixture of a Gaussian
and a quasi-uniform distribution, given the fact that the
probability distribution of the sum of two independent
random variables is the convolution of their individ-
ual distributions. Such simplification is of significant
meaning in theory, but the real-world situation is so
complicated that some strong assumptions (e.g., uniform
arrival) do not hold true. In addition, when a large dataset
needs to be fitted to such models, the computational load
becomes overwhelming due to the presence of double
integrals in the probability density function.

To overcome the aforementioned issues, we propose
herein a MGMM to estimate TTD. The proposed model
is not only able to handle data from either fixed-location
sensors or mobile sensors, but also is more flexible (no
constraints on arrival distribution) and more computa-
tionally attractive.

Modeling approach

Travel time decomposition

As aforementioned, there are two major types of sensors
for travel time data collection. Without loss of generality,
we assume that the data from both types of sensors have
the same format (¢£, 12, L1 x2), where £t 4 is the travel
time measurement between locations x1 and x2, while
L1 x> is the travel distance measurement associated with
x1 and x2. For the case with fixed-location sensors, x1 and
x2 represent the locations of a pair of sensors. Thus, t£,; 1,
and Iy x, (constant) are the passage time and distance,
respectively, between these two sensors. For the case with
mobile sensors, however, x1 and x2 are the sampling
locations of two data points. Therefore, tf,; ,(constant)
is simply the sampling interval, and I,; , is the distance
between two samples.
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In addition to the predetermined factors such as the
speed limit, the variability in travel time along arterial
links may result from: (1) the variation of individual
driver’s behavior and (2) the delayed time due to traf-
fic signals or queue dissipation. All these disturbances
make it difficult for arterial travel time to be modeled by
a single distribution. Therefore, it is desirable to decom-
pose arterial travel time into two or more components
including the free-flow travel time and delayed time, each
of which can be modeled by different single distribution
and/or mixture distributions. In this paper, we formulate
the travel time, t£,; ., as

thax = ttﬁxl,xZ + dxl,xZ (1)

where ttg , , represents the free-flow travel time compo-
nent, while d,; ,, is the delayed time component. As pre-
sented in the next subsection, these two (random) vari-
ables can be estimated from the field data.

Modified Gaussian mixture model

In this subsection, we will show how to estimate tg 1 o
and d, », using a MGMM. First, we define the free-flow
travel time between x1 and x2 as

A
ttﬁxl,xz = lxl,xZ * pﬁ (2)

where pg is the so-called free-flow pace (in sec/meter),
which is the inverse of free-flow speed. It may be mod-
eled by a variety of distributions (e.g., Gaussian or Gamma
distributions (Hofleitner, Herring, & Bayen, 2011)). In
this study, we model ps as a Gaussian random variable,
which can be justified to some degree by the histogram in
Figure 2.

2
py ~ N (ng. of) (3)
o Oam - 5am
w/o RANSAC
0.16 — with RANSAC
tt hist
0.14
0.12
oy
g 010
[
3
g 0.08
0.06
0.04
0.02 :
- 1 ’ il
0q, 20 30 40 50 60 70 80 90 100

travel time(sec)

Figure 2. Link travel time histogram 0 a.m-5 a.m. over one month,
Aug 2011, from Washington Ave (upstream) to Solano Ave (down-
stream) along San Pablo Ave, Berkeley, California.
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where 117 and oy are the associated mean and standard
deviation, respectively, and can be estimated from the
data (see the “Initialization” section under the “Modeling
approach” section). By substituting Eq. (3) into (2), we can
get

A
tt:ﬁxl,xZ = lxl,x2 * ij ~ N(I'Lﬂ : lxl,x27 O—ﬁz‘ : lﬁl’x2) (4)

As to the distribution of delayed time, d,; x», we select
a mixture of Gaussians (Bishop & Nasrabadi, 2006) to
model it,

K
dasa ~ Y 7N (i oF) (5)
k=1
/’Ll = 0’1 = O

K
Zﬂk =1
k=1

Notice that we keep the first component to be N(0,0),
which corresponds to the movements without delay and
with zero mean and variance during the model fitting pro-
cess. 7y is the weight of kth component and must sum
to 1.

Since the total travel time is the sum of tt7 , , and
dy1.x2, its probability is the convolution of these two. It
is noted that the convolution of two Gaussians is still a
Gaussian with the addition of mean and variance, i.e.,

P(ttaxm) = P(itg,, ,) * P(d)
K
= ZﬂkN(ttxl,xZ | ik + ig - L, of + Uﬁzf B ).

k=1
(6)

It is well known that a GMM has multiple solutions
for the same training dataset (known as identifiability
problem (Bishop & Nasrabadi, 2006)), which a challenge
in interpreting each component after the model is fitted.
As observed in Eq. (6), however, tt,; ,, is a mixture of
Gaussians in which the mean and variance of the first
component (free-flow) are coupled with other compo-
nents. This helps us identify the free-flow component with
ease, because it is just the one with the smallest mean.

To solve Eq.(6), we followed the Expectation-
Maximization (EM) Algorithm (Bishop & Nasrabadi,
2006), which is an iterative technique to obtain the
maximum likelihood estimates (MLE) of parameters of
a stochastic system with latent variables. The subject
parameters are initialized and iteratively updated using
an expectation (E) step and a maximization (M) step
until the estimates between two consecutive iterations
converge. More specifically, the expected value of the
log-likelihood function is evaluated using the up-to-date
estimates for the parameters in the current E-step, and

the M-step is performed to calculate the best estimates
of parameters that maximize the expected log-likelihood.
These estimates are then applied to determine the
distributions of the latent variables in the next E step. In
the following subsections, we will introduce some special
treatment in the initialization of the parameters, followed
by the presentation of solution methods for both fixed
and mobile sensor data.

Initialization

Notice that the EM algorithm can only guarantee local
optima. Therefore, the selection of initial parameter set is
important to the system performance. In particular, since
the free-flow component is coupled with others in the
proposed GMM, the initialization of s and o5 becomes
even more critical. Field observations reveal that the traf-
fic volume is often quite low in the early morning period
(e.g., from 1 a.m. to 5 a.m.) and most vehicles are trav-
eling at the free-flow speed. Therefore, we use data sam-
ples collected during this time period to identify the TTD
under free-flow conditions. Figure 2 presents an example
histogram of vehicle travel times collected from a pair of
fixed-location sensors during the period from 0 a.m. to
5am.

As shown in the figure, most of the travel time data
samples fall into the region with short travel times (to the
left of the distribution), while only a few of them have
long delays (to the right). The dashed curve represents
the results fitted with Gaussian distribution. However, the
results are not satisfactory due to the delay impacts. To
mitigate such effects, we apply the RANSAC (RANdom
SAmple Consensus) technique (solid curve) (Fischler &
Bolles, 1981) which is an iterative and robust method for
model fitting or parameter estimation on a dataset with
outliers, when fitting the Gaussian distributions for deriv-
ing the initial values of 1z and 0. To apply the RANSAC
technique to the mobile sensor data where I, x, may vary
greatly, we assume the vehicle is traveling at free-flow
speed, and apply the free-flow pace to the link length.

The initialization of u; and oy, however, can be con-
ducted by randomly sampling from the right side of the
distribution, i.e., between wg -l o+ - of - Ly and
max(tt,). We chose ¢ = 3 in this study.

Another critical parameter that needs to be initial-
ized is the number of components, K, in the model. In
Feng (2011), the author suggested four components,
representing “free-flow;” “slow free-flow;” “fast delayed,’
and “delayed” samples. Although such segregation is not
rigorous in theory, we use it as a reference in this study.
Furthermore, we conduct sensitivity analysis on this
parameter (including K = 2, 3, 4, and 5) and the results
are presented in the following sections.



Solving modified GMM

The proposed MGMM can be solved by maximizing the
total log likelihood:

N K
argmaleogZﬂkN (ttn | Pk, Ufk) )
0 n=1 k=1
Mnk =tk + ig - In
ol =ok2+01§-lﬁ
0 = (g, O, Kk, Ok, Tk)

where 6 is the parameter vector to be estimated; N is the
sample size; I, is the travel distance of nth data sample;
and ;. and o, are the mean and standard deviation of
kth Gaussian component associated with nth data sam-
ple. Notice that the measured travel distance may vary
with data samples (e.g., from mobile sensors). In other
words, each data sample may have its unique probabil-
ity distribution, resulting in # - k pairs of different means,
k'S, and variance, onzk ’s. Fortunately, according to Eq. (7),
the calculation of p,,’s and onzk’s (in total, 2 - n - k param-
eters) only depends on (24 2 - k + n) parameters, i.e.,
s 0;, Wi> 0> and I,. This significantly reduces the com-
putational load when applying to large datasets. Next, we
will show the solutions to this model by differentiating
the data sources (i.e., fixed-location sensors versus mobile
Sensors).

Data from fixed-location sensors

As aforementioned, if data come from fixed-location sen-
sors, I,’s of all the samples are identical. They are sim-
ply the distance between the upstream and downstream
sensors, or the length of the link, /. This implies that the
mean and variance of each component in the mixture of
Gaussians should be the same for each sample. Let the
common mean and variance be w; and Uﬁ(, respec-
tively. Then, our model can be solved in the same way
as a generic GMM using the EM algorithm, where each
parameter has a closed-form solution:

N
Ak = [k + [ig l=—kZVnk tty (8)
1 n;l
i = 6f +65 - 1= N Z; Vak - (ttn — k)™ (9)
7y = Ni/N - (10)

where y, is the probability of sample n generated by com-
ponent k, which is also referred to as the responsibility of
kth component to nth sample; and N is the effective num-
ber corresponding to component k.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS . 329

Data from mobile sensors

Unlike the data from fixed-location sensors, each mobile
sensor data sample has its own distance, I,, which leads
to n - k different pairs of Gaussian parameters. If we fol-
low the same EM algorithm as the generic GMM, then the
responsibility in the E-step will be written as

7Tk N (tty| Lnk sz)
K
Zj:] JTjN(ttnIMnj7 0—31)

Vnk = (11)

Therefore, the objective in the M-step turns out to be
maximizing the posterior total log likelihood given the
responsibility yyx:

log L(O|tty, Lu, k)

N K
n=1 k

1 k=1

Yk logmy + log (N (tt, | juu, 03))} (12)

Because of the existence of [,, in 14y, and oy, the closed
form solution cannot be obtained for ug, of, ux, o%.
Instead, we apply the gradient descent technique (Byrd,
Lu, Nocedal, & Zhu, 1995) to tackle this issue. Also, notice
that the cost function can be chosen from one of the fol-
lowing perspectives:

(a) Use the total log likelihood as in Eq. (7);

(b) Keep the framework of the EM algorithm by fin-
ishing the E-step and deriving my at the beginning
of the M-step. Then set Eq. (12) as the cost func-
tion to estimate the rest of the parameters;

(c) Similar to (b), but optimize Eq. (7) at the last step
instead.

It turns out that compared to (c), the selection of (a)
or (b) is less reliable and the resultant problem is prone
to be singular, because one or more Gaussian compo-
nents may collapse into a single data sample, giving rise
to zero variance during the optimization process. There-
fore, we choose (c) as the cost function when handling the
mobile sensor data, and apply the L-BFGS-B algorithm
(Byrd et al., 1995) to the optimization process.

Validation by field data

Field experiment setup and data description

In this study, the fixed-location sensor data were collected
from a wireless traffic sensor network (Sensys Networks,
2015) installed on the segment from Washington Ave
(upstream) to Solano Ave (downstream) along San Pablo
Ave, Berkeley, California. The segment length is around
0.3 miles. Five to seven magnetic sensors were installed
as an array 12 feet after each intersection (recommended
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by Sensys Networks), recording the magnetic signature
and timestamp of vehicles passing over them. The vehi-
cles can be re-identified by comparing the peak features
in the resultant signatures from two consecutive sensor
arrays and taking into account the sequence of vehicles
in the queue. According to Kwong et al. (2009), it is too
ambitious to obtain 100% matching rate (around 70% in
this study), due to the shifted relative positions between
vehicles and sensors when vehicles pass the upstream and
downstream sensor arrays. Although the original dataset
covers entire two months from Jul. 15th to Sep. 15th,
2011, the data between 6 a.m. and 9 p.m. on weekdays
were selected and divided into 15 groups (15 h, each over
5 weekdays). The statistical travel time pattern of each
hour over weeks were learned separately. Notice that the
signal control is actuated in this study and it is over-
whelming for us to get detailed status. However, as can be
observed in the following, its impacts on the TTD estima-
tion have been implicitly (well) modeled by the proposed
MGMM.

As aforementioned, an intensive set of probe data are
usually not accessible. Therefore, we use the NGSIM
Lankershim Blvd. dataset (from 8:30 a.m. to 8:45 a.m.)
(FHWA, 2006), and emulate the data collection from
mobile sensors by sampling the vehicles of interest every
10 seconds. In addition, we test the model performance
under different penetration rates of probe vehicles, i.e.,
10%, 50%, and 100%. Figure 3 shows the schematics of
study area.

In the following subsections, we will focus on the
presentation and analyses of results from fixed-location
sensor data in the “Results on link travel time distribu-
tion estimation” section to “Vehicle stop versus non-stop
movement classification” section given under the “Vali-
dation by field data” section. For the mobile sensor case,
results will be illustrated in the “Validation through sam-
pled data from the NGSIM dataset” section, and the sam-
pling interval issue will be further investigated.

Results on link travel time distribution estimation

By applying the proposed MGMM approach in the “Mod-
eling approach” section, we estimate the TTDs over the
aforementioned field data. Figure 4 shows examples of
such distributions under different congestion levels over
a typical week (from Sep. 5th to Sep. 9th, 2011).

It can be observed that if the traffic volume is high
(bottom subplot), then link TTD will exhibit multi-mode
properties. The left-most mode (i.e., the portion fitted by
the green solid curve) represents the free-flow data sam-
ples, while others may result from the impacts of down-
stream signal timings and/or upstream arrival pattern.

Figure 3. Map of Lankershim Blvd. archived in NGSIM source. Test-
ing is focused on segment 3 for (both Northbound and South-
bound traffic).

When the traffic condition is uncongested (top subplot),
the free-flow mode of TTD stands out. The long and
heavy tail (on the right) represents other data samples
with various intersection delays.

Model’s goodness-of-fit evaluation

In this subsection, we apply the Kolmogorov-Smirnov
(K-S) test (Corder & Foreman, 2009) to evaluate the
goodness-of-fit of our MGMM on the empirical TTD.
The K-S test is a non-parametric test of the equality
of continuous, one-dimensional probability distributions
based on K-S statistic. Upon selection of significance
level, ®(=0.10 in this study), the null hypothesis, Hy: the
data follow the specified distribution, is rejected if the
K-S statistic is larger than the critical value associated
with that significance level, or if the corresponding p-
value is smaller than the significance level. The smaller
the p-value is, the less confidence in the similarity between
the empirical distribution and the test distribution. In this
study, we use the p-value as the measure of goodness-of-fit
of our models.

Figure 5 shows the test results on fixed-location sen-
sor data where the number of components varies from
2 to 5. As shown in the figure, the mixture model with
two components has very small p-values (less than the
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Figure 5. The p-values from K-S tests. The models are trained on
one week data between Sep. 5th and Sep. 9th, 2011. The model with
four components is preferable in this case. Note: the threshold of
significance level is 0.10.
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selected threshold of significance level, 0.10) in most of
the time, implying poor fitting of the data. Although all
the p-values of the mixture model with three components
are above the significance level over the entire period, the
mixture model with four components exhibit much bet-
ter performance (especially during the periods of around
10 a.m.-2 p.m. and 5 p.m.-7 p.m.). It can be also observed
that there is no obvious improvement when the number
of components is increased from four to five. It should be
pointed out that a GMM with a larger number of com-
ponents generally provides better probability density esti-
mation, but it may lead to more computational load (for
gradient descent) and higher risk of over-fitting (i.e., lack
of generalization ability) Therefore, the above results indi-
cate that the model with four components is preferable in
this study. Notice that at around 9 a.m. and 3 p.m., the fit-
ting results from the models (even with four or five com-
ponents) are not favorable. Further investigation reveals
that the traffic conditions during these hours are much
more complicated than other time periods: there were
much more frequent queue spillbacks (due to higher traf-
fic volume and relatively short intersection spacing) and
more occurrences of pedestrian crossing the road in the
mid-block. These could bring about additional challenges
to the models to segregate different travel patterns (e.g.,
free-flow and stop-and-go). A possible solution is to dif-
ferentiate such scenarios from the others and to apply
different models for data fitting, which would be one of
potential research topics in the future.

Vehicle stop versus non-stop movement
classification

Upon fitting of TTDs with the proposed MGMM, we can
further classify vehicle stop versus non-stop movements.
One way is to classify the data sample (¢t 12, Ls1.x2) based
on its responsibility from each component, yi. In this
study, if the free-flow component has higher responsibil-
ity than the sum of others, then the sample is classified as
free-flow (or non-stop) movement. Otherwise, the sam-
ple is classified as delayed (or stop) movement. However,
as shown in Figure 6, some samples in the lower left corner
(with very small travel times) have higher responsibility of
the sum of other components and may be misclassified as
delayed samples. To remedy this issue, we further assume
that the travel time of a delayed vehicle cannot be smaller
than the free-flow travel time in the early morning. There-
fore, the criteria for a data sample (¢t,, I,,) to be classified
as the free-flow movement are

K

Vnl > Zynk ortt, < g - L. (13)
k=2
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Figure 6. TTD and its estimation during the time period 11 a.m.—
12 p.m. over one month (Aug. 2011). The solid curve represents free-
flow component, while the dash curve is the delay distribution
formed by all the other components. Light bars are the data classi-
fied as free flow samples, while dark bars are classified as delayed
samples.

In order to evaluate the classification results, ground
truth data was collected from 11 am. to 4 p.m. on
September 8th, 2011 using a video camera (mounted on
the top of a light post). Vehicle movements were then
videotaped (Figure 7) when the wireless sensors were
simultaneously recording the travel times. The movement
types, either free-flow or delayed, of around 1,400 vehicles
were visually verified.

Based on correct rates, we evaluate the performance
of MGMMs with different number of components (from
two to five) across different sizes of training dataset (i.e.,
one day, one week and one month). As shown in Figure 8,
the mixture model with only two components cannot

y

SEP. ‘ 2€1; }
/(/

Figure 7. Snapshot of video clip to record the vehicle movements
on Sep. 8th, 2011 at intersection of San Pablo Ave and Solano St,
Berkeley, CA.

provide satisfactory results for vehicle movement classi-
fication, where the correct rate is just around 60%. The
models with three and more components can achieve
more than 90% correct rates even though just one-day
data is used for training. This shows great potential for
many traffic-related applications that require the knowl-
edge of the percentage of stopped vehicles (i.e., stop rate).
It should be pointed out that a poor-fit model does not
necessarily lead to bad classification results.

Validation through sampled data from the
NGSIM dataset

As stated in the “Field experiment setup and data descrip-
tion” section, we draw on the NGSIM Lankershim Blvd.
dataset (from 8:30 a.m. to 8:45 a.m.), and process it into
the mobile sensor data form (with the 10-second sampling
interval). Results from different penetration rates of probe
vehicles (i.e., the vehicles equipped with mobile sensors),
including 10%, 50%, and 100% are illustrated in Figure 9.

It can be observed that although the results are better
for higher penetration rates, the overall TTD estimation
performance of the proposed MGMM is satisfactory and
quite robust to the penetration rate of mobile sensors.
A hypothesis is that the traffic volume in this case is not
so high and the free-flow component dominates, which
makes it less challenging to fit the data even under low
penetration rates (e.g., 10%). Further analyses show that
as the sampling interval increases to 20 seconds (see
Figure 10), the model performance deteriorates. When
the penetration rate is set as 10%, we cannot even obtain
the estimation of TTD because there are very limited data
samples available. The major reason is that if the sampling
interval is too long, the number of “unqualified” cases (i.e.,
two consecutive samples cover more than one link, result-
ing no data sample for that link) increases, or less “qual-
ified” data samples can be used for model training. Even
worse, those “qualified” samples may be biased because
they usually come from the delayed probe vehicles.

Application to energy/emissions estimation

Conceptual description

If only the link length and travel time are available, one
heuristic way to estimate vehicle energy consumption
and emissions along arterials is (a) to assume the vehi-
cle always travels at the average speed (i.e., link length
divided by the travel time); and (b) to apply a micro-
scopic emissions model, such as MOVES (motor vehicle
emission simulator) (USEPA, 2017) or CMEM (compre-
hensive modal emissions model) (Barth et al., 2000) to
the second-by-second hypothetical cruise speed profile
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Figure 8. Correct rate of classification by the proposed MGMM with 2-5 components which are trained on the datasets of one day
(Sept. 8th, 2011), one week (Sept. 5th —-Sep 9th, 2011), and one month (Aug. 5th — Sept. 9th, 2011), respectively.

(to estimate the second-by-second fuel consumption
and pollutant emissions). As shown by the dot line in
Figure 11, the vehicle consumes much more fuel in the
acceleration mode (between 75 and 85 seconds) than in
the cruise mode (even at a high speed at the beginning
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Figure 9. Verification of the proposed MGMM's validity on mobile
sensor like datasets by estimating TTD from sampled data (every
10 seconds) in the NGSIM Lankershim Blvd. dataset (from 8:30 a.m.
to 8:45a.m.). The results are for Southbound (top) and Northbound
(bottom) traffic on Link 3 (see Figure 3). Levels of penetration rate
include 10%, 50%, and 100%.

of the real trajectory). Therefore, the aforementioned
heuristic method (called “average speed method” in the
following) may significantly underestimate the vehicle
fuel consumption and emissions along arterials where
stop-and-go maneuvers occur frequently.
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Figure 10. TTD estimation results from the proposed MGMM on
mobile sensor like datasets (with sampling interval of 20 seconds)
processed from the NGSIM Lankershim dataset (from 8:30 a.m. to
8:45 a.m.) for Southbound (top) and Northbound (bottom) traffic
on Link 3. Levels of penetration rate include 50% and 100%. There
are not enough samples in the case of 10% penetration rate.
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Figure 11. Comparison between the real trajectory and hypothet-
ical cruise trajectory of a typical light-duty vehicle in terms of fuel
consumption and emissions. Speed profiles and fuel consumption
are shown in the top subplot. Aggregate fuel consumption and CO,
emissions are shown in the bottom subplot.

Using the proposed MGMM, we can well estimate
the link TTDs from the field data (collected from either
fixed-location sensors or mobile sensors). Furthermore,
vehicles’ movements (stop or non-stop) can be satisfac-
torily classified. With this information, performance of
the modal-based trajectory reconstruction method devel-
oped in Yang et al. (2011) can be significantly enhanced.
Compared to the “average speed method,” the modi-
fied modal-based method using the proposed MGMM is
expected to provide much more accurate estimation of
traffic-related energy consumption and emissions along
arterials. In the following subsections, we will describe
the simulation study for evaluating the effectiveness of
energy and emissions estimation by applying the modified
modal-based method based on the proposed MGMM.

Simulation setup

Due to the unavailability of second-by-second vehicle
trajectory data for a large-scale traffic network in the
field, we resort to a microscopic traffic simulation tool,
PARAMICS (Quadstone, 2017), to conduct the evalu-
ation. In addition, the CMEM model (in the form of
software plug-in to PARAMICS) is used to estimate the
traffic-related fuel consumption and emissions.

A simulation network (calibrated in a previous study
(Yin et al, 2007)) of a three-intersection (from top to bot-
tom: Ventura, Los Robles, and Maybell) segment on El
Camino Real in Palo Alto, CA is used in this study (see
Figure 12). The intersection spacing varies from 200 to
500 m and the speed limit is 40 mph. Vehicle demands
and their origin-destination (OD) patterns have been cal-
ibrated using the real-world data of a typical weekday

Figure 12. The three-intersection segment on El Camino Real, Cal-
ifornia coded in PARAMICS. From top to bottom: Ventura, Los
Robles, and Maybell.

morning (between 7:15 a.m. and 9:30 a.m.) in July 2005.
In addition, there are two vehicle types defined in this
network: light-duty vehicles versus buses, with a split of
around 98:2. In this study, we focus on the TTD estima-
tion along the link between the yellow bars (traffic flow
direction is indicated by the red arrow). To evaluate the
performance under different congestion levels, we select
four volume-to-capacity (v/c) ratios for the simulation:
0.3,0.5,0.7, and 0.9.

Data (mobile sensor like) are sampled from each vehi-
cle (i.e., 100% penetration rate) with a time interval
of 20 seconds. The sampling start time of each vehi-
cle is randomly drawn from the range between 0 and
20 seconds after the vehicle enters the link of interest.
To reduce the disturbances from randomness, we sam-
ple the same simulated trajectory repository 20 times.
Then, we train 20 classifiers on each sampling dataset, and
present the results of classification and energy consump-
tion/emissions estimation in terms of the mean and stan-
dard deviation.

Simulation results

We first assess the vehicle movement classification results
from the four-component MGMM under different con-
gestion levels (i.e., different v/c values). As shown in
Table 1, the stop rate (i.e., the share of stopped vehicles in
the overall traffic volume) increases as the congestion level
increases. In addition, the correct rates (i.e., the fraction
of vehicles correctly classified as stopped or non-stopped)
are above 0.90 across all the congestion levels.



Table 1. Classification results over different congestion levels.

Correct rateP

v/c Stop rate® Mean Std©
03 0.66 0.96 0.02
0.5 0.73 0.95 0.00
0.7 0.82 0.96 0.02
0.9 0.99 0.91 0.03

aFraction of stopped vehicles in the overall traffic flow.
bFraction of vehicles correctly classified as stopped or non-stopped.
¢Standard deviation.

Based on the vehicle movement classification results,
we reconstruct the modal-based trajectories (see Yang
et al. (2011)) and estimate their fuel consumption/CO,
emissions. Figure 13 presents the average (over 20 sim-
ulation runs) relative difference (with respect to the
ground truth, ie., the cross-dash curve in Figure 11)
in fuel consumption/CO, emissions across different v/c
ratios for (a) the “average speed method” (dash curve in
Figure 11); and (b) the modified modal-based method
based on the movement classification results from the
propose MGMM. As shown in the figure, both methods
underestimate the energy consumption and emissions,
due to the unrealistic smoothness of modeled trajecto-
ries (compared to a real trajectory). However, the mod-
ified modal-based method significantly outperforms the
“average speed method” across all the congestion levels
(improved by as much as 57% at v/c = 0.3 or 0.5).

Table 2 summarizes the estimation results on other cri-
teria pollutants, such as CO, HC, and NO,, by both the
“average speed method” and the modified modal-based
method. Unsurprisingly, the estimation by the latter has
exhibited much smaller relative difference than that of the
former across different congestion levels, when compared
to the ground truth data. For example, when v/c = 0.5, the
relative estimation errors by the “average speed method”
are as high as —67%, —75%, and —97% for CO, HC, and
NO,, respectively, while the results from the modified
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Figure 13. Percentage of underestimate of fuel consumption/CO,
emissions using “average speed method” and modified modal-
based method, compared to the ground truth.
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Table 2. Comparison results on average CO, HC, and NO, emissions
per vehicle (gram) over different congestion levels.

Avg. speed method  Modal-based method

v/c  MOE Groundtruth  Absolute % Absolute %
03 co 0.92 033 —64.1 0.87 —54
HC 0.08 0.02 —75.0 0.07 —125
NO, 0.25 0.01 —96.0 023 —80
05 CO 0.98 0.32 — 673 0.94 —4.1
HC 0.08 0.02 —75.0 0.08 0.0
NO, 0.30 0.01 —96.7 0.26 —133
07 CO 1.10 031 —71.8 0.99 —10.0
HC 0.09 0.02 —778 0.08 —11
NO, 0.35 0.01 —97.1 0.29 —171
09 CO 1.45 0.30 —793 1.03 —29.0
HC 0.12 0.02 —833 0.09 —25.0
NO 0.49 0.00 —100.0 03 — 388

modal-based method range from 0% to —13%. In addi-
tion, the estimation by the “average speed method” is not
sensitive to the congestion level, while the results from the
modified modal-based method follows the same trends
as in the ground truth data, especially under the low v/c
ratios. As the traffic gets congested (e.g., v/c = 0.9), results
from the modified modal-based method also deviate non-
trivially (ranging from —25% to —39%) from the ground
truth. This may be caused by the occurrence of multi-
ple stops per vehicle that is not captured in the modified
modal-based method.

Conclusions and future work

In this paper, we propose a MGMM to estimate the TTDs
and to classify the vehicle stop versus non-stop move-
ments along arterials. We use field measurements from
wireless magnetic sensors to assess the effectiveness of the
proposed MGMM in the presence of fixed-location sen-
sors, in terms of the goodness-of-fit measures (i.e., p-value
in this study). The results are quite promising, especially
for the model with four components. We also validate the
model performance for the mobile sensor case by using
the NGSIM Lankershim Blvd. dataset. In this case, it
turns out that the model is quite robust to the penetration
rate (ranging from 10% to 100%) of probe vehicles, but
the performance is sensitive to the sampling interval. The
sparseness (in terms of sampling interval) issue of the
mobile sensor data still brings about challenges to appli-
cation of the proposed model, due to the assumption that
the data should be sampled closely enough in space (not
more than one link) to qualify for training the model.
One of the future steps would be to develop a robust
interpolation method to address such data sparseness.
Furthermore, we use the estimated TTDs by the
proposed MGMM to classify the stop versus non-stop
movements and validate the results using the ground
truth data of 1,400 vehicles as well as microscopic traffic
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simulation data (across different congestion levels). The
correct rates (i.e., fraction of vehicles that are correctly
classified as stopped or non-stopped) are all above 0.9 for
the models with four or more components.

Based on the classification results from the proposed
MGMM, we apply the modal-based method to estimate
traffic-related energy consumption and emissions along
an arterial corridor in the microscopic simulation. Sig-
nificant improvements in terms of estimation errors are
witnessed in comparison with the conventional “average
speed method.”

From the perspective of potential extended works, we
can at least expect the following:

e The proposed MGMM should be validated using
real-world mobile sensor data. Further investigation
of some practical concerns (e.g., data sparseness,
heterogeneous sampling frequency, and fusion with
fixed-location sensor data) would provide in-depth
understanding. For example, applying cluster anal-
ysis to identify periods with similar travel time pat-
terns may help address the issue of low penetration
rate of probe vehicles.

e With the estimated TTDs by the proposed model,
more comprehensive algorithms could be devel-
oped to better estimate arterial traffic states, such
as average idling time, and average stop rate
(including the multi-stops scenario under over-
saturated conditions). This may further improve the
energy/emissions estimation along arterials.
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