5. Appendices

Appendix A. Delay Mechanism Pseudo-code

Table A1.: Pseudo-code for assigning delay propagation mechanism 2 - arrival backward propagation

```
Data: Darwin HSP
Result: Assign delay type 2 mechanism minutes
for All Data do
    if Deviation from departure of primary train from station A =0 then
        Next iteration
    end
    Filter secondary train journeys on the same day
    Filter secondary train journeys that are arriving at station A
    Filter secondary train journeys that are scheduled to arrive at station A after primary train is
        scheduled to depart from station A
    Filter secondary train journeys that actually have scheduled arrival time at station A before
        primary train departs from station A
    for Filtered journeys do
        | Assign delay type 2 mechanism minutes
    end
end
```

Table A2.: Pseudo-code for assigning delay propagation mechanism 3-arrival forward propagation

```
Data: Darwin HSP
Result: Assign delay type 3 mechanism minutes
for All Data do
    if Deviation from arrival of primary train at station B =0 then
        Next iteration
    end
    Filter secondary train journeys on the same day
    Filter secondary train journeys that are arriving at station B
    Filter secondary train journeys that are scheduled to arrive at station B after primary train is
        scheduled to arrive at station B
    Filter secondary train journeys that actually have scheduled arrival time at station B before
        primary train arrives at station B
    for Filtered journeys do
        | Assign delay type 3 mechanism minutes
    end
end
```

Table A3.: Pseudo-code for assigning delay propagation mechanism 4-departure backward propagation

```
Data: Darwin HSP
Result: Assign delay type 4 mechanism minutes
for All Data do
    if Deviation from departure of primary train from station A =0 then
    | Next iteration
    end
    Filter secondary train journeys on the same day
    Filter secondary train journeys that are departing from station A
    Filter secondary train journeys that are scheduled to depart from station A after primary train is
    scheduled to depart from station A
    Filter secondary train journeys that actually have scheduled departure time from station A before
        primary train departs from station A
    for Filtered journeys do
        Assign delay type 4 mechanism minutes
    end
end
```

Table A4.: Pseudo-code for assigning delay propagation mechanism 5-departure forward propagation

```
Data: Darwin HSP
Result: Assign delay type 5 mechanism minutes
for All Data do
    if Deviation from departure of primary train from station B}=0\mathrm{ then
    Next iteration
    end
    Filter secondary train journeys on the same day
    Filter secondary train journeys that are arriving at station B
    Filter secondary train journeys that are scheduled to depart from station B after primary train is
    scheduled to arrive at station B
    Filter secondary train journeys that actually have scheduled departure time from station B before
    primary train arrives at station B
    for Filtered journeys do
        Assign delay type 5 mechanism minutes
    end
end
```


Appendix B. Data Preprocessing Pseudo-code

Table B1.: Pseudo-code for filling in missing actual train arrival time at current station

```
Data: Darwin HSP
Result: Filled in missing arrival time of current station
while Number of total null values change do
    for All Data do
        if \(T D_{C_{i-1}} \neq\) null and \(T D_{C_{i}} \neq\) null and \(i \neq N\) then
            \(T A_{C_{i}} \leftarrow T D_{C_{i-1}}+\) Unique travel time between stations \(C_{i-1}\) and \(C_{i}\)
            if \(T A_{C_{i}}>T D_{C_{i}}\) then
                \(T A_{C_{i}} \leftarrow T D_{C_{i}}\) - Unique station dwell time of station \(C_{i}\)
                if \(T A_{C_{i}}<T D_{C_{i-1}} \quad\) then
                    \(T A_{C_{i}} \leftarrow\) null
                end
            end
        end
        if \(T D_{C_{i-1}} \neq\) null and \(T D_{C_{i}}=\) null and \(i=N\) then
            \(T A_{C_{i}} \leftarrow T D_{C_{i-1}}+\) Unique travel time between stations \(C_{i-1}\) and \(C_{i}\)
        end
        if \(T D_{C_{i-1}}=\) null and \(T D_{C_{i}} \neq\) null and \(i \neq N\) then
            \(T A_{C_{i}} \leftarrow T D_{C_{i}}-\) Unique station dwell time of station \(C_{i}\)
        end
    end
    Calculate total null values
end
```

Table B2.: Pseudo-code for filling in missing actual train departure time at current station

```
Data: Darwin HSP
Result: Filled in missing departure time of current station
while Number of total null values change do
    for All Data do
        if \(T A_{C_{i}} \neq\) null and \(T A_{C_{i+1}} \neq\) null and \(i \neq 0\) then
            \(T D_{C_{i}} \leftarrow T A_{C_{i+1}}-\) Unique travel time between stations \(C_{i}\) and \(C_{i+1}\)
            if \(T D_{C_{i}}<T A_{C_{i}}\) then
                \(T D_{C_{i}} \leftarrow T A_{C_{i}}+\) Unique station dwell time of station \(C_{i}\)
                if \(T D_{C_{i}}>T A_{C_{i}}\) then
                    \(T D_{C_{i}} \leftarrow\) null
                end
            end
        end
        if \(\left(T A_{C_{i+1}} \neq\right.\) null and \(\left.i=0\right)\) or \(\left(T A_{C_{i}}=\right.\) null and \(T A_{C_{i+1}} \neq\) null \()\) then
            \(T D_{C_{i}}^{i+1} \leftarrow T A_{C_{i+1}} \quad-\) Unique travel time between stations \(C_{i}\) and \(C_{i+1}\)
        end
        if \(T A_{C_{i}} \neq\) null and \(T A_{C_{i+1}}=\) null and \(i \neq 0\) then
            \(T D_{C_{i}} \leftarrow T A_{C_{i}}+\) Unique station dwell time of station \(C_{i}\)
        end
    end
    Calculate total null values
end
```


Appendix C. Feature Engineering Process

Table C1.: Pre-processed data

Input Feature																				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
0	-1	Friday	0	-1	To Didcot Parkway	0	1.0	No	Yes	Feb	12	1	1	2	22.0	0	0	0	0	0
-3	-2	Friday	-3	-1	To Didcot Parkway	2	1.8	No	No	Feb	12	1	2	2	21.0	22	0	0	0	0
-5	-3	Friday	-2	-1	To Didcot Parkway	3	2.2	No	No	Feb	12	1	3	2	9.5	21	0	0	0	0
-7	-4	Friday	-2	-1	To Didcot Parkway	2	2.6	No	No	Feb	12	1	4	2	4.9	9	0	0	0	0
-9	-4	Friday	-2	0	To Didcot Parkway	3	2.0	No	No	Feb	12	1	5	2	9.9	5	0	0	0	0
-9	-5	Friday	0	-1	To Didcot Parkway	2	1.5	No	No	Feb	12	1	6	2	12.3	10	0	0	0	0
-9	-6	Friday	0	-1	To Didcot Parkway	1	2.3	No	No	Feb	12	1	7	2	10.9	12	0	0	0	0
-10	-6	Friday	-1	0	To Didcot Parkway	2	2.4	No	No	Feb	12	1	8	2	14.1	11	0	0	0	0
-10	4	Friday	0	10	To Didcot Parkway	11	3.4	No	No	Feb	12	1	9	2	17.2	15	0	0	0	0
1	22	Friday	11	18	To Didcot Parkway	10	3.7	No	No	Feb	12	1	10	2	12.4	18	0	0	0	11

Table C2.: Encoded pre-processed data

Input Feature																				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
0	-1	4	0	-1	1	0	1.0	0	1	1	12	1	1	2	22.0	0	0	0	0	0
-3	-2	4	-3	-1	1	2	1.8	0	0	1	12	1	2	2	21.0	22	0	0	0	0
-5	-3	4	-2	-1	1	3	2.2	0	0	1	12	1	3	2	9.5	21	0	0	0	0
-7	-4	4	-2	-1	1	2	2.6	0	0	1	12	1	4	2	4.9	9	0	0	0	0
-9	-4	4	-2	0	1	3	2.0	0	0	1	12	1	5	2	9.9	5	0	0	0	0
-9	-5	4	0	-1	1	2	1.5	0	0	1	12	1	6	2	12.3	10	0	0	0	0
-9	-6	4	0	-1	1	1	2.3	0	0	1	12	1	7	2	10.9	12	0	0	0	0
-10	-6	4	-1	0	1	2	2.4	0	0	1	12	1	8	2	14.1	11	0	0	0	0
-10	4	4	0	10	1	11	3.4	0	0	1	12	1	9	2	17.2	15	0	0	0	0
1	22	4	11	18	1	10	3.7	0	0	1	12	1	10	2	12.4	18	0	0	0	11

Table C3.: Encoded pre-processed data

Input Feature														
Tue	Wed	Thu	Fri	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0

Table C4.: Input matrix

Input Feature																	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
-0.48	-0.50	-0.51	-0.51	1.99	-0.30	-0.31	-0.30	-0.31	-0.30	-0.30	-0.29	-0.31	-0.30	-0.31	-0.28	-0.36	-0.57
-0.48	-0.50	-0.51	-0.51	1.99	-0.30	-0.31	-0.30	-0.31	-0.30	-0.30	-0.29	-0.31	-0.30	-0.31	-0.28	-0.46	-0.60
-0.48	-0.50	-0.51	-0.51	1.99	-0.30	-0.31	-0.30	-0.31	-0.30	-0.30	-0.29	-0.31	-0.30	-0.31	-0.28	-0.54	-0.64
-0.48	-0.50	-0.51	-0.51	1.99	-0.30	-0.31	-0.30	-0.31	-0.30	-0.30	-0.29	-0.31	-0.30	-0.31	-0.28	-0.61	-0.67
-0.48	-0.50	-0.51	-0.51	1.99	-0.30	-0.31	-0.30	-0.31	-0.30	-0.30	-0.29	-0.31	-0.30	-0.31	-0.28	-0.68	-0.67
-0.48	-0.50	-0.51	-0.51	1.99	-0.30	-0.31	-0.30	-0.31	-0.30	-0.30	-0.29	-0.31	-0.30	-0.31	-0.28	-0.68	-0.70
-0.48	-0.50	-0.51	-0.51	1.99	-0.30	-0.31	-0.30	-0.31	-0.30	-0.30	-0.29	-0.31	-0.30	-0.31	-0.28	-0.68	-0.74
-0.48	-0.50	-0.51	-0.51	1.99	-0.30	-0.31	-0.30	-0.31	-0.30	-0.30	-0.29	-0.31	-0.30	-0.31	-0.28	-0.71	-0.74
-0.48	-0.50	-0.51	-0.51	1.99	-0.30	-0.31	-0.30	-0.31	-0.30	-0.30	-0.29	-0.31	-0.30	-0.31	-0.28	-0.71	-0.40
-0.48	-0.50	-0.51	-0.51	1.99	-0.30	-0.31	-0.30	-0.31	-0.30	-0.30	-0.29	-0.31	-0.30	-0.31	-0.28	-0.32	0.20
Input Feature																	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
-0.35	-0.78	0.93	-0.77	-0.44	-0.30	3.30	-0.51	-1.62	-1.31	0.38	2.04	-1.09	-0.16	-0.15	-0.15	-0.23	
-1.06	-0.78	0.93	0.24	0.28	-0.30	-0.30	-0.51	-1.62	-1.12	0.38	1.89	1.98	-0.16	-0.15	-0.15	-0.23	
-0.82	-0.78	0.93	0.74	0.59	-0.30	-0.30	-0.51	-1.62	-0.93	0.38	0.24	1.84	-0.16	-0.15	-0.15	-0.23	
-0.82	-0.78	0.93	0.24	0.99	-0.30	-0.30	-0.51	-1.62	-0.74	0.38	-0.43	0.17	-0.16	-0.15	-0.15	-0.23	
-0.82	-0.52	0.93	0.74	0.47	-0.30	-0.30	-0.51	-1.62	-0.55	0.38	0.29	-0.39	-0.16	-0.15	-0.15	-0.23	
-0.35	-0.78	0.93	0.24	0.01	-0.30	-0.30	-0.51	-1.62	-0.35	0.38	0.64	0.31	-0.16	-0.15	-0.15	-0.23	
-0.35	-0.78	0.93	-0.27	0.69	-0.30	-0.30	-0.51	-1.62	-0.16	0.38	0.44	0.59	-0.16	-0.15	-0.15	-0.23	
-0.59	-0.52	0.93	0.24	0.82	-0.30	-0.30	-0.51	-1.62	0.03	0.38	0.90	0.45	-0.16	-0.15	-0.15	-0.23	
-0.35	2.04	0.93	4.77	1.70	-0.30	-0.30	-0.51	-1.62	0.22	0.38	1.35	1.00	-0.16	-0.15	-0.15	-0.23	
2.24	4.10	0.93	4.27	1.92	-0.30	-0.30	-0.51	-1.62	0.41	0.38	0.65	1.42	-0.16	-0.15	-0.15	2.02	

Appendix D. DNN vs XGBoost Results

(a) 2-step DNN deviation from arrival

(c) 2-step DNN deviation from departure

(b) 2-step XGBoost deviation from arrival

(d) 2-step XGBoost deviation from departure

(i) 3-step DNN deviation from arrival

(k) 3-step DNN deviation from departure

(j) 3-step XGBoost deviation from arrival

(l) 3-step XGBoost deviation from departure

(q) 4-step DNN deviation from arrival

(s) 4-step DNN deviation from departure

(r) 4-step XGBoost deviation from arrival

(t) 4-Step XGBoost Deviation from Departure

(y) 5-step DNN deviation from arrival

(aa) 5 -step DNN deviation from departure

(z) 5-step XGBoost deviation from arrival

(ab) 5-step XGBoost deviation from departure

(ag) 6-step DNN deviation from arrival

(ai) 6-step DNN deviation from departure

(ah) 6-step XGBoost deviation from arrival

(aj) 6-step XGBoost deviation from departure

(ao) 7-step DNN deviation from arrival

(aq) 7 -step DNN deviation from departure

(ap) 7-step XGBoost deviation from arrival

(ar) 7-step XGBoost deviation from departure

(aw) 8-step DNN deviation from arrival

(ay) 8-step DNN deviation from departure

(ax) 8-step XGBoost deviation from arrival

(az) 8-step XGBoost deviation from departure

(ba) 8-step DNN travel time

(bc) 8-step DNN dwell time

(bb) 8-step XGBoost travel time

(bd) 8-step XGBoost dwell time

(be) 9-step DNN deviation from arrival

(bg) 9-step DNN deviation from departure

(bf) 9-step XGBoost deviation from arrival

(bh) 9-step XGBoost deviation from departure

(bm) 10-step DNN deviation from arrival

(bo) 10-step DNN deviation from departure

(bn) 10-step XGBoost deviation from arrival

(bp) 10-step XGBoost deviation from departure

Appendix E. DNN Training and Validation Loss

(a) 1-step

(c) 3-step

(e) 5-step

(b) 2-step

(d) 4-step

(f) 6-step

Appendix F. XGBoost Training and Validation Loss

(a) 1-step

(b) 2-step

(c) 3-step
(e) 5-step

(g) 7-step

(d) 4-step

(f) 6 -step

(h) 8 -step

(i) 9-step

(j) 10-step

