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ABSTRACT 
Understanding the merging behavior patterns at freeway on-ramps is important for assistanting the 

decisions of autonomous driving. This study develops a primitive-based framework to identify the driving 

patterns during merging processes and reveal the evolutionary mechanism at freeway on-ramps in 

congested traffic flow. The Nonhomogeneous Hidden Markov Model is introduced to decompose the 

merging processes into primitives containing semantic information. Then, the time-series K-means 

clustering is utilized to gather these primitives with variable-length time series into interpretable merging 

behavior patterns. Different from traditional state segmentation methods (e.g. Hidden Markov Model), the 

model proposed in this study considers the dependence of transition probability on exogenous variables, 

thereby revealing the influence of covariates on the evolution of driving patterns. This approach is 

evaluated in the merging area at a freeway on-ramp using the INTERACTION dataset. Results 

demonstrate that the approach provides an insight about the complicated merging processes. The findings 

about interpretable merging behavior patterns as well as the evolutionary mechanism can be used to 

design and improve the merging decision-making for autonomous vehicles. 

Keywords: merging behavior, driving patterns, freeway on-ramp, hidden markov model, primitive 

segmentation 
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INTRODUCTION 

The freeway on-ramp is an important roadway segment, which often causes recurrent bottleneck. 

Due to the unique geometric characteristics of the on-ramps, the driver is often forced to perform a 

merging behavior to enter the mainline. In the process of merging, the driver needs to not only interact 

closely with the surrounding vehicles, but also observe other factors such as the driving environment. 

Merging at freeway on-ramps is an indispensable but challenging task, which has considerable 

consequences for traffic flow efficiency and driver safety (1). To complete such complex tasks, human 

drivers need to constantly play games with the surrounding environment during the merging process, and 

react quickly based on their perception and experience. However, the existing autonomous vehicle 

decision-making only relies on models and explicit rules (2), but lacks human insight and analysis. This is 

one of the core reasons why the autonomous vehicles cannot adequately handel the complex scenarios 

encountered in the real world. Therefore, to expand the prior knowledge of autonomous driving decision-

making system, it is necessary to thoroughly investigate the merging behavior patterns and its evolution 

mechanism in the real world. 

Numerous studies have been conducted to analyze merging behaviors. One common method to 

describe merging behavior is gap acceptance theory  (3-5). This technique assumes that vehicles will 

execute merging maneuvers if the gap between merging vehicles and the lead/lag vehicles in the target 

lane is acceptable. As the simplicity of the model, it is widely used in simulation software packages such 

as Vissim and Aimsun. It should be noted that the drivers may still merge even if the current gap value is 

smaller than critical gap in reality. Other studies classified the merging behaviors into several categories 

based on different criteria. According to the gap acceptance theory, the single merging process is divided 

into two stages: selecting the acceptable gap and implementing the lane change  (6). Considering  the 

interaction between the merging vehicle and the surrounding vehicles, Sun et al. (7) categorized merging 

behavior into three classes: normal, forced and cooperative. Chu et al. (8) classified vehicle merging 

behaviors as direct merging, yield merging, and chase merging. The researchers further used discrete 

choice models to explore the best model. The study assumes that vehicles make merging decisions at a 

fixed point, but in fact the decision points are not exactly the same for each merging event. Especially in a 

congested traffic flow, the driver may need to continuously make the decision whether or not to change 

lanes. However, the above studies ignored the dynamic decision-making process in the merging behavior, 

and analyzed the merging behavior at a coarse-grained level. In order to conduct a more refined analysis, 

a number of researchersconsidered modeling the dynamic merger behavior. Wan et al. (9) proposed a 

sequential choice model to dynamically simulate the merging tactics under the changing traffic 

conditions. Meng and Weng (10) developed an improved cellular automata model for simulating dynamic 

merging behaviors and analyzed the effect of variables on the merging process. A time-varying mixed 

logit regression model are developed to describe merging behavior (11). The game theory was applied to 

make drivers’ merge decisions by establishing expected utility models  (12; 13). Besides, there are some 

data-driven methods developed to capture time-varying merging behaviors and make real-time decisions, 

such as classification and regression tree (14), dynamic Bayesian network (15), and fuzzy logic 

models (16), etc. These studies analyzed the merging behavior of vehicles at every moment (fine-

grained), which is computationally intensive and difficult to explain the evolution law of driving behavior 

during the merging process. 

One way to solve the above problems is to decompose the whole merge process into several 

driving primitives (medium-grained). Because the driving behavior may not change significantly in a 

short period of time, some reseachers segment the entire driving scenarios into discrete fragments. This 

method facilitates to gain an insight into what happens inside merging process (17) so as to provide prior 

knowledge for autonomous vehicle decision-making. And discretization can save the cost of calculation 

and promote the decision-making process of autonomous vehicles. Higgs and Abbas (17) developed a 

two-step algorithm for the segmentation and clustering of car-following behaviors, in which a 

segmentation optimization equation was used for segmentation and k-means was utilized for 

clustering. After that, the Hidden Markov Model (HMM) is developed as a common primitive 

segmentation method, which is suitable to mine dynamic internal state in sequences. In the beginning, 
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HMM is widely used in speech recognition such as lexical decoding, syntactic analysis, and semantic 

analysis (18). Wang et al. (19) introduced the hidden semi-Markov model  to extract the primitive driving 

patterns from car-following scenarios. Zhang and Wang (20) integrated a hierarchical Dirichlet process 

with a hidden Markov model to decompose the intersection driving behavior data into small interpretable 

components and the K-means method to gather these driving primitives to driving patterns. analyzed the 

evolution of lane-changing interactive pattern and the formation mechanism of risk based on the Hidden 

Markov Model with the Gaussian mixture model. Although these methods are able to explain the internal 

driving patterns well, they do not consider the influence of exogenous factors on the driving patterns. On 

freeway on-ramps, the merging behavior of the vehicle itself is affected by various  factors such as 

gap (22), relative speed, relative distance, distance to the start of the ramp (4), whether a lead vehicle 

exists in the merge lane, the type of surrounding vehicles (11), and traffic density (23), etc. Ignoring the 

influence of exogenous factors on internal states may not only lead to inaccurate driving primitive 

segmentation, but also hinder understanding on the evolution mechanism of driving patterns. Finally, it 

will also lead to the failure of autonomous vehicles to make appropriate decisions. 

Based on the previous studies, the dynamic merging behavior patterns in the congested traffic 

flow still need to be explored an interpreted semantically. Also, it is necessary to propose an approach to 

explain how behavior patterns evolve and how exogenous variables drive the evolution of behavior 

patterns in the merging process. 

This study develops a primitive based framework to understand the underlying merging behavior 

patterns for potential decision-making applications.  

The main contributions of this study are as follows: 

1) Proposing a medium-granularity analysis framework to identify and interpret the merging 

behavior patterns on the highway on-ramps in congested traffic flow. 

2) Introducing the Nonhomogeneous Hidden Markov Model (NHMM) to decompose the 

sequences of merging processes as driving primitives. The model can consider the influence of exogenous 

factors on the evolution of merging behavior patterns and reveal the mechanism of pattern evolution. 

3) Applying the time series K-means clustering to gather variable-length driving primitives into 

finite merging behavior patterns and explain them semantically. 

The rest of this article is organized as follows. Section 2 documents the primitive based 

framework and its components. Section 3 introduces the datasets used in this study. Section 4 describes 

the experimental setup and the selection of optimal parameters. Section 5 presents the results and 

discussions. Section 6 provides the conclusions and future work for this study. 

 

METHODS 

The framework proposed in this study is shown in Figure 1, which consists of four steps: 

merging behavior extraction, primitive segmentation based on the NHMM, the Time Series K-means 

(TSKM) clustering, and evolutionary mechanism analysis. The following sections describe the NHMM 

and TSKM mathematically. 
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Figure 1 Framework of merging behavior pattern recognition and evolutionary mechanism analysis 

 

Merging behavior primitives 

The dynamic merging behavior could be reflected by movement parameters of the merging vehicles. The 

behavior shown at each moment constitutes the entire merging process O, expressed as Eq.(1).  

 

 𝑂 = {𝑜1 ⋯ , 𝑜𝑡 ⋯ , 𝑜𝑇} (1) 

 

Where 𝑜𝑡 = {𝑣𝑥, 𝑣𝑦, 𝑎𝑐𝑐𝑥 , 𝑎𝑐𝑐𝑦} ∈ ℝ6 is the driver's merging behavior at time t. 𝑣. and 𝑎𝑐𝑐. are 

velocity and acceleration of the merging vehicle, respectively. x and y indicate longitudinal and lateral, 

respectively. T represents the time length of a merging process. According to the HMM, the primitive of 

O could be decomposed into n segments called primitives (20; 21) as shownin Eq.(2). 

 

 𝑂 = {𝑝1, ⋯ , 𝑝𝑖 , ⋯ , 𝑝𝑛}       (1 ≤ 𝑛 ≤ 𝑇) (2) 

 

Where 𝑝𝑖 is the i-th primitive. 

 

Hidden Markov Model  

The HMM is a common approach to model the dynamic of multivariate time series 𝑂 = {𝑜1 ⋯ , 𝑜𝑡 ⋯ , 𝑜𝑇}, 

where the observations O are considered as a stochastic function of a hidden finite-state Markov 

process 𝑞 = {𝑞1, 𝑞2, ⋯ , 𝑞𝑡}. Some other concepts and symbols involved in the HMM should be defined in 

advance.  

Hidden states are expressed as 𝑆 = {𝑆1, 𝑆2, ⋯ , 𝑆𝑁}, where N is the number of hidden states and 

𝑞𝑡 ∈ 𝑆 is the state at time t. Although the states are hidden, there are often physical meaning in 

applications (18).  

Emission probability is the conditional probability of an observation 𝑜𝑡 generated from state 𝑞𝑡, 

defined in Eq.(3). 

 

 𝑏𝑡 = 𝑃(𝑜𝑡|𝑞𝑡 = 𝑘, 𝜃), 𝑘 ∈ {1, ⋯ 𝑁} (3) 
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Transition probability represents the probability of transition from state i to state j. Assuming that 

𝐴 = {𝑎𝑖𝑗} is the state transfer matrix. And the transfer probability for (i,j) pairs can be expressed as 

Eq.(4).  

 

 𝑎𝑖𝑗 = 𝑃(𝑞𝑡+1 = 𝑆𝑗|𝑞𝑡 = 𝑆𝑖), s.t.  𝑖 ≥ 1, 𝑗 ≤ 𝑁 and ∑ 𝑎𝑖𝑗 = 1 ∀

𝑁

𝑗=1

𝑖 (4) 

 

Nonhomogeneous Hidden Markov Model 

The time homogeneity of the standard HMM limits its application in practice, for example, when 𝑜𝑡 is 

nonstationary. The NHMM relaxes this assumption and allow the transition probability of the hidden 

states to be dependent on exogenous variables. To introduce exogenous dependence into the transition 

matrix, the NHMM modulates the probability of entering each state using a set of K weighted regressors. 

The intuitive interpretation is the external variables control how likely the Markovian chain will enter 

state j via the logistic link and regression coefficients (24). Thus, the transition probabilities change over 

time since the exogenous variable’s value change over time. The time-varying transition probability 

matrix can reveal how the driving primitives change. The transition probability at time t are described 

using a multinomial logistic link function (Eq.(5)) 

 

 𝑎𝑖𝑗𝑡 = 𝑃(𝑞𝑡 = 𝑆𝑗|𝑞𝑡−1 = 𝑆𝑖, 𝑥𝑡 , 𝜁) =
𝑒𝑥𝑝 (𝜉𝑖𝑗 + 𝑥𝑡

′𝜌𝑗)

∑ 𝑒𝑥𝑝 (𝜉𝑖𝑗 + 𝑥𝑡
′𝜌𝑗)𝑁

𝑚=1

 (5) 

 

𝑥𝑡 = {∆𝑥𝑓 , ∆𝑥𝑟, ∆𝑥𝑓𝑡 , ∆𝑥𝑟𝑡 , 𝑙, 𝑑} is a 6-dimensional exogenous covariate time series, where ∆𝑥∙ is 

the longitudinal relative distance to the leading vehicle in the acceleration lane, {𝑓, 𝑟, 𝑓𝑡, 𝑟𝑡} represent 

surrounding vehicles around the merging vehicle, 𝑙 is the distance between the current location and the 

entrance of the ramp, and 𝑑 is density of the ramp (The data description section will explain these 

variables in more detail). 𝜌𝑗 is a vector of 6-dimensional coefficient of 𝑥𝑡, which indicates the influence 

of covariates on the probability of entering state j. For simplicity, we let 𝜁 = 𝜁𝑖𝑗 = (𝜌𝑗 , 𝜉𝑖𝑗) 

where 𝑖, 𝑗ϵ{1, ⋯ 𝑁}. One of the 𝜁∙𝑗 is set as 0 for identifiability. The entire process of the multivariate 

NHMM is illustrated in Figure 2. The gray boxes in Figure 2 are observed values. The figure shows how 

the exogenous variable 𝑥𝑡  affects the model. Assuming that the state variable 𝑞𝑡  is known, the conditional 

likelihood value of the NHMM can be calculated by Eq.(6). 

 

 𝑃(𝑜𝑡|𝑥, 𝑞, 𝜁, 𝜃) = ∏ 𝑓(𝑜𝑡|𝑞𝑡, 𝜃)𝑃(𝑞𝑡|𝑞𝑡−1, 𝑥𝑡

𝑇

𝑡=1

, 𝜁) (6) 

 

Where 𝜃 is a set of parameters of the emission probability. When the latent state sequence is 

unknown, the likelihood for HMMs can be calculated by using the usual recursive method to marginalize 

over the unknown 𝑞 values. 
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Figure 2 The graphical model of the NHMM 

 

The decomposing of driving primitives mainly depends on hidden states of the Markov chain. In 

order to find the optimal hidden state sequence, this study adopts the Direct Gibbs (DG) sampler which 

requires more iterations but less cost per iteration. After identifying the optimal state sequence, the 

continuous observations with the same hidden state are segmented into driving primitives. 

 

Time series clustering 

The primitives from the NHMM are time series composed of the temporal features of merging behaviors. 

Abundant primitives may contain the same merging behavior patterns. In order to identify different 

merging behavior patterns, clustering method is used to gather similar primitives into a group. Note that 

these primitives are variable-length time series. The traditional clustering method converts the sequence 

length into the same by interpolation, but it will lose the duration attribute of primitives. For example, 

drivers maintain a state for 1 second and maintain the state for 10 seconds, which expresses different 

driving behavior patterns. Thus, the TSKM  (25) is applied as the primitive clustering method. And the 

Dynamic Time Warping (DTW) is as the metric to compute the distance between primitives. DTW 

distance is the optimal alignment length of two primitives based on shape similarity. Assuming all 

primitives 𝑃 = {𝑝1, 𝑝2, ⋯ 𝑝𝑛} are gathered into K clusters 𝐶 = {𝐶1, 𝐶2, ⋯ 𝐶𝐾} and the center of each 

cluster is 𝜇𝑖. The objective is to minimize the within-cluster sum-of-squares in Eq.(7). 

 

 𝜆𝑤 = 𝑚𝑖𝑛 ∑ ∑ ‖𝑝𝑖 − 𝜇𝑖‖2

𝑃∈𝐶𝑖

𝐾

𝑖=1

 (7) 

 

DATA DESCRIPTION 

 

Real-World Dataset 

In order to extract driving patterns in the real world, this study selects the INTERACTION (26) dataset 

for merging process extraction and analysis. The INTERACTION dataset is an open data collected by 

Unmanned Aerial Vehicles (UAVs). Other common open datasets used to analyze micro driving behavior 

include: the Next Generation SIMulation (NGSIM) dataset (27), highD dataset (28), and Argoverse 

dataset (29). Compared with these datasets, the INTERACTION dataset contains more merging scenarios 

with close interaction between vehicles at freeway on-ramps in congested traffic. This study selects the 

on-ramp merging scenario in China for analysis. As shown in Figure 3, the study area is bounded by the 

red line. The video length is 94.62 minutes and this data contain 10359 vehicles. The data collection 

frequency was 10 Hz. 
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Figure 3 The merging scenario at the freeway on-ramp in the INTERACTION dataset. 

Data processing 

The merging process referred to in this study only considers the process of executing lane change, 

regardless of the gap selection process.  

Figure 4 displays the geometric characteristic and a merging process at the on-ramp.  

 

 
 

Figure 4 Schematic diagram of a merging process at freeway on-ramp and the definitions of key 

variables  

 

The steps for extracting the merging processes and feature variables are as follows. 

Step 1: Determine the time t when a vehicle crosses the lane boundary line. 

Step 2: Find the starting and ending point of the lane changing processes forward and backward 

from time t respectively. Because the selected road section is not straight, the starting and ending point of 

the lane change cannot be simply judged by the thresholds of steering angle, lateral displacement or 

lateral velocity. After manually summarizing several merging processes, we obtain the criterion. That is, 

the two maximum points on the vehicles’ lateral acceleration curve located before and after time t are the 

starting point and the ending point, respectively. 

Step 3: Match the lead and lag vehicles closest to the merging vehicle in the acceleration lane and 

target lane, respectively. Calculate the longitudinal relative distance between the merging vehicle and 

these four vehicles at each moment. If no vehicle is detected at the location of some of the four vehicles, 

the relative distance is set to the length of target lane (This value is set as 130m). 

Step 4: Calculate the values of feature variables characterizing driving behaviors and other 

covariates.  

Step 5: Eliminate the merging process involving trucks. Since the proportion of trucks in the 

dataset is extremely low, it is not suitable to analyze the impact of vehicle types on the merging behavior. 

Therefore, this study focuses on the driving behavior patterns only involving cars during the merging 

processes. 

In the end, a total of 813 merging processes are extracted for analysis in the following sections. A 

detailed description of all variables is shown in Table 1.  

 

TABLE 1 Descriptive statistics of variables used in this study 
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Variables Description  Mean S.D. Min Max 

accx The lateral acceleration of the merging vehicle (m/s2) 0.06 0.45 -3.52 2.07 

accy The longitudinal acceleration of the merging vehicle 

(m/s2) 

-0.02 0.11 -1.17 0.61 

vx The longitudinal speed of the merging vehicle (m/s) 2.46 1.33 0.00 13.42 

vy The lateral speed of the merging vehicle (m/s) 0.33 0.30 -1.83 2.68 

∆xf The lead gap between merging vehicle and lead 

vehicle in the acceleration lane (m) 

53.04 57.27 0.01 130.00 

∆xr The lag gap between lag vehicle and merging vehicle 

in the acceleration lane (m) 

29.35 41.07 0.00 130.00 

∆xft The lead gap between merging vehicle and lead 

vehicle in the target lane (m) 

6.35 7.33 0.00 130.00 

∆xrt The lag gap between lag vehicle and merging vehicle 

in the target lane (m) 

15.01 32.09 0.00 130.00 

l The remaining distance from the merging vehicle to 

the end of acceleration lane (m) 

37.15 20.52 0.00 76.14 

d The density of the ramp (pcu/m/lane) 0.04  0.01  0.01  0.09  

 

EXPERIMENT AND PARAMETERS SETTING 

 

Driving primitives segmentation 

In the process of segmenting the primitives of each merging process, the optimal parameter value of K 

needs to be determined. As the value of K increases, the parameters to be estimated in the model will also 

increase, which in turn leads to an increase in the model’s complexity. Therefore, this study choose the 

Bayesian Information Criterion (BIC) value, which adds a penalty term for the number of parameters as 

the criterion for model selection The maximum value of K is set to 6, because too many states make it 

difficult for the parameter estimation of the model to converge. A process of selecting the optimal K value 

is shown in Table 2, where K=3 is selected as the optimal state number.  

Then the merging process could be segmented into 3 primitives as Figure 5, where each primitive 

contains different semantic information. Primitive 1 displays that at the beginning of the merging process, 

the merging vehicle generates a lane-changing motivation, and then reduce the lateral speed and 

longitudinal speed respectively to prepare for lane change. In this segment, the lateral acceleration 

changes slightly, while the longitudinal acceleration changes in a regular sinusoidal curve around -

1.2m/s2. Primitive 2 describes the process of the merging vehicle waiting for the time to change lanes. 

The lateral speed remains constant, and the longitudinal direction starts to accelerate slowly. Until 

primitive 3, the vehicle finds the right time and quickly completes the merging maneuver in the direction 

of the target lane. 

 

TABLE 2 Select the optimal parameter K value in NHMM 

K 1 2 3 4 5 6 

BIC 759.16 698.03 695.46 775.24 864.18 973.58 
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Figure 5 Segmentation results of a merging process 

 

Implementing the NHMM to the 813 merging processes generates 4400 primitives. Inevitably, 

there will be some primitives with short periods which provide limited information. Thus, this study only 

retains primitives with the duration greater than 10 (1s at a sampling frequency of 10Hz). 

 

Merging behavior patterns clustering 

A large number of primitive segments contain the same merging behavior patterns. The TSKM algorithm 

gathers numerous primitives into finite merging behavior patterns existing in the real world. The number 

of clusters in the TSKM is determined based on the within-cluster sum-of-squares (λ𝑤) criterion. λ𝑤 is 

commonly used as the criteria to measure the clustering performance of the model, which measures the 

distance between samples in the same cluster. The smaller the value is, the better clustering performance 

the model has. In order to show the change of λ𝑤 more intuitively, the change rate curve of λ𝑤 is also 

shown in  

Figure 6. According to the elbow rule, the optimal value of k is between 5 and 10. Combined 

with the change rate curve, this study choosee k=9 as the optimal number of clusters, where the change 

rate curve just starts to converge. Finally, all primitives of merging processes are grouped into 9 merging 

behavior patterns. 

 

 

Figure 6 The curve of 𝝀𝒘 and its change rate over the number of clusters k 

 

RESULTS AND DISCUSSION 

 

Semantic representation of merging behavior patterns 
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Figure 7 shows the frequency distribution of all 9 patterns during the merging processes. In Figure 7, it 

can be seen that patterns #2 and #7 are the most common merging behavior patterns. Pattern #4 is the 

least common merging behavior patterns followed by patterns #6, #8, and #9. 

 

 

Figure 7 The frequency distribution of each cluster of merging behavior patterns 

 

In general, cluster centroids are used to characterize the overall characteristics of each cluster. 

The cluster centroid of the merging behavior pattern is a 4-dimensional time series. In order to facilitate 

the semantic interpretation, this study uses the mean value of the cluster centroid to characterize each type 

of merging behavior. Figure 8 intuitively displays all merging behavior patterns distinguished by colors, 

arrows and heading directions. The darker the red system, the greater the value in the positive direction, 

and the darker the blue system, the greater the value in the negative direction. Note that the comparison of 

color and arrow size only exists in the same variable, and there is no comparison between different 

variables. The arrow direction indicates the positive and negative direction of the value, and the arrow 

size indicates the size of the value. The heading direction is the combined speed of the longitudinal and 

lateral directions. Next, a detailed semantic explanation will be given to each merging behavior pattern. 

Pattern #1 and pattern #3 represent the merging vehicle drives in the direction of the target lane 

and the acceleration direction promotes the merging process without being hindered by the surrounding 

environment. In Pattern #1, the vehicle has acceleration in the longitudinal direction, and basically 

maintains a constant speed in the lateral direction, which mainly occurs at the front section of the 

acceleration lane (a place far from the entrance). Pattern #3 shows that the vehicle has a low speed in both 

the longitudinal and lateral directions, but continues to accelerate in both directions. 

Pattern #2 and pattern #7 display the vehicle travels at a very low speed, which usually occurs in 

an oversaturated state. The lateral speed of pattern #7 is very small without acceleration, indicating that 

the vehicle’s willingness to merge is not strong. This merging behavior pattern usually occurs during the 

ramp queuing process and the merging vehicle is located at the back of the queue. Compared to pattern 

#7, pattern #2 has a larger velocity, especially in the lateral direction.  

Pattern #4 describes a case, in which the merging vehicle moves into the target lane at a large 

velocity. Because the lane-changing conditions are not met, the vehicle decelerates rapidly in order to 

avoid collision. Similarly, pattern #9 also describes such a merging behavior pattern, but its average speed 

is half lower than pattern #4. They all show a strong willingness to merge, but the surrounding 

environment does not meet the requirements of merging. These two types of patterns are also called 

aggressive behaviors in some other studies. 
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In pattern #5, although the heading direction of the merging vehicle is facing to the target lane, it 

decelerates with small accelerations both longitudinally and laterally. This merging behavior pattern 

reflects the driver's conservative driving style. 

Pattern #6 describes a special merging behavior pattern, that is, the heading direction is opposite 

to the merging path direction. The longitudinal speed of the vehicle continues to increase, while the lateral 

speed continues to increase in the negative direction. It usually occurs in the adjustment phase after 

entering the target lane. The lateral speed direction of pattern #8 is opposite to that of pattern #6, and the 

acceleration and deceleration behavior is more radical than that of pattern #6. Pattern #8 represents two 

cases. One is that the vehicle has made a merging action. Because the merging conditions are not met, the 

vehicle adjusts the lateral speed and continues to accelerate longitudinally to find the next lane-changing 

opportunity. The other is that the vehicle is in the adjustment stage just entering the target lane. 

Examples and dynamic evolution of these behavior patterns in each specific merging process are 

shown in the following sections. These interpretable merging behavior patterns can used as labels of 

primitives to investigate the pattern transition during merging processes.  
 

 

Figure 8 Schematic diagram of 9 merging behavior patterns obtained after clustering 

 

Overall influence of covariates 

As described in section NHMM, 6 exogenous covariates are included, which affect transition of merging 

behavior patterns. For all 813 merging processes, the statistically significant frequency of each covariate 

is shown in Table 3. Due to the heterogeneity of drivers, the transition probability of the merging 

behavior patterns depends on different covariates to varying degrees. Among them, the influence of 

∆𝑥𝑓𝑡  are highly significant for more than half of the merging events. However, less than 1/3 of the 

transition probability of merging events are affected by ramp density.  
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TABLE 3 Statistically significant frequency of covariates 

Covariates ∆𝒙𝒇 ∆𝒙𝒓 ∆𝒙𝒇𝒕 ∆𝒙𝒓𝒕 𝒍 𝒅 

Frequency 354 341 433 303 358 264 

 

Transition of merging behavior patterns  

Each merging process is composed of these 9 behavior patterns, and different merging processes may 

contain different patterns. We select a merging process with similar patterns and a merging process with 

large differences in patterns for in-depth analysis. 

Figure 9 and Figure 10 show examples of merging behavior patterns evolution for two merging 

process. In each figure, sub-figure (a) displays the dynamic changes of feature variables characterizing 

driving behavior, the result of primitive segmentation and the evolution of the corresponding behavior 

pattern during a merging process. For example, in Figure 9, the whole merging process is segmented into 

three primitives. The values of sub-figure (b)-(c) and Table 4TABLE 5 are calculated based on primitives 

generated from the NHMM. According to the clustering results, we correspond these primitives to 

merging behavior patterns (Figure 8) for semantic interpretation and the patterns’ ID are marked in 

parentheses in sub-figure (a). Sub-figure (b) shows the average value of the transition probability between 

each driving pattern of each moment. Sub-figure (c) describes in detail the transition probabilities value 

between every two patterns at each moment. Each subgraph in sub-figure (c) shows the time-varying 

transition probabilities at the corresponding position in sub-figure (b). Table 4TABLE 5 shows the 

coefficients of the exogenous variables 𝑥 which control the transition of merging behavior patterns. There 

are K-1 coefficients for each exogenous variable because the k-th state in the NHMM is set to zero for 

indentifiability. 

Figure 9 shows a merging process in a congested traffic flow, which includes the most common 

patterns #2 and #7. Primitives 1-3 corresponds to merging behavior patterns #7, #2 and #1, respectively. 

At the beginning of the merging process, the vehicle first drives slowly in pattern #2 and then turns to 

pattern #7 with a lower speed. In the oversaturated traffic condition, the vehicle has little  space for 

acceleration and deceleration. Until merging conditions are met, the merging behavior switches to pattern 

#1 and quickly drives into the target lane. According to Figure 9 (b), primitive 2 has the highest self-

transition probability, and the probability of other primitives entering primitive 2 is relatively high, which 

indicates that the driver tends to maintain a stable and slow behavior pattern (pattern #2) for a long time. 

The transition between primitives at each moment is directly determined by the time-varying transition 

probability in Figure 9 (c). First, the merging process starts from primitive 2. The self-transition 

probability of primitive 2 is close to 1 for a period of time, and primitive2 is maintained. During this 

period, the merging behavior pattern is pattern #2. With the change of time, the probability of primitive 2 

to 1 increases sharply (t=200). The Markov chain of merging behavior switches to primitive1, and the 

driving pattern also changes from pattern #2 to pattern #7. Until t is close to 300ms, the probability from 

primitive1 to 3 gradually increases. The merging behavior finally transfer to primitive 3 (pattern #1). The 

factors controlling the transition of merging behavior patterns are given in TABLE 4. Each row in 

TABLE 4 represents the influence of covariates on the probability of entering this primitive. For the first 

row, the smaller the gap to the veh-f and veh-ft, the more likely the merging behavior is to enter pattern 

#7. The small gap between vehicles implies that the traffic flow is in congested state. Thus, it is more 

likely to enter a slow driving pattern. The only factor that affects the probability of entering primitive 2 

(pattern #2) is the distance between the veh-s and the veh-f (∆𝑥𝑓). The smaller the value of ∆𝑥𝑓, the more 

likely the merging behavior is to enter pattern #2. 
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(a) Evolution of merging behavior patterns 

 

(b) transition matrix (mean) (c) transition matrix (values at each time) 

  

 

Figure 9 The evolution of merging behavior patterns and the impact of exogenous factors for the 

merging process with similar patterns 
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TABLE 4 Coefficients of exogenous variables influencing the transition probabilities for the 

merging process with similar patterns  

 

 

 

 

* statistically significant variables 

 

Figure 10 displays a merging process with three significantly different patterns. The merging 

process is segmented into three primitives associated with three patterns, noted as a pattern transition 

chain: #2→#3→#5. At the beginning, the vehicle drives slowly and steadily, then generates a strong 

willingness to merge and accelerates into the target lane. Finally, the vehicle slows down and adjusts 

slowly in both longitudinal and lateral directions. In Figure 10(b), in addition to the highest self-transition 

probability, the transition probability from primitive 1 to 3 is worth paying attention to (that is, pattern #2 

to #3), which indicates that there is a high probability of merging with greater acceleration after a period 

of smooth and slow driving. The explanation of Figure 10(c) is similar to that of Figure 9(c). In TABLE 

5, the first row shows the influence of six covariates on the probability of the merging behavior entering 

pattern #2, and the second row shows the effect on the entry to pattern #5. The driver’s merging behavior 

is more likely to enter pattern #2 as the distance between veh-s and veh-rt (∆𝑥𝑟𝑡) becomes smaller. A 

small value of ∆𝑥𝑟𝑡  means that the lane-changing conditions may not be satisfied, and the vehicle need to 

drive slowly and wait for the opportunity to change lanes. In the second row of TABLE 5, the smaller the 

distance between veh-s and the lead vehicles in the two lanes (∆𝑥𝑓 and ∆𝑥𝑓𝑡), the more likely it is to enter 

the pattern #5. The reason is that the merging vehicle needs to slow down and keep a safe distance from 

the lead vehicles. In addition, the probability that the merging behavior enters pattern #5 will increase as 

the distance from the merging entrance becomes smaller, because the vehicle needs to decelerate to 

ensure that it enters the target lane before reaching the end of acceleration lane. 

 

 

 

 

 

 

 

 

 

 

 

Covariates ∆𝒙𝒇 ∆𝒙𝒓 ∆𝒙𝒇𝒕 ∆𝒙𝒓𝒕 𝒍 𝒅 

Primitive 1 -71.85* 26.23 -107.10* 79.51 -216.57 -27.20 

Primitive 2 -130.13* -12.51 4.04 -10.11 125.92 -48.47 
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(a) Evolution of merging behavior patterns 

 

(b) tranaition matrix (mean) (c) tranaition matrix (values at each time) 

  

 

Figure 10 The evolution of merging behavior patterns and the impact of exogenous factors for the 

merging process with large differences in patterns  

 

TABLE 5 Coefficients of exogenous variables influencing the transition probabilities for the merging 

process with large differences in patterns  

 

 

 

 

 

 

 

 

Covariates ∆𝑥𝑓 ∆𝑥𝑟 ∆𝑥𝑓𝑡 ∆𝑥𝑟𝑡 𝑙 𝑑 

Primitive 1 -122.29 62.39 -50.66 -64.69* 11.75 -6.43 

Primitive 2 -384.26* 30.96 -388.56* -56.18 -543.35* 9.32 
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CONCLUSIONS 

Understanding driving patterns based on real-world data can provide more prior knowledge and 

facilitate autonomous vehicles to make reasonable decisions. This study proposed a primitive based 

framework leveraging the continuous and discrete processes to learn underlying merging behavior 

patterns and investigate their evolution mechanism at freeway on-ramps in congested traffic flow. In the 

proposed framework, the Nonhomogeneous Hidden Markov Model (NHMM) was employed to 

decompose merging processes into several primitives considering the influences of exogenous factors. 

The time-series K-means clustering was developed to gather numerous primitives with variable-length 

time series into 9 semantically interpretable groups. A merging process consists of several combinations 

of these 9 types of patterns. The most common merging behavior patterns are patterns #2 and #7, 

indicating that most drivers in this place tend to drive slowly and smoothly. Furthermore, the proposed 

method also reveals the evolution mechanism of patterns and the influence of exogenous variables on 

pattern transition. 

In the research process, it was found that there is significant heterogeneity in the merging 

processes. Different drivers’ merging processes may be composed of different driving patterns. The 

proposed method in this study can also analyze the heterogeneity of drivers in the merging scenarios 

according to the evolution law of driving patterns. Since the data used in this paper do not include 

multiple merging processes of the same driver, this will become a future research direction. In addition, 

more exogenous factors affecting driving behaviors can be taken into account, such as weather, different 

ramp types, traffic incidents and driving environment in different traffic facilities. 
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