Improving Cooperative Trajectory Mapping
Applications with Encounter-based Error Correction

Wei Chang, Jie Wu, and Chiu C. Tan
Department of Computer and Information Sciences

Temple University, Philadelphia, PA 19122

Email: {wei.chang, jiewu, cctagr@temple.edu

Southward-
eastward \
group

Abstract—Cooperative trajectory mapping is an emerging
technique that allows users to create such a map by using
data that is collected from each other's mobile phones. This

B
technique has been proposed for many applications, such as \//];' 0
people localization, public transportation tracking, and traffic A A A
monitoring. Unlike the traditional GPS, cooperative trajectory ]“\j;iﬁ‘;”:rrg
mapping only requires information about the departure distance group
and moving direction from the previously reported position. (b) one possible (c) the other possible
This avoids problems like the high energy consumption of GPS (2) the collected data constructed map constructed map

and weak GPS signals in indoor conditions. However, the new
technique also brings about other problems, such as measur@nt  rig 1. The effect of a measurement error. There are two Grafipusers:
errors in cooperative trajectory mapping, which is when a one northward and turning westward and the other southwaddtarning
measurement error causes the spatial relations among users eastward. Because of the measured noise, the reportexidfaikers may be
to be wrong. We propose an encounter-based error correction different, as shown in Fig. 1(a). Only based on the colledtejctories, the
algorithm to efficiently reduce measurement errors. Extenive central server may create two different maps, as shown is. Bigp) and 1(c).
simulation experiments are performed to validate our soluions.

Index Terms—Cooperative trajectory mapping, encounter,

measurement error, mobile phones, relative error. . . .
measurement noise, or noise. A slight measurement error can

have a larger impact in the overall map if left uncorrectemt. F
example, al° error on a compass will result in a difference of

Maps are useful in helping people navigate through unfamil-74 miles after a user has travel@d0 miles. Prior researchers
iar places. However, ensuring that the maps remain up--dgave also recognized the importance of measurement errors,
is a constant challenge. Moreover, electronic maps may bt to date, research has only used a simple noise model to
always be available, which thus motivates researchersne cg@ddress the problem [1].
sistently develop more accurate and efficient map consbruct We illustrate the impact of error correction in the example
techniques. Cooperative trajectory mapping is an emergisigown in Fig. 1. Suppose that there are two groups of users;
technique for map construction that takes advantage of thee group of users is moving North and then turning West,
different sensors that are embedded in smartphones tcecredhile the other group moves South and then turns East. Users
maps of users’ trajectories. This type of map is known asim each respective group are moving along the same path. In
trajectory map Fig. 1(a), we use solid arrows to depict each user’s reported

Unlike traditional map construction problems, GPS is geft-ails. We see that, due to the effects of measurement noise,
erally not used when cooperatively building the map due tbere is some variance in the reported trails, even thouigh al
its high energy consumption [1], [2] and the unavailabitify of the users are traveling along the same path. As a result,
GPS signals in certain environments, such as indoors.ddstethe server that is using the collected data can build either t
the smartphone’s sensors, like the accelerometer andaiéct map shown in Fig. 1(b), or the one depicted in Fig. 1(c). We
compass, are used to collect information like the departugannot simply average the data to build the map since it is
distance, moving speed, and direction between consecu@ssible that the noise may not follow a normal distribution
sampling times [1]. This data is then transmitted to a céntriaurthermore, during the process of map building, two sfiatia
depository via a 3G or 4G connection, which, in turn, procesgisjointed paths may be falsely reported as a pair of paths
es the data from multiple users to construct a trajectory. maptersecting with each otherfalse positivg or two joined
This type of map can be used in various applications, suchaths may be depicted as unrelatéalse negative
traffic monitoring [3], public transportation tracking {4p], In this paper, we propose an encounter-based error can-
and people localization [2], [7], [8]. cellation algorithm, which can correct measurement efrors

An important issue that arises when constructing a trajgctceven if every phone has different error properties. By rgitti
map is dealing with measurement errors from the sendbe server periodically check for any inconsistencies betw
data. In this paper, the measurement error is also knownuwsers’ reported trajectories and their encounters witkeroth

I. INTRODUCTION



users. An example of an inconsistency is when two users do
not report meeting each other but their trajectories sugges
otherwise. Whenever an inconsistency is found, the server
will adjust the reported trajectories accordingly. Furthere,
our solution will make opportunistic use of any permanent
access points (APs) that a user encounters to improve error
cancellation.

The main contributions of our paper are as follows:

1) we are the first to explore the use of encounter infor-
mation to correct the measurement error in cooperative
trajectory mapping applications;

2) we design a realistic measurement error model that Fig. 2. System model.
considers both systematic errors and random noise;

3) we propose an encounter-based error cancellation algo- ) ] ) o )
rithm that is effective against systematic and random Cooperative trajectory mapping shares similar charagzteri
noise: tics with the inertial navigation system (INS) that is used

4) we validate the effectiveness of our solutions througR Submarine navigation [13]-{15]. Both techniques use the
extensive simulations. In particular, we focus on the infecorded moving distance and direction to determine a loca-
pact of false positive and false negative intersections §8n. and both are subject to drifting because of the sehsors
the performance of the traditional shortest path routirfg?'se [16]. INS research has two general approaches tosgidre
protocol. this problem. The first approach is to use filtering technique

The remainder of the paper is organized as follows. ch as the Kalman filter [17], [18] and particle filters [19],

Section I, we introduce some related work. The system mOdﬁ\pop]'r;(;:rT:tst?oe :Ere)lc;sn(())fisﬂe]eczr?feslrarteig?we?r;[entﬁlos(; TJZ?nZd((:SOP S
revious solution, and challenges are given in Section IffI'" A ; '
b g g assisted GPS, or Wi-Fi [7], [8], [21], [22]. A key difference

In Section IV, we provide the framework of our solution; . ; ; . .
Sections V and VI respectively introduce our accessorigl %Y’ approach is that our technique is more flexible since

anchor-based error reducing algorithm (AAER) and anchd}/€ emphasize the related locations of each user rather than
free error reducing algorithm (AFER). The technical dstaile t ebplhysm?l Iocatu;ns. A r;aceni_paper [2:;] aIsc()j ans'dr:;ft.t
presented in Section VII. We have a case study in Section vIH© emHo correctlr:lgt sysl etma Ic elrrors )_/dre u;:r:ng : f
which focuses on a routing application: friend locator. Pee- errors. Acé)wever(,j d at soiution _3ny (|30r.13I fersAPe} case o
formance analysis and evaluation are described in Secfon pxisting APs, and does not provide solution for AP-free case

We make a conclusion and provide our future research goaléz.'na”y’ Prlyanth:_;l et al. [24] proposed an an.chor-freellloca
in Section X. ization (AFL) algorithm to resolve the localization profvien

sensor networks. The goal of [24] is to determine the pasitio
1. RELATED WORK coordinates of every sensor via local node-to-node distanc

One of the earliest applications of cooperative trajectogven if the physical location of the nodes is unavailable.
mapping is a mobile social network-based [9] navigatioffowever, this solution cannot be used to build a trajectoapm
system that was proposed by Constandache et al. [1]. E&&¢ause the positions are static spot locations. In theepsoc
user in the mobile social network will periodically repoish of creating the trajectory map, we consider the trajectoole
trajectory and his encounter information to the server. THBOving nodes.
server will use this information to build a set of directicared I1l. BACKGROUND
displacements that allows friends to locate each otheerLa Svstem Model
work by Constandache et al. [10], and Thiagarajan et al. [2], ystem Mode
[11] also applied a similar idea to other applications. Trrm A cooperative trajectory mapping system has two basic
difference of our work is that prior research used a relitivecOmponents, as shown in Fig. 2.
simple noise model and only considered noise cancellagon b 1) A remote server. The server collects users’ data and
a single user, while we consider a more realistic noise model build the trajectory map with that information. The
that has both systematic errors and random noise. We use Server also provides additional services based on the
encounter information among multiple users to reduce srror  trajectory map, such as friend locator or location routing.

In Thiagarajan et al. [12], the authors propose a low-energy2) User smartphone.All users will report their trails and
and accurate trajectory mapping approach, and they also encounters to the server. The reported trails are stored
discuss the trade-off between GPS and multi-sensor devices as the displacement and direction between consecutive
However, their work is based on the assumption that the samplings. The details about trails and encounters will
electronic map is available to use. In our paper, we assume be explained later.
that the server needs to build the trajectory map from users’Besides these two basic components, our solution can also
uploaded data, and then users can be localized on this mapke advantage of any AP, such as a WiFi AP, that a user

encounter



TABLE |
TABLE OF NOTATION

L Reported displacement

k(t) Systematic error in displacement measurempnt

l Real displacement

N Number of participants in the system

A Random noise caused by accelerometer

€] Reported moving direction

0 Real moving direction

Ae(t) Electronic compass systematic error parameter (a) One path should be adjusted (b) Two paths should be adjusted

) Random noise caused by compass

T Cycle time for reporting data to the server Fig. 3. The challenge of making adjustments without the lauyi informa-

z¢,y: | The coordinates of a users position at time tion. In Fig. 3(a), even if the server knows that user B’s dataccurate, the

i Accumulated error server is only given th_e reported datf_;l of A and B, real digtah¢ and current

vV - distance of A_and B in the map being constructed; thus, ctiyredjusting
Adjustment vector user As path is hard. In a more general case: both users haasurement

errors, as shown in Fig. 3(b).

encounters. An AP serves as a fixed location reference, and

the physical location of the AP does not need to be know .utual position information at each t"T‘e i_s fully prgserh;d .
The purpose of the AP is to quickly establish the spat he server. We will illustrate an application for this map in

. ) , - ection VIII.
relationship among each user’s local movement trails and 10

provide an external global reference for noise cancehatioB. Existing Noise Cancellation Solutions

The AP will periodically broadcast time-stamped beacond, a The general idea behind error cancellation in prior work
when a user receives the beacon, he will record the encauntgrihat each user’s noise can be corrected by some physical
and report to the server. Note that the broadcasting of th&erences [1]. If a user passes by the AP (the user is in the
beacon is part of the 802.11 standard; thus, any WiFi AP cggmmunication range of the AP), the server can then compute
be used. the amount of accumulated errors, which causes the trails to
We assume that there arf€ participants in this system. grift; then, the user’s trails can be repositioned. Let thtedt-
Each user’s mobile phone is equipped with an accelerometgy, accumulated errorbe E. The correspondingdjustment
a compass, a wireless receiver, and an encounter sensor. Jd&Wor which is generated by the server for error cancellation,
accelerometer and compass are used to determine a usgrg (7 - _ﬁ)_ If user A encounters useB, who has just
displacement and direction, respectively. The wirelessiver peen repositioned with the help of an AP, the trail dfcan
is used to receive beacons that are transmitted from the ARq pe corrected since the positionBfis likely to be more
The encounter sensor is used to periodically sign.al and“’ec%ccurate. Consider that the amount of noise is proportianal
the presence of other users. This can be accomplished by Usjphe [1] if each user moves with a constant speed. We can also
a Bluetooth modulé built into the smartphone [1]. proportionally use the instantaneous correcting vectadjast
A user maintains two lists in his smartphonemavement ihe historical trail. For example, let be the previous time for
list and anencounter list The smartphone will periodically adjustment; the server detects a new adjustment vatos)

report the two lists to the server via a 3G or 4G cONnegt 4, Then, the adjustment vector of the position at time
tion [26]. The movement list consists of a displacemenieserii; 4 - 1,) is given as:

and the moving direction from the last recorded position. ‘¢

The encounter list consists of timestamps and user IDs that V(t) = ! 7(t2). 2
denote when the encounter occured. We use mathematical o ta =t )

to represent East anB0° to represent West. The position of The solution is inadequate due to the following reasons.

a user at time can be computed by: Firstly, only false negative encounters are used in thererro
cancellation; false positive encounters are ignored. Byiin

< Ty > _ < T—1 ) LD ( cgs(&e) ) 1) porating both false positive and negative encounters, we ca
Yt Yt-1 sin(©¢) ) improve the error cancellation. Secondly, the directiornhef

where L is the reported displacement between two measufdiustment vector used is the same in all of the data. However
ments, and is the moving direction. All of the symbols used>Nce there is a systematic error of compasses, we should use
in this section can be found in Table. I. Note that the trail dPtation to adjust the trajectory, which means the directio

each user is recorded in his own coordinate system, whichOlsthe adjustment vector should be different. In this paper,
only relative to the initial (unknown) location of the usdj] We Solve the measurement error problem by using both false

The server will use the two lists from each user to deriPSitive and false negative, and we use different adjustmen
a trajectory map. If each measurement is accurate, the’ us&f&ections with different data points.

C. Challenges
1As mentioned by [1], although there are several Bluetoatbeld neighbor | d d |
discovery techniques [25], the low detecting rate of skieed encounters is n order to correct measurement errors, we need to solve

a problem. In this paper, we assume that all encounters cateteeted. the following three issues.



encounters. If we relatively adjust users’ trajectoried @b the

apd® a N relgtive errors of_ adjusted trajectories be small, the eoative
Re :\’ o AP ‘; trajectory mapping system can work well. In a nutshell, our
X \ / method exploits the relative errors and physical encosrdér
) R, \\ b // users, through which different users can interpret the siate
L in the same way. As a result, instead of estimating absolute

error parameters, the relative errors are considered.
We illustrate how the features are used in our solution
(a) False negative (b) False positive by using the following example. Consider usdr who is
Fig. 4. Anexample of false negative and false positive whesest encounters physically at locationx (loc,); however, usem.report.SlOC'B
an AP. to the server because of the accumulated noise. Without some
physical reference, we cannot detect the error or measure
the magnitude of the error. However, if another userwho

Firstly, every user’s accelerometer and compass may éxhiancountered withd before, and who has higher measurement
different error parameters. Without knowing these paranset accuracy thand, comes acrossd, we can determine the
we cannot correct the trails since we cannot determine theative error ofA to B, and we can also compute the error’s
extent of the error of each user. For example, in Fig. 3 (ahagnitude. Since the noise is proportional to time, theeserv
there are two users’ reported trails, and both of them cbaosis can further correct the previously reported trails. Based o
noise. Suppose that the server can compute the spatiaickstaour error model, in a long period of time, the systematic rerro
d, of the reported trails and can obtain the real distasice parameters can be regard as fixed ones since we assume that
from the reported encounter information; we cannot deteemithey change very slowly according to time. Therefore, when
how much of an adjustment should be made and in whitlsers encounter each other many times in such period, the
direction. Even if only one user is inaccurate, without kit system can estimate their relative errors and further atljes
the identity of the accurate user, a correct adjustment tigjectories.
still hard, as shown in Fig. 3 (b). Moreover, users’ error QOur proposed method consists of three steps to reduce error:
parameters may slightly change with time. Knowing some
error parameters at a given time cannot guarantee that th
problem can also be solved in the future.

Secondly, there are two types of encounter errors which
can be detected, and they should be treated differefrdlge
positive means that two physically disjointed trajectories are
falsely reported as a pair of intersecting trails, whitdse
negativerepresents the situation where two physically joined
trajectories are depicted as unrelated. Fig. 4 illustraiath
types of error. In the false negative case, the server cairpobt
the real distance between the users (or between a user and an
AP) by the encounter sensors and the false distance between
their reported trails. However, in the false positive cabe,
server cannot attain the real distance since the user isfout o
the range of the AP.

Lastly, since each user may not move at a constant speed,
there is a special case of the false positive error: two tegor
trails have a spatial intersection with no physical enceunt
Considering the speed restriction, two users may pass th
intersection at different time. Hence, in the false positiase, )
we should only consider the reported trails which definitely
will have an encounter.

é[.) at each smartphone, the application will apply the
Kalman filter to eliminate random noise. Considering
that the Kalman filter only requires an individual user’s
historical moving pattern, rather than some global infor-
mation, it is more efficient to apply the Kalman filter
at the user side. After filtering, users will report their
moving trails and encounter information to the central
server;

2) atthe server side, the server will first coarsely adjust th

data by previously estimated relative error parameters,

then it will detect any false positive cases and false
negative cases by using the reported data. After that,
the server will slightly adjust the reported locations of
users to eliminate those detected inconsistency; during
the path correction, the server will also make some
hypothesis about the direction of corrections in false
positive conditions. Next, the server will use the new
upcoming encounter to verify and adjust the hypothesis;
after correcting each user’s trail, the server will cotepu
the relative error parameters of each user from multiple
encounters, and it will also refine the estimated parame-
ters based on new adjusted data. When users report their

IV. SOLUTION FRAMEWORK locations at the next observing time step, the server will

first use the parameters to coarsely adjust the position

A key feature of our solution is that when two users meet, ; . !
and then will make a slight correction.

each user will independently report their encounter with th
other to the server. Hence, we can use encounter informatidnen there is no AP present, steps (2) and (3) are carried
to adjust users’ trajectories. Another feature of our sofut out by our proposedanchor-free error reducing algorithm

is about relative measurement errors: although the alesol(AFER); when there are APs present, steps (2) and (3) are our
error of devices may be large and hard to detect, the relatpmposedaccessorial anchor-based error reducing algorithm
errors can be easily detected by multiple times of physicédAER).



A. Accessorial anchor-based error reducing algorithnadjustment force to refine the estimated error parametets an
(AAER) to eliminate the inconsistency.

When there are APs present, the chance of encounters
is increased, and the APs can be used as fixed referentigorithm 3 The AFER algorithm
for relative error parameter estimation. The procedure of: for Each sampling tim&" do
AAER is shown by Algorithm 1. The details about lie 2 Find out false positive and false negative error
of Algorithm 1 can be found in Section VII: B. At each time 3:  Use the HBMS algorithm to adjust the reported trajec-
step, after collecting all of the trails from users, the serv tories
will recursively use a hypothesis-based mass-spring (HBMS4:  Record the adjusted positions
adjustment algorithm to estimate each user’s real positsn

shown in Algorithm 2. The HBMS algorithm will be discussed Algorithm 3 depicts AFER. The second line in algorithm 3
in Section VII: C. In HBMS, the reported position will beyj pe discussed in Section VII: B. The details of the
adjusted by different adjustment vectors, which seemsdikeygms algorithm will be discussed in Section VII: C. The
position being pushed and pulled by some force. In this papggjustment's force still has two types of errors, the false
theadjustment forc@ represents the adjustment vector beinﬁositive-caused adjustment force and the false negatiusec!
used during a position adjustment. adjustment force; they can be computed in the same way
There are two types of adjustment force used in our algorit§s previously stated. The only difference is that, instehd o
m: false positive-caused adjustment force and false negatiysing the distance among users and APs, we use the distance
caused adjustment force. Since the adjustment directionggtween users. We use error parameters, which were caldulat
false positive is uncertain, we use two hypotheses to teamporpreviously, to make an initial estimation at the beginnirig o
ily store the possible adjustment positions. Later, we tge teach time step. If both of the error parameters of two users ar
encounter information to further adjust the hypothesestandknown' the server will use the latest corrected parametmn:r

eliminate the wrongs. we make an error cancellation based on the newly reported

data.

Algorithm 1 The AAER algorithm Unlike AAER, we assume that there is at least one error-
1: for Each sampling timg" do free random walker and the identity of this user is known
2. Find of false positive and false negative by mutudy the central server. The reason for having this assumption

encounter and APs is that in order to avoid tortuosity of the constructing map
3 Use HBMS algorithm to adjust the reported trajectoriege need to find some physical references. Consider that there
4:  Record the adjusted positions are several users moving in a large region by following some

moving patterns. Without the physical references, it isspie
that the final constructed map is contorted while sub-regjion
Algorithm 2 The HBMS algorithm maps are relatively accurate.

1: Verify previous direction h_ypothesis k_)y current encounter V. ALGORITHM DETAILS

2: Adjust by new false negative and estimated relative errors

3: Set up new false positive direction hypothesis

In order to use AFER and AAER, we first need to determine
the noise model. Then, we will discuss several auxiliarycfun

4: for Each hypothesido . . . . o

5. Compute adjustment force and adjust trajectories tions. By the end of this section, we will have an additional
6: if Find a new false positive case from historic ditan discussion.

7: Set up new false positive direction hypothesis A. Noise Model

8: Update current error parameters

The accelerometer and compass each have their own re-
spective noise model. Table | contains the notations used. W
B. Anchor-free error reducing algorithm (AFER) first conS|der_the accelerometer. There are two types of®rro _

Wh h AP AFER the systematic errors and the random errors. The systematic
th en t ecr:e ar_z noth t?f prlfsi'ltr’] we use h to ctzlorrt'%t}}or is proportional to the moving time or moving distance.

€ errors. Lonsider that It all of the users have exactly rM’oreover, the magnitude of the systematic error may change
same error pa_lrameters, the cooper_atwe trajectory Mappig; ime. For example, consider a person walking continu-
system can S.t'" be used well e\./efn i ther_e are huge err%ﬁsly for a couple of hours. The size of their average step
when comparing to th? real data; if th? majority of the use% the beginning will be different from that towards the end.
have same error, we Just nped to adJUSt. th_e other users o usek(t) to represent a systematic error which may slightly
changing their data according to the majority of the useréhange over a long period of time. We letienote the random

Hence, our goal is to find out the relative errors among USHSise, which follows the normal distributiod. represents the

by their multiple times of encounters. Since the encountquorted displacement, arids the real displacement

based error parameter may not be very accurate, considering
that the parameters could slightly change, we further use th L=1+k(t)xI+ A 3)




TABLE Il
TABLE OF NOTATION FOR AUXILIARY FUNCTIONS

Smaz the maximum speed

(zp,yp) I (ze,ye) | beginning or end location of a displacemept
ty, [ te beginning or end time of a displacement

d length of a displacement

(z(A,t),y(A,t)) | the location of use at timet

R sensing range

sensor range of each other. We temporarily use the sensor

(a) Sensor error (b) Error change pattern radius of bluetooth to represent the actual distance.

Fig. 5. Sensor error and the change pattern of its magnifTide left figure However, there is a special case when dealing with the

illustrates the symbols that we used in our noise quel;ig’lﬁ _ﬁgure shows false positive error. If the encounter sampling time isatifint

the change pattern of the error magnitude according tordiffeparameter . .

values. from the cycle time when reporting data, then the server
needs to determine whether two spatial encounter traile hav
physically encountered each other at some point in time.

The readings from an electronic compa3scan be regard- However, because the instantaneous velocity of a user may
ed as the sum of real da#)( random noised), and systematic vary, we should consider all of the possible moving condiio
noise (Af). This systematic noise may also change with tim@f a user. In order to simplify the solution, we add a new

dimension time to the traditional X-Y coordinates. Table I
O=0+A0(t)+0 (4) contains the notations that are used in the remaining pérts o
this paper.

To demonstrate the effect of slightly modified noise, we Given a specific distance, there are multiple ways in which
temporarily ignore the random noise. Assume that k(t) + a user can move. For instance, the user can first move at his
1. The accumulated erraf in a time period can be computedmaximum speed to finish the reported displacement and then
by: stop and wait at the end. Alternatively, the user can alsd wai

first at the beginning and then move to complete the distance

The amount of': | E| = I x /2 — 2pcos(A0) + 1 (5) just on time. Therefore, there are two trajectory boundary

pcos(Af) — 1 functions:
(6) . ) o
VP2 — 2pcos(Af) + 1 r—x,  y—yp t—(te —d/Smaz) @

Te — Tp Ye — Yb d/Smam
T—xp Y-y L1

The direction ofy: cos(y) =

Based on our assumption of the noise model, Fig. 5(a), we
use simulations to generate the change pattern of the error = (8)
magnitude as shown in Fig. 5(b), wheX¥ varies from—7 Te=Tp  Ye— Yo d/Smaz
to 7 and k£ changes from-0.2 to 0.2. If one of the noise  Assuming that we have two userd, and B, both report
parameters is relatively large, both of the errors cannot bae displacement in a time interval from to t.. The initial
neglected. position of A is (z(A,t),y(A,tp)), and the end of the
The random noise) andé, can be eliminated by letting displacement igz(A4,t.),y(A,t.)). Similarity, we haveB’s
each user’s smartphone apply the Kalman filter to process tlisplacement fronz (B, t,), y(B, ts)) t0 (z(B, te), y(B, te)).
data before uploading to the server. This can be accomplishdence, at a given time, usersA and B should definitely
since the random noise follows the normal distribution, arghcounter with each other if their reported trajectoridisfa
the moving pattern of a user can be computed by the usetie following formula:
smartphone itself. The Kalman filter is a set of mathematical 9 5 )
equations that provides an efficient computational (rece)s (@(A, 1) = 2(B,1))" + (y(A,1) —y(B,1))" < B* (9)
means for estimating the state of a process in a way th@ter simplification, we can get:
minimizes the mean of the squared error [27].

R*(a® +¢?) — (ad — be)* > 0 (10)

B. False Positive and False Negative Error Detection where

At each reporting time, the server will obtain users’ repdrt ,
relative positions and their distance from nearby usersrdier o= (24 te) — a(A,ty)) — (2(B, te) — 2(B, 1)) (11)
to detect the false negative error, the server needs to aempa te =t
two records: the encounter readings and trajectories. From b=—axty+x(Aty) —x(B,tp) (12)
there, the server derives an error vector (the error’s niadai
and direction). For the false positive error, the actualatise c= (y(4,te) — y(4,t0)) = (Y(B,te) — y(B, 1)) (13)

between users is unknown (the distance is measured by the te =ty
signal strength of bluetooth) since they are not within the d=—cxty+y(Aty) —y(B,tp) (14)



Hence, a pair of spatial intersected trajectories withowt a 3\“{& t\\
. Just| vector \

corresponding encounter record may or may not be the false (\.\@xe‘“)/ N N ! "
. . .y v auy”

positive case. In our solution, the false positive only refe s ° ‘; ___repon®d?®

to the cases, where the reported data indicates definitgly i \ o APUserB ) USGFNU \

encountered while having no corresponding encounter dscor Y ,;’edoafh

- . L . Sy SNt s Ny

Clearly, the probability of having a false positive case iscim O ===

less than that of having a false negative case.

/

C. Hypothesis-based Mass-spring Adjustment (HBMS) (a) False adjust direction
The HBMS is used to estimate the optimal positions of
users. HBMS first computes the adjustment force in false S
positive and false negative cases, respectively, which il &\Q"’\a\/;,/;m&vecto;\\
discussed in Section VII: C-1. Since the adjustment dioacti g\;\e‘“’/ P N
of false positive is unknown, the HBMS algorithm will make /ﬁe@oﬂe"fa ) |
two hypotheses about the correction’s direction. Then, EBMuser A \ o APUSETB T eera
will recursively reposition each user’s position based ba t
hypothesis. The details of a recursive reposition can badou T
in Section VII: C-2. In order to enhance the efficiency of (c) Correct adjust direction (d) False adjust direction

HBMS, we first use some error parameter, which has been . . _ N _

computed in previous steps, 10 make a coarse correctS, e Pessbs adhsens 1 he e pes e e sk

which will be introduced in Section VII: C-4. Then, we refinéappened. Since the server cannot get any information aheuteal path

the positions of users based on the detected relative err@i® error-free path), the server needs to check both augustdirections.

After finding the optimal position, HBMS will update the

error parameter of users’ trails. Wrong hypotheses will be

eliminated later in Hypothesis Verification, which can berid 2) Recursively Repositionchanging one user’'s path will

in Section VII: C-3. also impact the historic path of other users. In other woads,
1) Adjustment Force:assume that there are two useis, false positive adjustment at timemay cause the happening

and j, who are neighbors. In the false negative case, lof another false positive case at some time between last

using reported trails, we can compute the relative distanadjusted time and current time. As a result, the estimated

d;; between users, and we can also obtain the real physipakition adjustment should be accomplished recursiveigeo

(Etancedij through RSSI readings. The adjustment’s forca new false positive been detected in the historic data, new

F~ can be calculated as: hypotheses will be generated to eliminate the errors.
Y . 3) Hypothesis Verificationthe position hypothesis can be
F; = A x (El?j —dij), (15) Vverified by using follow-up encounters with other users. In

AAER, the hypothesis can be checked by using encounters
where % is the unit vector from locatiori to j. Since the with other users whose paths were just adjusted or had
trajectories of users are relatively adjusted, the adj@stm gncountered an AP. In AFER, if one hypothesis incurs too
forces will be associated with the users, whose trajetstoriﬁ]any false-encounters at a later time, the hypothesis will b
have not been updated for a long time or have only beg@iminated. This idea comes from the fact that if all of the
adjusted according to a small portion of users’ data. users have the same error in their sensor device, the eelativ

In the false positive case, we cannot obtain the real dietafb‘osition relationship may still be correct. Although usiag
di; or the adjustment direction. As shown in Fig. 6, th@p is not a prerequisite in the HBMS, using APs will allow
real path can be located at either the same side of the efgrig easily verify a hypothesis and estimate error paramete
path or the other side. Therefore, we need two hypotheseagreover, in order to reduce the computing complexity, the

respectively store the adjustments. hypotheses will be deleted if they can not be verified in a
- eriod of time.
Ff = +% x (R— dyj) (ae) P

4) Error Parameter Estimationwe can quickly determine
The synthesized force of a node in a hypothesis is the sumté relative error parameters of users if we can find a group
the forces gotten from all of the nodes’ neighbors. We hawé n different users who directly encountered each other

to mention that we cannot guarantee the accuracy of the falsees, which will allow us to generate linearly independent
positive adjustment; what we do just eliminates some olssioaquations. This is because the systematic error parameters
errors during the process of map construction. Moreovexeas change slightly through time. For example, assume that the
have mentioned in Section VII.B, the false positive cases azentral server finds out that usefsand B encountered each
much harder to detect than false negative cases; the amburdtber twice in a period of time, then the relative errors hestw
false positive-caused adjustment force is much less thain tthem can be estimated. However, since the systematic error
of false negative. Hence, there are only a few hypotheses.may change with time, the estimated relative error paramete
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Fig. 7. The verification of a hypothesis.
Fig. 8. The historical error cancellation.

at current time may not be accurate in future. Hence, the
estimated relative error parameters should be updatedeTher expand the length of each reported displacement and then
are two ways to update the parameter: either by multipfptate the reported trails with the computed error anglee Th
encounters in future, or by the detected inconsistencytaféu details are as follows: suppose that at tinthe server detects
data, which causes adjustment force. a false negative, and finds out that the real direct distance
In order to quickly find the optimal location during thefrom the user's current location to last adjusted locatisn i
HBMS, at the beginning of each time step’s adjustmenk. However, according to the reported trajectory, this direc
we can use the prior estimated relative error parametersdistance isLy. Since the systematic error parameters only
coarsely adjust the trails in advance. After each time werioslightly change with time, we can regard them as fixed.
we compute the time interval between the nodes’ (involvekherefore, the displacement error parameter can be conhpute
in the false encounter) previous adjustment times and eurr®y K = £* — 1. By using this computed, we first adjust
times. Then, we calculate the ratio of the adjusted amouifi¢ length of each displacement, and then we rotate the whole
to the corresponding time interval and update the estimatégjectory from the last adjusted place.
parameters. At the next time step, we first use the parameéer

to coarsely adjust the trails, and then we apply the HBMS. Additional Discussion

The adjustment results of false positive and false negative
should hold different weights because the false positive ca

Users may not have any encounters in a period of timenly correct the trails partially; the adjustment resultsatse
Also, the reported trajectory in this time period may not beegative are much more accurate than those of false positive
accurate. Once we know how to adjust the instant positiofherefore, one corrected false positive position can baéur
the historical positions could also be corrected. We naree thdjusted by a new-found false negative. For examplés the
process of applying error cancellation to the historicpbréed latest time for false negative-based reposition, @nds > t1)
positions ashistorical error cancellation is the nearest time for false positive-based adjustmerst If

Assume that, at time, the server finds out an adjustments (¢35 > ¢ > t;) the server detects another false negative
vector. The existing solution [1] is to reposition the higtal case, the historical trails from to ¢35 can be adjusted. Thus,
trails by using a proportioned adjustment vector, which wihe server should also store the originally reported pmssti
have mentioned in the background part of our paper. Howeviéra false positive adjustment was made. The reason that
this adjustment is not true if the compass contains sysiemate still use the case of false positive is that if a certain
errors. In Fig. 8, suppose that the systematic error foragplication requests the built map at tirse without applying
compass isw/4, which means that moving directly norththe false positive adjustment temporarily, there will benso
should be reported as moving towards north-east. If we ufsdse intersections in the map, which will definitely charnige
the existing cancellation algorithm, the adjustment veato relative position relationship of the intersection. As aulg
the middle will be parallel to the instantaneous adjustmewe use false positive for temporary adjustments and use fals
vector, which is incorrect, as shown in Fig. 8(b). We canneiegative for permanent repositioning.

simply apply the direction of the current adjustment ve¢tor
users’ historical trajectories. V1. ROUTING APPLICATION: FRIEND LOCATOR

D. Historical Error Cancellation

Our solution is shown in Fig. 8(a). During the adjustment, We describe a representative application that can make use
the server should first compute the degree of the error anglé.a trajectory map. Friend locator is a typical applicatafn
If the time interval between the instantaneous time and tkheoperative trajectory mapping: a server periodicallyiemis
previous reposition is not too long, all of the points in thesers’ trajectories and answers the routing request tHps he
trails should have the same error angle. Therefore, we lshrimne user to find another. The response of the routing consists



Algorithm 5 The friend locator algorithm (user side)

@ 1: Send a routing request to the server
2: Receive a list consisted of moving direction and displace-
— ments
3: for Each tuple of the listo
(a) Normal case trails 4. if User cannot find a corresponding patien
5: Resend routing request
6: else
(A—— 7: Move as the list guided
d 8: if All of tuples in list have been taken but the user does
not arrive the destinatiothen
9: Resend routing request
(c) Noise case trails (d) Noise case routing
.
Fig. 9. The effect of measurement error during routing. Fig&) and e ety o2 e 10
9(c) represent the reported trajectories. Figs. 9(b) amj Efpresent the ‘ 0
corresponding routing graph. The digital stands for theytlerof a path and | 120
the letter indicates who reported the path. Y | 10
3 ™11 éso
s [‘ $ &
. . . 50| " i ‘ “‘, %
of the reported trails from several users whose trajecori E T AN 0
have spatial intersections with the others. In detail, ththp Lo (Tl - ; o
information consists of a series of directions and distanc % & & w0 w0 w0 e o % w0 s @ w0 @ v 1w
(such as turn right, continue for 10 m, etc.). These direstio (a) User's real & reported trails. (b) Reported trails ofl.0 users.

are obtained from the reported trails.
The implementation details of the application are as faflow
When user A sends a routing request to the server, the server

first computes the spatial intersections of the users’strailnay cause both false positive intersections and false wegat
which we terminner routing nodesThe distance betweenintersections. Fig. 9 shows the effect of the measurementt er
each pair of inner routing nodes is the length of the path thgj the length of the shortest routine path. We can illustizite
the user covered. We term the current position of a user @ing the example in Fig. 9. There, we have three users, A,
the outer routing node which is linked with one, and only B and C. The arrow lines represent the paths of users, and
one, inner routing node. Every edge in the routing graph j§e triangles between the paths are the spatial intersectio
also associated with actual walking trajectories, whichsist Fig. 9 (a) is the noise-free example, and Fig. 9 (b) is the
of several displacements and turning angles. After gettiey corresponding routing graph. Suppose that user A wanted to
spatial intersections of the paths, the server builds anmgut e guided to C. The shortest path is shown as the bold line in
graph. Then, we apply Dijkstra’s shortest path algorithth® £ig 9 (b). However, assume that there is an error undetected
graph. After we obtain the shortest path of the routing grap Fig. 9 (c), such that the inner routing notiés missing. The
the server will return it to the requester. shortest path will become Fig. 9 (d) with its distance chahge
from 19 to 30.

Fig. 10. An example of simulation used data.

Algorithm 4 The friend locator algorithm (server side)
1: Compute spatial intersection based on collected trails

VIl. PERFORMANCEANALYSIS AND EVALUATION

2: for Each pair of intersectiodo A. Experimental Goals
3. if The intersections are directly connected by a user'swe use Matlab to perform our simulation experiments. We
trails then are interested in the following questions.
4 Add an edge between the intersections 1) The relationship between the length of the observation
5: Set the length of the real trail as the weight of the time and the accuracy of our algorithm.
edge ) ) . 2) User density and the accuracy of our algorithm.
& Associate the real trajectory with the edge 3) AP density and the accuracy of our algorithm.

7: Apply shortest path algorithm on the routing map 4) The distribution of error parameters and the accuracy of
8: Find the real trajectories, which are associated with the ~ proposed detection algorithm.

shortest path
9: Return a list consisted of moving directions and displac&. Evaluation Metric

ments The metric we used to evaluate our algorithniniaccuracy
This is computed by using the shortest path algorithm based
However, the quality of this application is restricted by thon the adjusted trajectories of users. If there is an errt¢inén
measurement error of the sensor devices. Those error pathging, such as returning a non-existing path, the usdr wil
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first search nearby places: if the user find a similar path as : ‘
routine indicated, he will continue following the navigati if W‘ it

the user can not find the path, he will send the routine request'’|
again from the last existing intersection. Since the rgalis 3
walking length of the user must be shorter or equal to the read os.
shortest path, we use the ratio of the additional length ¢o th

shortest length to measure our methods and others. Thus: | |77 N \\ | \

1 7\
150 200 250 300 350 400 450 500 550 6 9 12

Inaccuracy
©

Number of observation Number of users

dij — dis

17
| a7)

Inaccuracy =

Fig. 11. AP-free solution with timé=ig. 12. User density vs. inaccuracy.

I Our AP based solution| /NI Our AP based solution|
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Where&;— represents the total length of the real walking path, o)
andd;; is the length of the real shortest path. ar

C. Simulation results

Inaccuracy
o

We first synthetically generate i& x 15 grid map and set
the distance between neighborhood &glistance units. Then,
we randomly generate the noise-free moving trajectories of ,
every user. The speed of each user varies ftadistance unit
per second tal0 distance units per second. We convert the
coordinates of trajectories to sensor readings, which isbns™9- 13- AP density vs. inaccuracy. Fig. 14.  Error vs. inaccuracy.
of displacement and the moving direction. The shape of noisy .
trajectories is shown in Fig. 10. The parameters of the noidl €stimated error parameter can be updated when users
are also generated randomly. The distribution of the parameEncounter each other, the error of a user at one time may
follows normal distribution. also be accumulated, which further impacts the quality ef th

In order to guarantee that the routing request can alwaysfﬂsnd Iocat.or f”‘pp"ca“?”- ) ) )
responded to, we only use the trails which are connected. Thé‘P density is our third consideration. In the grid map, we
encounter sensors’ sampling times are the same as usdrs’ {R1domly deploy5 to 20 APs. Intuitively, if the density of
reporting times. For the consideration of generality, eaata 27 AP iS large enough, the accuracy of the application will
point in our simulation is the average resultigimulations. Stll be high even if the error parameters may change with

The shortest path algorithm used in our simulation is tfine. Moreover, after encountering an AP, the estimatedrerr
Dijkstra algorithm. Consider that if the relative positiopf Parameter can still be used for corrections in a period oétim
users are correct, then the spatial intersections of tratisare 19 13 iS our simulation result when the error parameter is
correct. In order to show the importance of the correct apat!’-08 for displacement error deviation aric2 for compass.
encounter, in our method, we use the routing paths, whichOur last teste_d faqtor |s.the mmgl deviation of. t_hg error
are consisted of spatially jointed trajectories. We corapaP@rameters. During simulation, we f|rs_t set up an _mmaberr
our results with a modified version of [1]. Note that inn the sensors. Then, we let the noise slightly increase or
their method the routing path is composed by several usefcrease along with time. The initial amount of errors may
trajectories, which are joined only at the physical enceunt"@e some significant impact on the spatial encounter-based
places. Moreover, a special pruning algorithm is also used routing results, espemall_y thge structure of spatial s&en.ong
[1]. Since the pruning algorithm only affects the computing’f the repo_rted trajectories, if they are not corrected ineti
speed rather than accuracy of routing, we do not use tH@WeVer, since the routing results of MPEC only use physwal
pruning algorithm. For ease discussion, we name the modiffé@counters, the errors only affect the real walking distanc
solution as Modified Proportional Error Cancellation (MPECOf users, who follows the previous user's trajectory. Fig. 1
The first tested factor is the length of the observations. Vi8OWS our simulation results.
choose different sample times fro2®90 to 500. Each APS’
sensor range is set &sdistance units, and each encounter’s
sensor range is3. The initial positions of the users are In this paper, we consider the problem of accumulative
randomly deployed. Fig. 11 shows our simulation result. Waeasurement errors in cooperative trajectory mapping. & u
can see that our AP-free solution is related with obsermatia realistic noise model and propose an encounter-based erro
time, since as the time growing, there are more physiagncelation algorithm that is effective against measurédme
encounters happened. However, since the error parametarsrs. Then, we use extensive simulations to validate our
change with time, the AP-free solution can not eliminate adlolution. Our future work will consider some extensionseTh
the errors. first one is how we can determine a malicious user, who always
The second tested factor is the user density, as shownréports wrong trails, from the normal user, who has relétive
Fig. 12. We test5 to 11 users in the grid map. Althoughlarge amounts of noise. The second extension is about megluci
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VIII. CONCLUSION
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the computing complexity of the HBMS algorithm. Finally, we24] N. Priyantha, H. Balakrishnan, E. Demaine, and S. Tellenchor-free

plan to build the system on a real platform such that we c
test the following items: the magnitude of the measureme

errors, the impacts of road structures, traveling pattesnd
battery drain on multi-sensors.
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