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Abstract—Sensor networks aim at monitoring their sur-
roundings for event detection and object tracking. But due
to failure or death of sensors, false signal can be transmitted.
In this paper, we consider the problem of fault detection
in wireless sensor network (WSN), in particular, addressing
both the noise-related measurement error and sensor fault
simultaneously in fault detection. We assume that the sensors
are placed at the center of a square (or hexagonal) cell in
region of interest (ROI) and, if the event occurs, it occurs at a
particular cell of the ROI. We propose fault detection schemes
that take into account error probabilities into the optimal
event detection process. We develop the schemes under the
consideration of Neyman-Pearson test and Bayes test.

Index Terms—Wireless Sensor Network, Event Detection,
Fault Detection, Bayes Test, Neyman-Pearson Test.

I. INTRODUCTION

Traditional and existing sensor-actuator networks use
wired communication, whereas wireless sensor networks
provide radically new communication and networking
paradigms and myriad new applications. The wireless sen-
sors have small size, low battery capacity, non-renewable
power supply, small processing power, limited buffer ca-
pacity and low-power radio. They may measure distance,
direction, speed, humidity, wind speed, soil makeup, tem-
perature, chemicals, light, and various other parameters.

Recent advancements in wireless communications and
electronics have enabled the development of low-cost WSN.
A WSN usually consists of a large number of small sensor
nodes, which are equipped with one or more sensors,
some processing circuit, and a wireless transceiver. One
of the unique features of a WSN is random deployment
in inaccessible terrains and cooperative effort that offers
unprecedented opportunities for a broad spectrum of civil-
ian and military applications; such as industrial automation,
military tactical surveillance, national security, and emer-
gency health care [3], [25], [2]. Sensor Networks are useful
in detecting topological events such as forest fires [13].

Sensor networks aim at monitoring their surroundings for
event detection and object tracking [3], [22]. Because of this
surveillance goal, coverage is the functional basis of any
sensor network. In order to fulfill its designated surveillance

tasks, a sensor network must fully cover the Region of
Interest (ROI) without leaving any internal sensing hole [4],
[6], [7], [11]. However, it cannot be expected that sensors
are placed in a desired way at initiation as they are often
randomly dropped due to operational factors. Furthermore,
a sensor could die or fail at runtime for various reasons
such as power depletion, hardware defects etc. In wireless
sensor and actuator networks (WSAN), sensors can be
placed by mobile actuator(s), i.e., robot(s). If sensors are
mobile, they can place themselves without any external
help. But as physical movement consumes a large amount
of energy for the sensor nodes, a movement assisted sensor
placement scheme is preferred [5], [12], [19]. On the
other hand, some sensors could be marked redundant in
terms of local sensing coverage and that sensors are called
passive sensors. Passive sensors could be either deployed
on purpose or determined by area coverage protocol [14].

So far, a number of movement-assisted sensor placement
algorithms have been proposed. An exclusive survey on
these topics is presented by Li et al. [17]. On the other hand
sensor could die or fail at runtime for various reasons such
as power depletion, hardware defects etc. So, even after
the ROI is fully covered by the sensors, wrong information
can send by some sensors or sensors may fail to detect
the event due to noise or obstructions. Chen et al. [9]
proposed a localized fault detection algorithm for WSN.
Sharma et al. [26] characterize different types of faults and
fault detection methods.

Mousavi et al. [20] presented a distributed one step
deployment (OSD) algorithm. This algorithm partitions the
ROI evenly into two-dimensional square grids, and instructs
sensors to occupy all the grid points. The intuition is that
if every grid point is occupied by a sensor, then the ROI is
fully covered, and the sensors form a connected network.
Fletcher et al. [10] present randomized algorithms using
more than one robot for coverage repair in WSN. They
propose two algorithms for grid based ROI and simulate
the path traveled by the robots for different values of
parameters (number of sensors, number of robots etc.).

One of the important sensor network applications is
monitoring inaccessible environments. Sensor networks are
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used to determine event regions and boundaries in the
environment with a distinguishable characteristic [16], [8],
[24]. The basic idea of distributed detection [27] is to
have each of the independent sensors make a local decision
(typically, a binary one, i.e., whether or not an event has
occurred) and then combine these decisions at a fusion
sensor (a sensor which collects the local information and
takes the decision) to generate a global decision or send
these information to the base station. Optimal distributed
design have been sought under both the Bayesian and the
Neyman-Pearson performance criteria [28].

A. Our Motivation

In this paper, we are interested in the following: de-
termining an event and the position of the event in a
environment where that event may have occurred. We
assume that ROI is partitioned into suitable number of
squares (i.e., we consider ROI as a rectangular grid with
square cells. We also consider regular hexagonal grid with
regular hexagonal cells in a separate section). We also
assume that sensors have already been placed at the centers
(which we call them nodes) of the square cells.

One fundamental challenge in the event detection prob-
lem for a sensor network is the detection accuracy which
is limited by the amount of noise associated with the mea-
surement and the reliability of sensor nodes. The sensors
are usually low-end inexpensive devices and sometimes
exhibit unreliable behavior. For example, a faulty sensor
node may issue an alarm even though it has not received
any signal for event, or it cannot detect an actual event and
vice versa. Moreover, a sensor may be dead in which case
sensor cannot send any alarm.

The event region can be large, and if an event occurs
at a particular point of the region then the sensor cannot
determine exactly where the event has happened. There
are cases where a fusion sensor cannot make a decision.
Consider, for example, a network of sensors that are capable
of sensing mines or bombs. If we assume that either no
mines (or bombs) are placed or very few mines (or bombs)
are placed on a particular area of ROI, then an important
query in this situation could be whether bombs are placed
or not. In that case, fusion sensor does not help to take the
decision. All sensors have to communicate with the base
station, and base station will take the decision about the
query.

B. Assumptions

In this section, we describe the assumption we make;
some are new and some are identical to the ones made
by other researchers. The new assumptions lead to a new
type of problem statement and a new approach to solve the
detection problem.
• We assume that if an event occurs in the square where

the particular sensor (call it as center node) lies then
that particular sensor can detect the event with a high
probability whereas if an event occurs in the adjacent
square of the center square then the sensor can detect

the event with a lesser probability. Moreover, the
probability of detection decreases as distance between
the sensor and event square increases. Hence, only
one node (center node of the event square) can detect
the event square with the highest probability, say p1,
four distance-one nodes can detect the event square
with lower probability, say p2, and the four distance-
two nodes can detect the event square with lowest
probability, say p3. Here, distance-one node means
the node which is placed at the center of an adjacent
square (i.e., a side is common with the center square)
and distance-two node means that the node which
placed at the center of an square which has a common
vertex with the center square. We assume that no other
sensor can detect the event square, and p1 > p2 > p3.

• Unlike the previous work, we assume that if the event
occurs then it occurs at only one particular square of
the grid which will be known as event square, and
there is no fusion sensor.

• Sensors are deployed or manually placed over ROI in
such a way that they cover the entire ROI. We assume
that sensors are placed priori at the center (which are
known as nodes) of every square cell (we also consider
regular hexagonal grid with regular hexagonal cell in
a separate section).

• Each sensor node can determine its location through
beacon positioning mechanism [5]. Sensors are also
able to communicate with the base station. Unlike the
previous work, we assume that either the event occur at
one particular square of the grid which will be known
as event square or event does not occur (in that case
we say ROI is normal).

• We assume that there is no fusion sensor (the sensor
which will take decision locally); all sensors commu-
nicate with the base station which takes the decision.

• Sensor at the center of the event square can detect
the event square with highest probability and the
sensors which are situated at a certain distance from
the event square can detect the event square with
lesser probability (due to different noise, distance,
obstructive, etc.). We also assume that there is prior
probability of a particular square to be an event square.
Even if event square is detected by a sensor, it may not
respond or send the information to the base station due
to some technical fault (we call that sensor as faulty
sensor) with some probability. Conversely, if an event
square was not detected or if there is no event square
(i.e., normal situation) then also a faulty sensor can
falsely respond or send the wrong information to the
base station with some probability. A sensor is called a
dead sensor if the sensor does not work at all. A dead
sensor sends no response in either case. If a sensor
is dead or the ROI is normal then the sensors send
no information, i.e., do not respond. We also assume
that the sensors work independently, i.e., detection and
response of different sensors are independent.
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C. Our Contribution

In our theoretical analysis, we propose fault detection
schemes that take into account error probabilities in the
optimal event detection process. We develop the schemes
under the consideration of classical hypothesis testing and
Bayes test. We calculate different error probabilities and
find some theoretical results involving different parameters
such as probability of false alarm of a sensor, probability of
event detection by a sensor, prior probability of occurring a
event, etc. Finally, we calculate different error probabilities,
Bayes test and Neyman-Pearson Most Powerful(MP) test
for some specific values of the parameters and state some
concluding remarks analyzing the calculation results.

Parameters p1, p2, p3, the detection probabilities of a
sensor, and the probability of sending information correctly
by a sensor, cannot be estimated from the real life situation
but we can estimate them experimentally beforehand. The
prior probability of the event cannot be estimated. In
various situations, it may be known in which case we apply
Bayes test; otherwise, we use Neyman-Pearson MP test.

In this paper, we propose a rule for the base station
to take a decision compiling the information coming from
the all sensors and find the optimal solutions. We consider
two type of error: type I error when an event occurs but
the sensor report normal (which is the more serious error)
and type II error when ROI is normal but sensor report
as an event. We observed that type I and type II errors
decrease when detection probabilities increase. If detection
probabilities are low then type I error is close to 1. If
probability of occurrence of the event is high but detection
probabilities are small then type I and type II errors are
high, which means there is no use of sensors. So, when
the probability of occurrence of the event is high, we have
to use sensors with high detection probability (i.e. sensors
with much better quality). We calculate the MP test and the
Bayes test for some specific values of the parameters. We
observed that for small values of detection probability and
large value of loss, the Bayes test is not applicable. When
loss is large, we cannot use sensors with small detection
probabilities to decide about the event square using Bayes
test. We also observed that when the size of the test is small
we cannot use sensors with small detection probabilities for
MP test; we have to use good sensors (sensor with high
detection probability) for MP test in this case.

In a separate section, we have considered ROI as a
hexagonal grid, i.e., it partitioned into suitable number
of congruent regular hexagons and sensors are placed at
the center of the hexagons. Instead of three detection
probabilities (as in the case of square grid), we assume
there are two detection probabilities p1, p2 with p1 > p2,
same for all hexagons. Other assumptions are same.

II. RELATED WORK

There are several papers which consider only the cov-
erage problem of sensor networks. Tseng and Huang [15]
formulate the problem as a decision problem, whose goal
is to determine whether every point in the service area of

the sensor network is covered by at least k sensors, where
k is a predefined value.

Lou et al. [18] consider two important problems for
distributed fault detection in WSN: 1) how to address both
the noise-related measurement error and sensor fault simul-
taneously in fault detection and 2) how to choose a proper
neighbourhood size n for a sensor node in fault correction
such that the energy could be conserved. They propose a
fault detection scheme that explicitly introduces the sensor
fault probability into the optimal event detection process.
They show that the optimal detection error decreases expo-
nentially with the increase of the neighbourhood size.

Filippou et al. [11] measure the ability of the network to
interact with observed phenomena taking place in the ROI.
In addition, coverage is associated with connectivity and
energy consumption, both of which are important aspects
of the design process of a WSN. The paper aims at offering
a critical overview and presentation of the problem as well
as the main strategies developed so far.

An example of a uniform deterministic coverage is a
grid based sensor deployment where sensors are located
on the intersection points of a grid. This requires manual
placement, which is realistic for small number of nodes,
and an accessible environment. This placement ensures
complete coverage of the field with the minimum number of
sensors. The minimum number of sensors needed to cover
an area is given by Williams [29].

Nandi and Li [23] consider coverage problem in wireless
sensors and actuator network composed of static sensors
dropped stochastically in the ROI which is a rectangular
grid with square cells. Sensors are dropped at the vertices
of the grid from air. Sensors have communication radius
rc and sensing radius rs, where rc ≥

√
2rs. Actuator

can take, carry and place the sensors according to some
pre-assigned algorithm. Nandi and Li [23] developed three
algorithms for the actuator under two different conditions
and compared these algorithms in context with some pre-
assigned parameters. They also deduced some theoretical
results on the parameters and some simulation results
applying the three algorithms.

Krishnamachari and Iyengar [16] propose a distributed
solution for canonical task in WSN, i.e., the binary de-
tection of interesting environmental events. They explicitly
take into account the possibility of sensor measurement
faults and develop a distributed Bayesian algorithm for
detecting and correcting such faults.

Dharma P. Agrawal [1] summarized many underlying
design issues of WSNs, starting from the coverage and
the connectivity. As batteries provide energy to sensor
nodes, effective ways of power conservation are consid-
ered. Advantages of placing sensors in a regular pattern
have also been discussed and various trade offs for many
possible ways of secured communication in a WSN are
summarized. Challenges in deploying WSN for monitoring
emission are briefly covered. Finally, the use of sensors
is illustrated in automatically generating music based on
dancer’s movements.

In almost all previous work, authors assume that event
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occurs over a region and there are fusion sensors that collect
the information locally and take a decision. Since they do
not introduce the concept of base station there is no concept
of response probability. Also they assume the information
are spatially correlated. Unlike the previous work, in this
paper, we assume that there is no fusion sensor, all the
sensors send the information to the base station and we
introduce the probability model in two different stages,
firstly, when a sensor detect the event and secondly when a
sensor send the message to the base station. In the previous
work, authors simulate the different probabilities for some
specific values of parameters. In this paper, we calculate the
exact probabilities and the exact test. It is hard to calculate
the exact probabilities and the exact test for general case
when events occur in more than one cell. In this paper, we
assume that if event occurs then it occurs at only one cell.

In almost all previous work, authors assume that the grid
as a square grid but the hexagonal grid is better in the sense
that less number of sensors is required to cover the entire
ROI. The minimum number of sensors needed to cover an
area is given by Williams [29]. In this paper, we consider
the both square and hexagonal grids in separate sections.

III. PROBLEM STATEMENT AND NOTATIONS

In this section, we describe the problem that we want to
solve and the notations we use.

A. Problem Statement
Our problem is to find various error probabilities (e.g.,

probability of false response when the ROI is normal or
probability of no response when a particular square is a
event square, etc.). We want to develop schemes for base
station to take the decision and find the error probabilities
of two different wrong situations: 1) base station decided
that the ROI is normal but there is an event square and
2) base station decided that the ROI is not normal, i.e., a
event square exists, but there is actually no event square. We
want to develop the schemes and find the error probabilities
under two different considerations: a) classical hypothesis
testing and b) decision theoretic approach (i.e., Bayes test).
In the consideration of decision theoretic approach, we
introduce risk factor for two different wrong situations. We
also calculate error probabilities for some values of differ-
ent parameters like probability of false alarm of a sensor,
probability of event detection by a sensor, prior probability
of existence of an event etc. Our problem is to give optimal
test for base station (for different parameters) under the two
different considerations and find some theoretical results.

Since we assume there is at most one particular event
square and only 9 sensors (one sensor which placed at the
center of the event square, four sensor whose placed at the
center of adjacent squares with a common side and four
sensors which are placed at the center of adjacent squares
with a common vertex) can only detect the event square,
we consider a 3 × 3 square grid. Now if an event occurs,
it occurs at the center square. Among the 9 squares, our
problem is to find whether or not the center square is the
event square.

N N

N

2,1

Distance−one Node

Center Node

N N

N N N

Distance−one Node Distance−one Node

Distance−one Node

3,2
N

3,1

Distance−two NodeDistance−two Node

Distance−two Node Distance−two Node

2,2 1,1 2,3

3,3 2,4 3,4

Fig. 1. Nodes placed in cells of the ROI

B. Notations and Parameters

The node which is placed at the center square is the
nearest node and hence can detect the event square with
highest probability. We denote this node as N11.

The 4 nodes, whose distances are 2a from the previous
node, are the second nearest nodes and hence can detect
the event square with second highest probability. We denote
these nodes as N2j , j = 1, 2, 3, 4.

The 4 nodes, whose distances are 2
√

2a from the center
node, are the furthest nodes which can detect the event
square and hence can detect the event square with lowest
probability. We denote these nodes as N3j , j = 1, 2, 3, 4.

For (i, j) ∈ {(1, 1)} ∪ ({2, 3} × {1, 2, 3, 4})
let yij = 1 if the node Nij detects the center square as the
event square,
yij = 0 if the node Nij detects the center square as the

normal square (event does not occur),
xij = 1 if the node Nij responds, i.e., the node informs

the base station that the center square is the event square,
and
xij = 0 if the node Nij does not respond, i.e., the node

informs the base station that the center square is normal.
Here we make one natural assumption, for k, l = 0, 1,

Pr(xij = k | yij = l,Normal) = Pr(xij = k | yij = l)

and Pr(xij = k | yij = l,Event) = Pr(xij = k | yij = l),

i.e., the response of a sensor is independent of the event
occurrence and its ability to detect the event.

Note that, detection of event by a sensor does not mean
that the sensor informs the base station that the center
square is the event square; if the sensor is faulty, it can
send a normal report. Similar thing can happen if sensor
does not detect the event square. Also note that, yij’s are
not independent, but yij’s are independent under event and
normal situation.

Now the parameters of the problem are the following:
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• Pr(Event) = Pr(event occurs) = pe (say);
• Pr(Normal) = Pr(ROI is normal) = pn (say);
• Pr(yij = 1 | Event) = pi (say);
• Pr(xij = 1 | yij = 1) = pc (say) and
• Pr(xij = 1 | yij = 0) = pw (say)

for all possible values of i and j.

Clearly, Pr(yij = 1 | Normal) = 0 for all possible values
of i and j. We also assume that p1 > p2 > p3.

IV. THEORETICAL ANALYSIS OF FAULT DETECTION

In this section, we derive various error probabilities for
all nodes and then propose a rule for the base station to
take a decision compiling the information coming from all
the 9 nodes and to find the optimal solution. Finally, we
calculate the error probabilities and the tests for the base
station.

Let us consider the testing problem H0: Event vs. H1:
Normal. We consider “Event” as null hypothesis because
type I error should be the more serious error than type II
error. If we reject the null hypothesis when it is true, i.e.,
if Event occurs but base station decides Normal, then that
will be the more serious error than the other one.

There are two types of error: type I error when event
occurs but sensor reports normal (which is the more serious
error) and type II error when ROI is normal but sensor
reports Event.

Throughout the section, we consider i = 1, j = 1 and
j = 1, 2, 3, 4 when i = 2, 3. There are eight possible
scenarios for a particular node Ni,j :

1. Normal, yij = 0, xij = 0 (sensor correctly detects a
normal reading and sends the correct message to the base
station),

2. Normal, yij = 0, xij = 1 (sensor correctly detects a
normal reading but sends the wrong message to the base
station due to fault),

3. Normal, yij = 1, xij = 0 (sensor wrongly detects a
normal reading as event but sends the normal message to
the base station due to fault),

4. Normal, yij = 1, xij = 1 (sensor wrongly detects a
normal reading as event and sends the wrong message to
the base station),

5. Event, yij = 0, xij = 0 (sensor wrongly detects an
event reading and sends the wrong message i.e. normal
message to the base station),

6. Event, yij = 0, xij = 1 (sensor wrongly detects an
event reading but sends the correct message to the base
station),

7. Event, yij = 1, xij = 0 (sensor correctly detects an
event reading but sends the wrong message to the base
station due to fault), and

8. Event, yij = 1, xij = 1 (sensor correctly detects an
event reading and sends the correct message to the base
station).

Normal

yij = 1

xij = 1

xij = 0
detection0

yij = 0

xij = 1

response
pw

xij = 0
1− p

w

1

Fig. 2. detection and response probabilities when ROI is normal

Event

yij = 1

xij = 1

response
pc

xij = 0
1− p

c

detectionp
i

yij = 0

xij = 1

response
pw

xij = 0
1− p

w

1−
p i

Fig. 3. detection and response probabilities when event occurs

A. Error Probabilities for Nodes

Let, PN = Pr(xij = 0 | Normal)
= Pr(xij = 0 | yij = 0,Normal) Pr(yij = 0 | Normal)
+ Pr(xij = 0 | yij = 1,Normal) Pr(yij = 1 | Normal)
= Pr(xij = 0 | yij = 0) Pr(yij = 0 | Normal) +

Pr(xij = 0 | yij = 1) Pr(yij = 1 | Normal) = 1− pw.

Therefore, the probability of type II error for the node (i, j)
is Pr(xij = 1 | Normal) = pw

Let, PE,i = Pr(xij = 1 | Event) =

Pr(xij = 1 | yij = 0,Event) Pr(yij = 0 | Event) +

Pr(xij = 1 | yij = 1,Event) Pr(yij = 1 | Event)
= Pr(xij = 1 | yij = 0) Pr(yij = 0 | Event) +

Pr(xij = 1 | yij = 1) Pr(yij = 1 | Event)
= pw(1− pi) + pcpi = pw + pi(pc − pw)

Hence, probability of type I error for the node (i, j) is

QE,i = Pr(xij = 0 | Event) = 1− Pr(xij = 1 | Event)
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= (1− pw)− pi(pc − pw)
Now other types of errors may be as follows:

P1,i = Pr(Event | xij = 0) =
peQE,i

pnPN + peQE,i

and P2,i = Pr(Normal | xij = 1) =
pnpw

pnpw + pePE,i
.

B. Error Probabilities and Test for Base Station

Now, let us consider the detection problem for the base
station. After the observations about xij’s are made, at the
base station they are combined to make a final decision
regarding the hypotheses (H0: Event vs H1: Normal). When
H0 is true, xij follows Ber(PE,i), and when H1 is true xij
follows Ber(pw). Let the probability mass function of xij
when Hk is true be p(xij | Hk) for k = 0, 1. We make one
more natural assumption pc > pw, which is equivalent to
say PE,i > pw for all i. This is needed for a result in the
next section .

1) The Neyman-Pearson Approach: In many practical
situations, the prior probabilities may be unknown in which
case the decision theoretic approach is not appropriate. So,
we employ the Neyman-Pearson criterion. In that case, the
most powerful (MP) test of size α is to reject H0 when

Πp(xij | H1) > l′′Πp(xij | H0)

and reject H0, with probability k, when

Πp(xij | H1) = l′′Πp(xij | H0),

where l′′ and k can be found from the size α of the test.
Since, when H0 is true xij follows Ber(PE,i) and, when
H1 is true, xij follows Ber(pw), we can simplify the MP
test as to reject H0 when

pΣxij
w (1− pw)Σ(1−xij) > l′′P x11

E,1(1− PE,1)(1−x11)×

P
Σx2j

E,2 (1− PE,2)Σ(1−x2j)P
Σx3j

E,3 (1− PE,3)Σ(1−x3j),

and reject H0 with probability k when

pΣxij
w (1− pw)Σ(1−xij) = l′′P x11

E,1(1− PE,1)(1−x11)×

P
Σx2j

E,2 (1− PE,2)Σ(1−x2j)P
Σx3j

E,3 (1− PE,3)Σ(1−x3j).

i.e., reject H0 when

1

l′′
>

(
PE,1

pw

)x11
(

1− PE,1

1− pw

)(1−x11) (
PE,2

pw

)Σx2j

×

(
1− PE,2

1− pw

)(4−Σx2j) (
PE,3

pw

)Σx3j
(

1− PE,3

1− pw

)(4−Σx3j)

and reject H0 with probability k when equality hold in
place of greater than.
Hence, reject H0 when

x11ln

(
PE,1

pw

)
+ (1− x11)ln

(
1− PE,1

1− pw

)
+

Σx2j ln

(
PE,2

QN

)
+ (4− Σx2j)ln

(
1− PE,2

1− pw

)
+

Σx3j ln

(
PE,3

pw

)
+ (4− Σx3j)ln

(
1− PE,3

1− pw

)
< l′

and reject H0 with probability k when equality hold in
place of less than.
i.e., reject H0 when

x11ln

(
PE,1(1− pw)

(1− PE,1)pw

)
+ Σx2j ln

(
PE,2(1− pw)

(1− PE,2)pw

)
+

Σx3j ln

(
PE,3(1− pw)

(1− PE,3)pw

)
< l

and reject H0 with probability k when equality hold in
place of less than.
Hence, we get the MP test as to reject H0 when

Σxij ln

(
PE,i(1− pw)

(1− PE,i)pw

)
< l

and reject H0 with probability k when

Σxij ln

(
PE,i(1− pw)

(1− PE,i)pw

)
= l ... (R)

where, l and k can be found from the relation

Pr(H0 reject | H0 true) = α,

which is equivalent to

Pr(Σxij ln(di) < l) + kPr(Σxij ln(di) = l) = α,

where, di =
PE,i(1−pw)
(1−PE,i)pw

and xij follows Ber(PE,i). Since

we assume PE,i > pw, ln
(

PE,i(1−pw)
(1−PE,i)pw

)
> 0 for all i.

Based on the given error bound α and sensor fault
probabilities, the base station will take the decision given
by the rule (R).

2) Decision Theoretic Approach: A test Tg of H0 : θ =
θ0 vs H1 : θ = θ1 is defined to be a Bayes test with respect
to the prior distribution Pr(H1) = g if and only if

(1− g)RTg
(θ0) + gRTg

(θ1) ≤ (1− g)RT (θ0) + gRT (θ1)

for any other test T , where RT (θ) is the risk function of
the test T . The Bayes test is the test which seeks a critical
region that minimizes the overall risk. If loss function is
not available then we can assume the losses are 0 or 1. It
can be proved that the Bayes test is to Reject H0 when

L0

L1
<

gl(d0; θ1)

(1− g)l(d1; θ0)
,

where L0 and L1 are the likelihoods for θ = θ0 and θ = θ1,
respectively; l(d0; θ1) is the loss when null hypothesis is
accepted but it is false, and l(d1; θ0) is the loss when null
hypothesis is rejected but it is true [21].

Let the losses be as follows: le when event occurs but
base station takes decision as normal, ln when ROI is
normal but base station takes decision as event, and loss is
0 when the base station takes the correct decision. Hence,
under the Bayesian setup, i.e., when the prior distribution
(pn, pe) are available, the Bayes test with respect to the
prior distribution Pr(H0) = pe and Pr(H1) = pn can be
derived as follows:
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Reject H0 when

pΣxij
w (1− pw)Σ(1−xij) >

pele
pnln

P
x1j

E,1(1− PE,1)(1−x1j)×

P
Σx2j

E,2 (1− PE,2)Σ(1−x2j)P
Σx3j

E,3 (1− PE,3)Σ(1−x3j),

i.e., Reject H0 when

Σxij ln

(
PE,i(1− pw)

(1− PE,i)pw

)
< ln

(
pnln
pele

)
+ ln

(
1− pw

1− PE,1

)
+ 4ln

(
1− pw

1− PE,2

)
+ 4ln

(
1− pw

1− PE,3

)
C. Boundary Case

In the above discussion, we assume that the center square
is an interior one. If we consider the boundary squares,
then the expression for the error probabilities for each
sensor are changed and consequently expression for the
error probabilities for the base station are also changed.
In that case, if we consider the corner squares then j takes
value 1 for i = 1, 3 and j takes values 1, 2 for i = 2, and
if we consider the boundary square other than a corner one
then j takes value 1 for i = 1; j takes values 1, 2, 3 for
i = 2, and j takes values 1, 2 for i = 3. The theoretical
analysis is similar as in the case of interior squares.

D. When More Sensors can Detect the Event Square

We may consider the situation when sensing radius has
larger value, and then more sensors can detect the event
square but with different probabilities. In this case, we
classify all the nodes as follows: two sensors belong to
the same class if they have the same distance from the
event square and hence the same detection probability to
detect the event. Let sensors in the i-th class detect the
event square with probability pi, i = 1, 2, 3, .... Then, the
expressions of the error probabilities for the sensors and
the test (MP and Bayes) are similar to the ones previously
discussed, but now the summation in the left hand side of
the expression of MP or Bayes test is changed; instead of
three terms, there will be more terms.

V. CALCULATIONS AND OBSERVATIONS

We have the independent set of parameters of the prob-
lem as follows:
pe, pi, pc, pw for all possible values of i and j,
l = ratio of losses = le/ln and size of the test = α.
The type I error for Nij is (1− pw)− pi(pc − pw) and

the type II error for Nij is pw for all possible values of i
and j.

Let d = pc − pw and d > 0.
Other types of errors for Nij’s are

P1,i =
pe(1− pw − pid)

1− pw − pepid
and P2,i =

(1− pe)pw
pw + pepid

for all possible values of i and j,

Let ti = ln

(
PE,i(1− pw)

(1− PE,i)pw

)
.

Therefore, ti = ln

(
(pw + pid)(1− pw)

pw(1− pw − pid)

)
= ln

(
1 +

pid

pw(1− pw − pid)

)
.

Let t = ln
(

pnln
pele

)
+

ln

(
1− pw

1− PE,1

)
+ 4ln

(
1− pw

1− PE,2

)
+ 4ln

(
1− pw

1− PE,3

)
= ln

(
1− pe
lpe

)
+ ln

(
1− pw

1− pw − p1d

)
+

4ln

(
1− pw

1− pw − p2d

)
+ 4ln

(
1− pw

1− pw − p3d

)
= ln

(
1− pe
lpe

)
+ ln

(
1 +

p1d

1− pw − p1d

)
+

4ln

(
1 +

p2d

1− pw − p2d

)
+ 4ln

(
1 +

p3d

1− pw − p3d

)
.

Also let x1 = x11 and xi = xi1 + xi2 + xi3 + xi4 for
i = 2, 3.

A. Calculation of Errors for Each Sensor and Observations

In this subsection, we calculate different error probabili-
ties for sensors for some specific values of parameters. We
choose two set of values of p1, p2, p3, pw and pc, one is
for a good reliable network and other is for a less reliable
network. We choose five different values of pe. These
values are chosen just to give an idea of the errors and the
tests. One can easily calculate different error probabilities
for any other values of the parameters.

TABLE I
CALCULATION OF ERRORS FOR SOME VALUES OF THE PARAMETERS

Calculation of type I error
p1 p2 p3 pc pw QE,1 QE,2 QE,3

0.9 0.5 0.3 0.9 0.1 0.1800 0.5000 0.6600
0.7 0.3 0.1 0.8 0.2 0.3800 0.6200 0.7400

When p1 = 0.9, p2 = 0.5, p3 = 0.3, pw = 0.1, pc = 0.9

pe P1,1 P1,2 P1,3 P2,1 P2,2 P2,3

0.1 0.0217 0.0581 0.0753 0.5233 0.6429 0.7258
0.2 0.0476 0.1220 0.1550 0.3279 0.4444 0.5405
0.3 0.0789 0.1923 0.2391 0.2215 0.3182 0.4070
0.4 0.1176 0.2702 0.3284 0.1546 0.2308 0.3061
0.5 0.1667 0.3571 0.4231 0.1087 0.1667 0.2273

When p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8

0.1 0.0501 0.0793 0.0932 0.7438 0.8257 0.8738
0.2 0.1061 0.1623 0.1878 0.5634 0.6780 0.7547
0.3 0.1691 0.2493 0.2839 0.4294 0.5511 0.6422
0.4 0.2405 0.3407 0.3814 0.3261 0.4412 0.5357
0.5 0.3220 0.4366 0.4805 0.2439 0.3448 0.4348

Observations: A few immediate observations from the
theoretical results (which can be verified from Table I) are
as follows:

1) P1,i decreases when pi and pc increase and indepen-
dent of pj when i 6= j.

2) P1,i increases when pe and pw increase.
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3) P2,i decreases when pi, pe and pc increase and
independent of pj when i 6= j.

4) P2,i increases when pw increases.
5) When pe and pw are small then

P1,i =
pe(1− pw − pid)

1− pw − pepid

= pe

(
1− pid

1− pw

)(
1− pepid

1− pw

)−1

≈ pe
(

1− pid

1− pw

)(
1 +

pepid

1− pw

)
≈ pe

(
1− pid

1− pw
+

pepid

1− pw

)

6) If detection probability pi is low then type I error is
close to 1. In that case, the network is not reliable.

7) If pe is high but pi is small then other types of errors
are high; that means, there is no use of sensors. So
when pe is high, we have to use sensors with high
detection probability (i.e. better quality sensors).

B. Calculation for Bayes Test and Observations

The Bayes test is to reject H0 when

l1x1 + l2x2 + l3x3 < 1,

where, li = ti/t with

ti = ln

(
1 +

pid

pw(1− pw − pid)

)
, i = 1, 2, 3.

and t = ln

(
1− pe
lpe

)
+ ln

(
1 +

p1d

1− pw − p1d

)
+

4ln

(
1 +

p2d

1− pw − p2d

)
+ 4ln

(
1 +

p3d

1− pw − p3d

)
Note that we always accept H0 if t ≤ 0

As ln

(
1 +

pid

1− pw − pid

)
> 0, for all i,

t is negative if

ln

(
lpe

1− pe

)
> ln

(
1 +

p1d

1− pw − p1d

)
+

4ln

(
1 +

p2d

1− pw − p2d

)
+ 4ln

(
1 +

p3d

1− pw − p3d

)
,

i.e., if l >

(
1− pe
pe

)(
1 +

p1d

1− pw − p1d

)
×

(
1 +

p2d

1− pw − p2d

)4 (
1 +

p3d

1− pw − p3d

)4

.

In this case, the Bayes test is not applicable, i.e., if l (ratio
of the losses) is large then we have to use good quality
sensors, i.e., sensor with high detection probabilities such
that p1d

1−pw−p1d
is so large that

l <

(
1− pe
pe

)(
1 +

p1d

1− pw − p1d

)

TABLE II
CALCULATION OF BAYES TEST FOR SOME VALUES OF THE

PARAMETERS

p1 = 0.9, p2 = 0.5, p3 = 0.3, pw = 0.1, pc = 0.9

pe l t Bayes test
0.1 5 5.789 3.714x1 + 2.197x2 + 1.534x3 ≤ 5.789
0.3 5 4.439 3.714x1 + 2.197x2 + 1.534x3 ≤ 4.439
0.5 5 3.592 3.714x1 + 2.197x2 + 1.534x3 ≤ 3.592
0.1 20 4.403 3.714x1 + 2.197x2 + 1.534x3 ≤ 4.403
0.3 20 3.053 3.714x1 + 2.197x2 + 1.534x3 ≤ 3.053
0.5 20 2.205 3.714x1 + 2.197x2 + 1.534x3 ≤ 2.205

p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8

0.1 5 2.664 1.876x1 + 0.897x2 + 0.340x3 ≤ 2.664
0.3 5 1.314 1.876x1 + 0.897x2 + 0.340x3 ≤ 1.314
0.5 5 0.466 1.876x1 + 0.897x2 + 0.340x3 ≤ 0.466
0.1 20 1.277 1.876x1 + 0.897x2 + 0.340x3 ≤ 1.277
0.3 20 -0.073 1.876x1 + 0.897x2 + 0.340x3 ≤ −0.073
0.5 20 -0.920 1.876x1 + 0.897x2 + 0.340x3 ≤ −0.920

(
1 +

p2d

1− pw − p2d

)4 (
1 +

p3d

1− pw − p3d

)4

.

Observations: A few immediate observations from the
theoretical results (which can be verified from Table II) are
as follows:

1) li’s are the weights of xi’s in the Bayes test which
means that the value of li tell us how much weight
the base station has to give to xi while taking the
decision about the event square, e.g., consider the
Bayes test for p1 = 0.9, p2 = 0.5, p3 = 0.3, pw =
0.1, pc = 0.9, pe = 0.1 and l = 5 (Table II),

3.714x1 + 2.197x2 + 1.534x3 ≤ 5.789,

Here, l1 : l2 : l3 ≈ 5 : 3 : 2 means 3 distance-two
sensors is equivalent to 2 distance-one sensors in the
context of detecting an event and so on.

2) Let li/lk= ti/tk be the ratio of the weights which
tells us how many Nkj nodes are equivalent to one
Nij in the context of detecting an event.

3) t increases when pi and pc increase.
4) t decreases when pw, l and pe increase.
5) For p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc =

0.8, l = 20 and pe = 0.3 (resp. 0.5), the Bayes test
is (Table II) to reject H0 when 1.876x1 + 0.897x2 +
0.340x3 ≤ −0.0734

(resp. 1.876x1 + 0.897x2 + 0.340x3 ≤ −0.920),

i.e., we accept H0 for all values of xi’s. So in
this situation the Bayes test is not applicable. This
indicates that for small values of pi’s and large values
of l the Bayes test is not applicable. When l is
large we have to use sensors with high detection
probabilities to decide about the event square using
Bayes test.

C. Calculation for Most Powerful Test and Observations

The most powerful (MP) test of size α is to reject H0

when
t1x1 + t2x2 + t3x3 < l
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and reject H0 with probability k, when

t1x1 + t2x2 + t3x3 = l,

where, ti = ln

(
1 +

pid

pw(1− pw − pid)

)
, i = 1, 2, 3.

l and k can be found from the relation

Pr(t1x1 + t2x2 + t3x3 < l) +

kPr(t1x1 + t2x2 + t3x3 = l) = α.

Note that, x1 follows Ber(pw + p1d) and xi follows
Bin(4, pw + pid) for i = 2, 3.
Also xi’s are independent when it is known that H0 is true.

To simplify calculations, we take the approximate values
of t1 : t2 : t3 and pw + pid. For p1 = 0.9, p2 = 0.5, p3 =
0.3, pw = 0.1, pc = 0.9, we take t1 : t2 : t3 ≈ 5 : 3 : 2 and
pw +p1d ≈ 0.8, pw +p2d ≈ 0.5 and pw +p3d ≈ 0.35. And
for p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8, we
take t1 : t2 : t3 ≈ 10 : 5 : 2 and pw+p1d ≈ 0.6, pw+p2d ≈
0.4 and pw + p3d ≈ 0.25.

To calculate l and k, we first set l = 0 and calculate the
probability of

t1x1 + t2x2 + t3x3 < l,

if the probability is less than α, we increase the value of l
by 1 and do the same as above. If, for l = l′ the probability
is less than α, and for l > l′ the probability is greater than
α, we take that l′ as the value of l, and then, calculate the
value of k as

k =
α− Pr(X < l′)

Pr(X ≤ l′)− Pr(X < l′)
,

where, X = t1x1 + t2x2 + t3x3.

TABLE III
CALCULATION OF MP TEST FOR SOME VALUES OF THE PARAMETERS

(APPROXIMATED)

p1 = 0.9, p2 = 0.5, p3 = 0.3, pw = 0.1, pc = 0.9

α l k MP test
0.900 8 0.04 5x1 + 3x2 + 2x3 ≤ 8
0.950 6 0.15 5x1 + 3x2 + 2x3 ≤ 6
0.975 5 0.19 5x1 + 3x2 + 2x3 ≤ 5
0.990 3 0.33 5x1 + 3x2 + 2x3 ≤ 3

p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8

α l k MP test
0.900 7 0.24 10x1 + 5x2 + 2x3 ≤ 7
0.950 5 0.02 10x1 + 5x2 + 2x3 ≤ 5
0.975 2 0.39 10x1 + 5x2 + 2x3 ≤ 2
0.990 0 0.61 10x1 + 5x2 + 2x3 ≤ 0

Observations: A few immediate observations from the
theoretical results (which can be verified from Table III)
are as follows:

1) ti’s are the weights of the xi’s in the MP test

5x1 + 3x2 + 2x3 ≤ 8, here l1 : l2 : l3 ≈ 5 : 3 : 2,

roughly means 3 distance-two sensors is equivalent
to 2 distance-one sensors in the context of detecting
event and so on.

2) ti is independent of pe and l.

3) ti increases when pi and pc increase.
4) ti decreases when pw increases.
5) As ti increases, critical region (set of all the values of

xi’s for which we reject the null hypothesis) is going
to be smaller.

6) Let li/lk= ti/tk be the ratio of the weights which
tells us how many Nkj node are equivalent to one
Nij in the context of detecting an event.

7) For p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8
and α = 0.990 the MP test is reject H0 when

10x1 + 5x2 + 2x3 ≤ 0,

i.e., we accept H0 in almost all cases. So in this
situation, the MP test is not applicable. This indicates
that for small values of pi’s and large values of α,
the MP test is not applicable. When α is large we
cannot use sensors with small pi values for the MP
test. Hence, when the size of the MP test is small we
have to use good enough sensors for MP test.

VI. SIMULATION RESULTS

For m = 200, n = 250, we simulate the different
probabilities and the tests of the problem. We also simulate
the number of times the Bayes test and the MP test give
the correct decision. The simulation is performed using the
C-program with required random numbers generated using
the standard C-library.

In the following table, qE,i denotes the corresponding
simulated values of QE,i and pk,i denotes the correspond-
ing simulated values of Pk,i where k = 1, 2 and i = 1, 2, 3.

TABLE IV
SIMULATED AND THEORETICAL VALUES OF ERRORS

Simulation of type I error
QE,1 qE,1 QE,2 qE,2 QE,3 qE,3

0.1800 0.1791 0.5000 0.4964 0.6600 0.6574
0.3800 0.3823 0.6200 0.6173 0.7400 0.7398

Simulation of other type of error
P1,1 p1,1 P1,2 p1,2 P1,3 p1,3

0.0217 0.0214 0.0581 0.0570 0.0753 0.0738
0.0476 0.0469 0.1219 0.1203 0.1549 0.1546
0.0789 0.0789 0.1923 0.1918 0.2391 0.2387
0.1176 0.1176 0.2703 0.2690 0.3283 0.3275
0.1667 0.1677 0.3571 0.3546 0.4231 0.4235
0.0501 0.0514 0.0793 0.0808 0.0932 0.0964
0.1061 0.1039 0.1623 0.1585 0.1878 0.1833
0.1691 0.1677 0.2493 0.2499 0.2839 0.2831
0.2405 0.2402 0.3407 0.3366 0.3814 0.3782
0.3220 0.3234 0.4366 0.4380 0.4805 0.4813

Simulation of another type of error
P2,1 p2,1 P2,2 p2,2 P2,3 p2,3

0.5233 0.5262 0.6429 0.6433 0.7286 0.7258
0.3279 0.3298 0.4444 0.4492 0.5405 0.5337
0.2215 0.2195 0.3182 0.3200 0.4070 0.4083
0.1546 0.1561 0.2308 0.2370 0.3061 0.3080
0.1087 0.1106 0.1667 0.1684 0.2273 0.2225
0.7438 0.7399 0.8257 0.8196 0.8738 0.8739
0.5634 0.5566 0.6780 0.6731 0.7547 0.7512
0.4294 0.4299 0.5512 0.5550 0.6422 0.6393
0.3261 0.3230 0.4412 0.4382 0.5357 0.5349
0.2439 0.2490 0.3448 0.3420 0.4348 0.4385
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TABLE V
SIMULATION OF PROPORTION OF NUMBER OF CORRECT DETECTIONS

BY BAYES AND MP TESTS

p1 = 0.9, p2 = 0.5, p3 = 0.3, pw = 0.1, pc = 0.9

pe l 1− type I error (simulated) Power (simulated)
0.1 5 0.9016 0.9436
0.3 5 0.9417 0.9131
0.5 5 0.9819 0.7554
0.1 20 0.9465 0.9090
0.3 20 0.9866 0.7358
0.5 20 0.9931 0.7291

p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8

0.1 5 0.5927 0.8537
0.3 5 0.8520 0.5963
0.5 5 0.9610 0.2682
0.1 20 0.8367 0.6001
0.3 20 1.0000 0.0
0.5 20 1.0000 0.0

p1 = 0.9, p2 = 0.5, p3 = 0.3, pw = 0.1, pc = 0.9

MP test α 1− type I error (simulated) Power (simulated)
0.900 0.9014 0.9437
0.950 0.9500 0.8814
0.975 0.9767 0.7897
0.990 0.9906 0.6231

p1 = 0.7, p2 = 0.3, p3 = 0.1, pw = 0.2, pc = 0.8

0.900 0.8875 0.4985
0.950 0.9458 0.3296
0.975 0.9735 0.1856
0.990 0.9891 0.0882

Observations: A few immediate observations from the
theoretical results (which can be verified in Table IV) are
as follows:

1) The simulated and theoretical values of the different
errors are close enough; they differ by at most 2%.

2) The simulated and theoretical values of type I error
of the MP test are approximately same; they differ
by at most 0.3%.

3) We simulated type II error of the MP test and both
the errors for the Bayes test, which is very hard to
calculate theoretically.

4) Powers of the Bayes and MP test are very close
for the same type I error, e.g. for p1 = 0.9, p2 =
0.5, p3 = 0.3, pw = 0.1, pc = 0.9 type I error for the
MP test and the Bayes test are 0.9014 and 0.9016,
respectively, and the corresponding type II errors are
0.9437 and 0.9436. This indicates that both test are
good and equally powerful. In case of the MP test, the
type I error (i.e., 1− α) has to be chosen before the
test, but in case of Bayes test if the ratio of the losses
is known then type I error is automatically fixed and
the overall loss is minimized.

VII. ESTIMATION OF THE PARAMETERS

In practice, the problem is that the parameters
p1, p2, p3, pw and pc may be unknown. We can, however,
estimate these parameters through experimentation.

Note that P (y1j = 1|Event) = p1. Hence, p1 is the
expected value of y1j given an event. So, we perform the
experiment as follows: an event occurs in some node N of

the ROI and we count how many y1j’s gives value 1. The
proportion of y1j’s having value 1 gives an estimate of p1.
We repeat this experiment several times so that the average
of the proportions over repeated experiments can be taken
as an estimate of p1.

Note that under normal situation, xij follows Ber(pw)
for all i, j. Hence, pw is the expected value of xij given
normal situation. So, we perform the experiment by keeping
the ROI normal and find the values of xij’s. The proportion
of xij’s having value 1 gives an estimate of pw. We repeat
this experiment several times so that the average of the
proportions over repeated experiments can be taken as an
estimate of pw.

Similar experiments will give the expected value of
p2, p3, and pc.

VIII. SOME SPECIAL CASES

With fewer sensors, e.g., only center node or center node
and four distance-one sensors can detect the event square
or when sensors always send the message correctly with
probability 1 or when the sensors can detect the event
square without any error, we can simplify and say more
about the error probabilities and the tests. In following
subsections we discuss some special cases of that nature.

A. When sensors always send the message correctly

We have, pw = 0 and pc = 1. Hence, d = 1 since
d = pc − pw.

The type I and type II errors for Nij are 1 − pi and 0,
respectively, and

P1,i =
pe(1− pi)
1− pepi

≈ pe(1− pi)(1 + pepi) ≈ pe(1− pi),

for small pe and P2,i = 0 for all possible values of i, j.

If
(
pn
pel

)(
1

1− p1

)(
1

1− p2

)4 (
1

1− p3

)4

> 1,

then the Bayes test is to reject H0 only when x1 = x2 =
x3 = 0. Otherwise, the Bayes test is to accept H0 for all
values of x1, x2, x3.

Therefore, if l >
pn
pe

(1− p1)−1(1− p2)−4(1− p3)−4,

the Bayes the test is to reject H0 when x1 = x2 = x3 = 0
Otherwise, the Bayes the test is to accept H0 for all values
of x1, x2, x3.

If (1− p1)(1− p2)4(1− p3)4 ≤ α,

then the MP test of size α is to reject H0 when x1 = x2 =
x3 = 0. Otherwise, the MP test of size α is to accept H0

for all values of x1, x2, x3.
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B. When the sensors can detect the event square without
any error

We have the detection probability is 1, i.e., pi = 1 for
i = 1, 2, 3. Then the type I and type II error for Nij are
1− pc and pw, respectively.

P1,i =
pe(1− pw − d)

1− pw − ped
and P2,i =

(1− pe)pw
pw + ped

for all possible values of i and j.
The Bayes test is to reject H0 when

x1 + x2 + x3 <
ln

(
1−pe

lpe

)
+ 9ln

(
1 + d

1−pc

)
ln

(
1 + d

pw(1−pc)

) .

The MP test of size α is to reject H0 when x1+x2+x3 <
l and reject H0 with probability k, when x1 +x2 +x3 = l.
l and k can be found from the relation

Pr(x1 + x2 + x3 < l) + kPr(x1 + x2 + x3 = l) = α,

where x1 + x2 + x3 follows Bin(9, pc).

C. When one center and four distance-one sensors can
detect the event square, i.e., p3 = 0

If sensors have less sensing power (i.e., small sensing
radius), then small numbers of sensors can detect the event
square. Assume that only center and four adjacent sensors
can detect the event square. Then, we consider only five
squares: one center square and four one-distanced adjacent
squares.

The Bayes test is to reject H0 when l1x1 + l2x2 < 1
where, for i = 1, 2, li =

ln
(

1 + pid
pw(1−pw−pid)

)
ln( 1−pe

lpe
) + ln

(
1 + p1d

1−pw−p1d

)
+ 4ln

(
1 + p2d

1−pw−p2d

) .
The MP test of size α is to reject H0 when t1x1+t2x2 <

l
and reject H0 with probability k, when t1x1 + t2x2 = l,

where, ti = ln

(
1 +

pid

pw(1− pw − pid)

)
, i = 1, 2.

l and k can be find from the relation

Pr(t1x1 + t2x2 < l) + kPr(t1x1 + t2x2 = l) = α,

where x1 follows Ber(pw +p1d), x2 follows Bin(4, pw +
p2d) and they are independent when H0 is true.

IX. WHEN SENSORS ARE PLACED AT THE CENTERS OF
REGULAR HEXAGONS

In this section, we assume ROI is partitioned into con-
gruent regular hexagons (which are known as cells) with
side a, i.e., we can think ROI as a hexagonal grid with
regular hexagonal cells. We consider that sensors are placed
previously at the center of each cell of the hexagonal grid.
We assume that the sensor network covers the entire ROI.
Instead of three detection probability (as in the case of

center node

adjacent node

adjacent node

adjacent node

adjacent node

adjacent node

adjacent node

Fig. 4. Nodes placed in hexagonal grid when ROI partitioned in to regular
hexagons

square grid), we assume there are two detection probability
p1, p2, where p1 > p2. Note that there are six adjacent
nodes of a particular node.

We define Nij , xij , yij , xi, pe, pn, pc, pw, ti as in the case
of square grid.

Hypotheses are also same as in the case of square grid.
The Bayes test is to reject H0 when

l1x1 + l2x2 < 1,

where, li =
ln

(
1 + pid

pw(1−pw−pid)

)
ln(c)

, for i = 1, 2;

with c =(
1− pe
lpe

)(
1 +

p1d

1− pw − p1d

)(
1 +

p2d

1− pw − p2d

)6

.

The MP test of size α is to reject H0 when

t1x1 + t2x2 < l

and reject H0 with probability k, when

t1x1 + t2x2 = l,

where, ti = ln

(
1 +

pid

pw(1− pw − pid)

)
, i = 1, 2.

l and k can be found from the relation

Pr(t1x1 + t2x2 < l) + kPr(t1x1 + t2x2 = l) = α,

x1 follows Ber (pw + p1d), x2 follows Bin (6, pw + p2d)
and x1 and x2 are independent under H0.
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X. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have considered the problems for fault
detection in wireless sensor network (WSN). We partition
the ROI as a rectangular grid with square cells. We discuss
how to address both the noise-related measurement error
and sensor fault simultaneously in fault detection where the
sensors are placed at the centers of square cells of the ROI
and the event occurs at only one square of the grid. We
have also considered the ROI as partitioned into regular
hexagonal cells and do the same analysis. We have pro-
posed fault detection schemes that explicitly introduce the
error probability into the optimal event detection process.
We developed the schemes under 1) classical hypothesis
testing and 2) Bayes test. We have identified and analyzed
all the situations in which these tests are effective and cases
where they are not applicable.

We observed that type I and type II errors decrease
when pi and pc increase and increase when pw increases.
When pe increases, type I errors increase but type II errors
decrease. If detection probability pi is low then type I error
is close to pe. If pe is close to 0.5 then type I error is close
to pe which means that there is no use of sensors; in that
case, we have to use sensors with high detection probability.

In future, we plan to do the following:
1) Develop schemes to find which particular square is

the event square.
2) Develop schemes to identify the event square when

there are more than one event squares.
3) Develop schemes to find and isolate the dead and the

faulty sensors, i.e., the sensors which are sending the
false information to the base station.

4) We may assume that sensors can detect different type
of events; thus, response of sensors may not be simply
binary.

5) We may assume that sensors can measure distance,
direction, speed, humidity, wind speed, soil makeup,
temperature, etc. and send the measurement of con-
tinuous type variables.
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